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1. Introduction. Various generalized derivatives introduced in modern variational analysis represent an effi-
cient tool in stability analysis of multifunctions (Rockafellar and Wets [26], Klatte and Kummer [13], Borwein
and Zhu [3], Mordukhovich [16], Dontchev and Rockafellar [5]). This concerns in particular the so-called solu-
tion maps associated with parameter-dependent variational inequalities or generalized equations. Their stability
properties have been thoroughly analyzed already in the seventies, above all in the papers by Robinson. A par-
ticular attention has been paid to the case of polyhedral constraint sets, independent of the parameter; see, for
instance, Robinson [21, 22, 24] and Dontchev and Rockafellar [4]. An overview of available results in this situ-
ation can be found in Dontchev and Rockafellar [5, Chapter 2E]. Concerning nonpolyhedral constraint sets, one
can find a huge number of works related to constraint sets with nonlinear programming structure, possibly even
parameter dependent. They deal with various types of stability, including the strong regularity of Robinson [23]
and various other types of “regular” behavior; see Klatte and Kummer [13] and the references therein.

Another group of results concerns the so-called conic constraints; cf. Bonnans and Shapiro [2]. They are
formulated either in the general framework or for special important classes of cones (SDP cones, Lorentz
cones, etc.).

In the first part of the present paper our main attention is paid to the graphical derivative and the regular
coderivative of the normal-cone mapping

y 7→ N̂â 4y51 (1)

where
â = 8y ∈�m

� qi4y5≤ 01 i = 1121 : : : 1 l9 (2)

with twice continuously differentiable functions qi2 �
m →�. In (1), N̂â stands for the regular normal cone to â

defined at the beginning of the Section 2. The graphical derivative of (1) has been computed in Rockafellar
and Wets [26, Corollary 13.43(a), Exercise 13.17] in the case when â is a fully amenable set (i.e., locally, the
preimage of a polyhedral set under a constraint qualification). In the case of â given by (2) and ȳ∗ ∈ N̂â 4ȳ5, this
formula attains the form

DN̂â 4ȳ1 ȳ
∗54v5= 8ï 24�T q54ȳ5v � � ∈ å̄4v59+NK4ȳ1 ȳ∗54v51 v ∈�m1 (3)

where q4 · 5= 4q14 · 51 : : : 1 qm4 · 55
T ,

å̄4v5= arg max
ïq4ȳ5T �=ȳ∗

�∈N�l−
4q4ȳ55

�v1ï 24�T q54ȳ5v�
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and
K4ȳ1 ȳ∗5 2= Tâ 4ȳ5∩ 8ȳ∗9⊥

is the critical cone to â at ȳ with respect to ȳ∗. Formula (3) can be viewed as a starting point of two lines of
research directed to the relaxation of the full amenability of â assumed in Rockafellar and Wets [26]. In the first
line, one does not require the polyhedrality of â in order to be able to deal with the problems of second-order
or semidefinite cone programming (Mordukhovich et al. [19]). In the second line, followed in this paper, we
will concentrate on â given by (2) and relax the constraint qualification associated with amenability, which in
this case amounts to the classical Mangasarian-Fromovitz constraint qualification (MFCQ).

Concerning the regular coderivative of N̂â for â given by (2), it has been studied in Henrion et al. [11]
and [10] under MFCQ and the constant rank constraint qualification (CRCQ), which are also substantially more
restrictive than the qualification conditions imposed in this paper.

In the next part of the paper, we consider the solution map S, which assigns to each value of the parameter
x ∈�n the corresponding set of solutions to the (parameterized) generalized equation (GE)

0 ∈ F 4x1 y5+ N̂â 4y51 (4)

and a modified solution map S̃ taking into account also possible parameter constraints. In (4), y ∈ �m is the
decision variable and F 2 �n ×�m →�m is a continuously differentiable mapping. On the basis of the graphical
derivative of N̂â it is not difficult to compute the graphical derivative of S (or its outer estimate). On the contrary,
the computation of the regular coderivative of S (respectively, S̃) requires apart from the regular coderivative
of N̂â also the fulfillment of another qualification condition, which is typically rather restrictive. To relax it,
we have invoked the idea of nondegeneracy, which we have extended from the original convex framework (see
Bonnans and Shapiro [2, p. 315]) to a nonconvex one. This technique has enabled us to derive a new calculus
rule for the regular normal cone to a “set with constraint structure” (Rockafellar and Wets [26, Theorem 6.14])
and, eventually, to compute the regular coderivative of S (respectively, S̃).

The last part of the paper is devoted to applications. On the basis of the graphical derivative of S, we state
there a new criterion for the isolated calmness of S (at a given point from the graph of S), which is a valuable
stability property and may be used, e.g., in postoptimal analysis. Further, on the basis of the regular coderivative
of S we have derived sharp necessary optimality conditions for an optimization problem, where (4) arises among
the constraints. Such problems are termed mathematical programs with equilibrium constraints (MPECs) and
represent a typical application area for new techniques of variational analysis.

The structure of the paper is as follows. In the first of two preparatory sections (Section 2) we provide a
background from variational analysis. Apart from standard notions and properties, we introduce in Definition 2
a new stability property for multifunctions, which plays a crucial role in further development. In Section 3, the
second preparatory section, we fix the notation and state some simple auxiliary results. The main results are
collected in Sections 4 and 5. These sections deal with the two mentioned generalized derivatives of N̂â and with
the regular coderivatives of S and S̃, respectively. Section 6 is devoted to applications and, finally, in Section 7
we present concluding remarks on the results obtained.

Our notation is basically standard: conv ì and ri ì denote the convex hull and the relative interior of
the set ì, respectively, gphê stands for the graph of the map ê and span8a1 b9 signifies the linear subspace
generated by vectors a1b. Furthermore,

ì
→ denotes convergence within the set ì, for a cone K its negative

polar is denoted by K�, � · � stands for the Euclidean norm, and kerA means the kernel of the matrix A. Finally,
�I � is the cardinality of the index set I , ì⊥ denotes the orthogonal complement to ì, o2 �+ → � denotes a
function with the property that o4�5/�→ 0 when � ↓ 0, and d4·1ì5 signifies the (Euclidean) distance function
to ì.

2. Background from variational analysis. In this section, we briefly review some generalized differential
constructions employed in the paper, confining ourselves only to the settings that appear below. The reader can
find more details and extended frameworks in the monographs (Mordukhovich [16], Rockafellar and Wets [26])
and in the papers we refer to.

Let us start with geometric objects. Given a set ì ⊂ �d and a point z̄ ∈ ì, define the (Bouligand-Severi)
tangent/contingent cone to ì at z̄ by

Tì4z̄5 2= Lim sup
t↓0

ì− z̄

t
=
{

u ∈�d
� ∃ tk ↓ 01 uk → u with z̄+ tkuk ∈ì1 ∀k

}

0 (5)

Note that one has Tì4z̄5=�+4ì− z̄5 when ì is a convex polyhedron.
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The (Fréchet) regular normal cone to ì at z̄ ∈ì can be equivalently defined by

N̂ì4z̄5 2=

{

v∗
∈�d

∣

∣

∣

∣

lim sup
z
ì
→z̄

�v∗1 z− z̄�

�z− z̄�
≤ 0

}

= 4Tì4z̄55
�0 (6)

Further, the (Mordukhovich) limiting/basic normal cone to ì at z̄ ∈ì is given by

Nì4z̄5 2= Lim sup
z
ì
→z̄

N̂ì4z50

The above notation Lim sup stands for the outer set limit in the sense of Painlevé–Kuratowski; see, e.g., Rock-
afellar and Wets [26, Chapter 4]. Note that the tangent/contingent cone and the regular normal cone reduce to
the classical tangent cone and normal cone of convex analysis, respectively, when the set ì is convex.

Considering next set-valued (in particular, single-valued) mappings ë2 �d ⇒�s , we define for them the cor-
responding derivative and coderivative constructions generated by the tangent cone (5) and the normal cone (6),
respectively. Given 4z̄1 w̄5 ∈ gphë , the graphical derivative Dë4z̄1 w̄52 �d ⇒�s of ë at 4z̄1 w̄5 is

Dë4z̄1 w̄54u5 2= 8v ∈�s
� 4u1 v5 ∈ Tgphë 4z̄1 w̄591 u ∈�d0 (7)

From the dual perspective, we define the regular coderivative D̂∗ë4z̄1 w̄52 �s ⇒ �d of ë at 4z̄1 w̄5 ∈ gphë
generated by the regular normal cone (6) as

D̂∗ë4z̄1 w̄54v∗5 2= 8u∗
∈�d

� 4u∗1−v∗5 ∈ N̂gphë 4z̄1 w̄591 v∗
∈�s0 (8)

If ë is single valued at z̄, we drop w̄ in the notation of (7)–(8). In the case of smooth single-valued mappings,
for all u ∈�d and v∗ ∈�s we have the representation

Dë4z̄54u5= 8ïë4z̄5u9 and D̂∗ë4z̄54v∗5= 8ïë4z̄5T v∗90

In variational analysis, an important role is played by various stability notions for multifunctions. In the
sequel, we will be extensively using the following two:

Definition 1. Let ë2 �d ⇒�s be a multifunction, let 4ū1 v̄5 ∈ gphë and let �> 0.
1. ë is called metrically regular with modulus � near 4ū1 v̄5 if there are neighborhoods U of ū and V of v̄

such that
d4u1ë−14v55≤ �d4v1ë4u551 ∀ 4u1 v5 ∈U ×V 0 (9)

2. ë is called metrically subregular with modulus � at 4ū1 v̄5 if there is a neighborhood U of ū such that

d4u1ë−14v̄55≤ �d4v̄1ë4u551 ∀u ∈U0 (10)

It is well known that metric regularity of the multifunction ë near 4ū1 v̄5 is equivalent to the Aubin property
(also called Lipschitz-like or pseudo-Lipschitz) of the inverse multifunction ë−1 and metric subregularity of ë
at 4ū1 v̄5 is equivalent with the property of calmness of its inverse.

For general multifunctions, the property of metric regularity is characterized by the so-called Mordukhovich
criterion; see, e.g., Mordukhovich [15, 16, Theorem 4.18].

In the sequel, we are dealing mostly with the perturbation mapping M2 �m ⇒�l associated with (2), which
is defined by

M4y5 2= q4y5−�l
−
0

In this case one can ensure the metric regularity or the metric subregularity via the following statements. The
first one follows immediately from Rockafellar and Wets [26, Exercise 9.44].

Proposition 1. Given ȳ ∈ â , M is metrically regular near 4ȳ105 if and only if

ker4ïq4ȳ5T 5∩ N̂�l
−
4q4ȳ55= 8090 (11)

The infimum of the moduli � for which the metric regularity property holds is equal to

max
�∈N̂�l−

4q4ȳ551

���=1

1
�ïq4ȳ5T��

0 (12)
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It is well known that condition (11) is equivalent to the classical MFCQ at ȳ.
For the next statement, we need the notion of the linearized tangent cone at some point y ∈ â defined by

T lin
â 4y5 2= 8v ∈�m

� ïqi4y5v ≤ 01 i ∈I4y591

where I4y5 2= 8i ∈ 811 : : : 1 l9 � qi4y5= 09 denotes the index set of constraints, active at y.

Proposition 2 (Second-Order Sufficient Condition for Metric Subregularity Gfrerer [6, Theo-
rem 6.1]). Let ȳ ∈ â and assume that for every 0 6= u ∈ T lin

â 4ȳ5 one has

� ∈ ker4ïq4ȳ5T 5∩ N̂�l
−
4q4ȳ551 uTï 24�T q54ȳ5u≥ 0 =⇒ �= 00

Then M is metrically subregular at 4ȳ105.

We will refer to this condition by using the acronym SOSCMS. In the literature one can find also other
sufficient conditions for metric subregularity; see, e.g., Henrion and Outrata [9], Ioffe and Outrata [12], and
Zheng and Ng [27, 28].

It can be easily seen from Proposition 1 that metric regularity of M implies SOSCMS.
In some situations M is not metrically regular near ȳ ∈ â but enjoys a weaker property defined below.

Definition 2. Let ȳ ∈ â , � > 0. We say that M is metrically regular 4with modulus �5 in the vicinity of
ȳ, if there is some neighborhood V of ȳ such that for every y ∈ M−1405 ∩ V , y 6= ȳ, the multifunction M is
metrically regular near 4y105 with modulus �.

Since metric regularity is an open property in the sense that it holds in a neighborhood of the point in question,
we easily conclude that metric regularity near 4ȳ105 implies metric regularity in the vicinity of ȳ.

The following proposition states that by SOSCMS we have an easily applicable criterion for verifying metric
regularity in the vicinity of ȳ at hand, when MFCQ does not hold.

Proposition 3. Let ȳ ∈ â . Under SOSCMS the mapping M is metrically regular in the vicinity of ȳ.

Proof. The proof follows from Gfrerer and Klatte [7, Proposition 1] and the observation following Defini-
tion 4 therein. �

The following example demonstrates that metric regularity in the vicinity of ȳ holds for a broad class of
inequality systems, even when MFCQ is not fulfilled.

Example 1. Let â ⊂�2 be given by

q4y5=

(

−y2

y2 − yd1

)

for fixed exponent d ∈�\809 and let ȳ = 0. Then it is easy to see that the corresponding mapping M is metrically
regular near 4ȳ105, i.e., MFCQ holds at ȳ only in case when d = 1. On the other hand, SOSCMS holds when
d = 2, because for every 0 6= u ∈ T lin

â 4ȳ5 = �× 809 and every 0 6= � ∈ ker4ïq4ȳ5T 5 ∩ N̂�l
−
4q4ȳ55 = 84�11�25 ∈

�2
+

� �1 = �29 we have uTï 24�T q54ȳ5u = −2�2u
2
1 < 0 and thus SOSCMS follows. However, M is metrically

regular in the vicinity of ȳ for every d ∈�\809. This follows from the fact that at every point y ∈ â\8ȳ9 at most
one constraint is active and the gradient of this active constraint is bounded away from 0. 4

3. Notation and auxiliary results. Given elements y ∈ â and y∗ ∈ N̂â 4y5, we define by

å4y1 y∗5 2= 8� ∈ N̂�l
−
4q4y55 � ïq4y5T�= y∗91

the set of Lagrange multipliers associated with 4y1 y∗5. Moreover

K4y1 y∗5 2= Tâ 4y5∩ 4y∗5⊥

stands for the critical cone to â at y with respect to y∗.
For a given reference pair 4ȳ1 ȳ∗5, ȳ ∈ â , ȳ∗ ∈ N̂â 4ȳ5, fixed throughout this paper, we shortly set SI 2= I4ȳ5,

å̄ 2=å4ȳ1 ȳ∗5 and K̄ 2=K4ȳ1 ȳ∗5. Furthermore we employ the set

N̄ 2= 8v ∈�m
� ïqi4ȳ5v = 01 i ∈ SI9
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(nullspace of gradients of constraints active at ȳ). Given a multiplier � ∈ N̂�l
−
4q4ȳ55 we introduce the index sets

I+4�5 2= 8i ∈ 811 : : : 1 l9 � �i > 091 Ī 04�5 2= SI\I+4�51

the sets of strongly and weakly active constraints. Apart from them, we will be working with

Ī+
=
⋃

�∈å̄

I+4�51 Ī 0 2= SI\Ī+0

With a direction v ∈ T lin
â 4ȳ5 let us now associate the directional multiplier set

å̄4v5 2= arg max
�∈å̄

vTï 24�T q54ȳ5v0

Directly from the definition of metric subregularity, one can infer that under metric subregularity of M at
4y105 one has

Tâ 4y5= T lin
â 4y53

cf. also Henrion and Outrata [9, Proposition 1], and thus

K4y1 y∗5= T lin
â 4y5∩ 8y∗9⊥

=
{

w ∈�m
� ïqi4y5w ≤ 01 i ∈I4y51 yTw = 0

}

0 (13)

Further, it follows that under this condition the regular normal cone to â at y amounts to

N̂â 4y5= ïq4y5T N̂�l
−
4q4y55

and consequently å4y1 y∗5 6= �. In the rest of this section, the metric subregularity of M at 4ȳ105 will be
assumed.

Lemma 1. Let v ∈ K̄, � ∈ å̄ and assume that M is metrically subregular at 4ȳ105. Then

N̂K̄4v5=
{

ïq4ȳ5T� ��Tïq4ȳ5v = 01� ∈ TN̂�l−
4q4ȳ554�5

}

0

Proof. Note that N̂K̄4v5= K̄
�
∩ 8v9⊥ and, by virtue of the Farkas Lemma,

K̄
�

=
{

w ∈�m
� ïqi4ȳ5w ≤ 01 i ∈ SI1 ȳ∗Tw = 0

}�
=

{

∑

i∈ SI

�iïqi4ȳ5+�ȳ∗

∣

∣

∣

∣

�i ≥ 01 i ∈ SI1� ∈�

}

= ïq4ȳ5T N̂�l
−
4q4ȳ55+�ȳ∗0

Hence, for every v∗ ∈ N̂K̄4v5 there is some �̃ ∈ N̂�l
−
4q4ȳ55 and some � ∈ � with v∗ = ïq4ȳ5T �̃ + �ȳ∗ =

ïq4ȳ5T 4�̃ + ��5. Setting � = �̃ + �� we have v∗ = ïq4ȳ5T�, �Tïq4ȳ5v = v∗T v = 0 and � ∈ TN̂�l−
4q4ȳ554�5,

where the last relation follows from the fact that for t > 0 sufficiently small we have 1 + �t > 0 and thus
�+ t�= 41 +�t5�+ t�̃ ∈ N̂�l

−
4q4ȳ55.

Conversely, let � ∈ TN̂�l−
4q4ȳ554�5 with �Tïq4ȳ5T v = 0 be arbitrarily fixed. Then there is some t > 0 such that

�+ t� ∈ N̂�l
−
4q4ȳ55 and therefore for all w ∈ K̄ = T lin

â 4ȳ5∩ 8ȳ∗9⊥ ⊂ T lin
â 4ȳ5 we have

0 ≥ 4�+ t�5Tïq4ȳ5w = ȳ∗Tw+ t�Tïq4ȳ5w = t4ïq4ȳ5T�5Tw

showing ïq4ȳ5T� ∈ K̄
�
. Together with 4ïq4ȳ5T�5T v = 0 we conclude 4ïq4ȳ5T�5 ∈ N̂K̄4v5. �

Lemma 2. Assume that M is metrically subregular at 4ȳ105. Then there is some �̃ ∈ å̄ such that I+4�̃5= Ī+.
Further we have

K̄ =

{

v ∈�m

∣

∣

∣

∣

∣

ïqi4ȳ5v = 01 i ∈ Ī+

ïqi4ȳ5v ≤ 01 i ∈ Ī 0

}

and there is some v ∈ K̄ satisfying

ïqi4ȳ5v = 01 i ∈ Ī+1 ïqi4ȳ5v < 01 i ∈ Ī 00 (14)
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Proof. Since Ī+ is a finite index set, there are �i ∈ å̄, i = 11 : : : 1N , such that Ī+ =
⋃N

i=1 I
+4�i5. Setting �̃ 2=

41/N5
∑N

i=1 �
i it easily follows that �̃ ∈ å̄ and I+4�̃5= Ī+. The second assertion follows from the equivalences

v ∈ K̄ ⇔

(

v ∈ T lin
â 4ȳ5∧ 0 = ȳ∗T v = 4ïq4ȳ5T �̃5T v = �̃Tïq4ȳ5v =

∑

i∈I+4�̃5

�̃iïqi4ȳ5v

)

⇔ 4v ∈ T lin
â 4ȳ5∧ïqi4ȳ5v = 01 i ∈ I+4�̃5= Ī+50

We prove the last statement by contraposition. Assuming that the system

ïqi4ȳ5v = 01 i ∈ Ī+1 ïqi4ȳ5v ≤ −11 i ∈ Ī 0 (15)

does not have a solution, by the Farkas lemma there is some � ∈ �l such that ïq4ȳ5T� = 0, �i = 01 i 6∈ SI,
�i ≥ 01 i ∈ Ī 0 and

∑

i∈Ī0 �i > 0. It follows that �̃+ t� ∈ å̄ for some t > 0 and from
∑

i∈Ī0 �i > 0 we conclude
that there must be some index i ∈ Ī 0 with �̃i + t�i > 0 implying i ∈ Ī+, a contradiction. Hence the system (15)
has a solution, and this completes the proof. �

Consider for every v ∈ K̄ the linear optimization problem

LP4v5 min −vTï 24�T q54ȳ5v subject to � ∈ å̄

together with its dual program

DP4v5 max ȳ∗T z subject to ïqi4ȳ5z≤ −vTï 2qi4ȳ5v1 i ∈ SI0

Then, by definition, å̄4v5 is the solution set of LP4v5 and, by duality theory of linear programming, å̄4v5 6= �

if and only if DP4v5 is solvable. Further, given � ∈ å̄ and z feasible for DP4v5, we have � ∈ å̄4v5 and z solves
DP4v5 if and only if

�i4ïqi4ȳ5z+ vTï 2qi4ȳ5v5= 01 i ∈ SI0 (16)

Lemma 3. For every v̄ ∈ K̄, there is a neighborhood U of v̄ such that

å̄4v5⊂ å̄4v̄51 ∀v ∈U ∩ K̄0

Proof. If å̄4v̄5 = �, we conclude from Bank et al. [1, Theorems 5.4.1, 5.4.2] that å̄4v5 = � for all v
belonging to some neighborhood U of v̄. Now assume å̄4v̄5 6= �. Again by Bank et al. [1, Theorems 5.4.1, 5.4.2]
for every � > 0 there is some neighborhood U� such that d4�1 å̄4v̄55 < � for every v ∈ U� and every � ∈ å̄4v5.
Further, we know that the solution set of a linear optimization problem is a face of the feasible set. Combining
both properties we see that for all v near v̄ the solution set å̄4v5 is a face of å̄4v̄5, provided it is not empty. �

In what follows, we denote by E the set of extreme points of the polyhedron å̄. The polyhedron å̄ can be
represented as the sum of the convex hull of its extreme points and its recession cone R 2= 8� ∈ N̂�l

−
4q4ȳ55 �

ïq4ȳ5T�= 09, i.e., å̄= convE+R. From the theory of linear programming it is well known that å̄4v5 6= � if
and only if

vTï 24�T q54ȳ5v ≤ 01 ∀� ∈R0

In this case, the set å̄4v5∩E is not empty and contains exactly the extreme points of å̄4v5. In what follows,
we denote by å̄E4v5 the compact convex polyhedron å̄E4v5 2= å̄4v5∩ convE.

4. Graphical derivative and regular coderivative of N̂â . We denote by T4ȳ1 ȳ∗5 the set

T4ȳ1 ȳ∗5 2= 84v1 v∗5 � ∃� ∈ å̄4v52 v∗
∈ ï 24�T q54ȳ5v+ N̂K̄4v590

Theorem 1. Assume that M is metrically subregular at 4ȳ105. Then

T4ȳ1 ȳ∗5⊂ Tgph N̂â
4ȳ1 ȳ∗5 (17)

and equality holds if in addition M is metrically regular in the vicinity of ȳ.
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Proof. To show (17) let 4v1 v∗5 ∈ T4ȳ1 ȳ∗5 be arbitrarily fixed. To show 4v1 v∗5 ∈ Tgph N̂â
4ȳ1 ȳ∗5 we must

prove the existence of sequences 4tk5 ↓ 0 and 4yk5→
â ȳ such that

lim
k→�

ȳ+ tkv− yk
tk

= 01 lim
k→�

d4ȳ∗ + tkv
∗1 N̂â 4yk55

tk
= 00

Let � ∈ å̄4v5 such that v∗ ∈ ï 24�T q54ȳ5v + N̂K̄4v5 and choose � > 0 so small that ��ï 24�T q54ȳ5� < 1
2 . It

follows that 2I +ï 244��5T q54ȳ5 is positive definite and hence, by applying the standard second-order sufficient
conditions of nonlinear programming (see, e.g., Bonnans and Shapiro [2, Proposition 5.48]), we can conclude
that there is some positive radius �> 0 such that ȳ is the unique global solution of the problem

min
y

�ȳ+�ȳ∗
− y�2 subject to q4y5≤ 01 �y− ȳ� ≤ �0

Since � solves LP4v5, by duality theory of linear programming as discussed in the previous section, there is
some vector z solving DP4v5 with

ïqi4ȳ5z+ vTï 2qi4ȳ5v ≤ 01 �i4ïqi4ȳ5z+ vTï 2qi4ȳ5v5= 01 i ∈ SI0 (18)

Since �i = 0, i 6∈ SI, we obtain
�Tïq4ȳ5z+ vTï 24�T q54ȳ5v = 00 (19)

By Lemma 1 there is some � ∈ TN̂�l−
4q4ȳ554�5∩ 4ïq4ȳ5v5⊥ with v∗ = ï 24�T q54ȳ5v+ïq4ȳ5T� and thus

v∗T v = vTï 24�T q54ȳ5v+�Tïq4ȳ5v = vTï 24�T q54ȳ5v0 (20)

Since N̂�l
−
4q4ȳ55 is a convex polyhedron and therefore TN̂�l−

4q4ȳ554�5=�+4N̂�l
−
4q4ȳ55−�5, the condition � ∈

TN̂�l−
4q4ȳ554�5 ensures the existence of some t̄ > 0 such that � + t� ∈ N̂�l

−
4q4ȳ55 for all t ∈ 601 t̄7 and since

qi4ȳ5 < 0, i 6∈ SI, we can also assume that for every t ∈ 601 t̄7 we have qi4ȳ + tv + 1
2 t

2z5 < 0, i 6∈ SI. We now
consider for each t ∈ 601 t̄7 a global solution yt of the optimization problem

min
∥

∥ȳ+ tv+ 1
2 t

2z+�4ȳ∗
+ tv∗5− y

∥

∥

2
subject to y ∈ â1 �y− ȳ� ≤ �0

To show the inclusion 4v1 v∗5 ∈ Tgph N̂â
4ȳ1 ȳ∗5 it suffices to show

lim
t↓0

ȳ+ tv− yt
t

= 0 (21)

because then for all t > 0 sufficiently small we have �yt − ȳ�<� and therefore the standard optimality condition
at yt reads as

�4ȳ∗
+ tv∗5+ t

(

ȳ+ tv− yt
t

+
1
2
tz

)

∈ N̂â 4yt50

This, because N̂â 4yt5 is a cone, implies that

lim
t↓0

d4ȳ∗ + tv∗1 N̂â 4yt55

t
= 00

Our choice of � and � guarantees that y0 = ȳ and, by using Bonnans and Shapiro [2, Proposition 4.4], we
conclude limt↓0 yt = ȳ. Taking into account (18) and ïqi4ȳ5v ≤ 0, i ∈ SI, because of v ∈ K̄ and (13), we obtain

qi
(

ȳ+ tv+ 1
2 t

2z
)

= qi4ȳ5+ tïqi4ȳ5v+ 1
2 t

24ïqi4ȳ5z+ vTï 2qi4ȳ5v5+ o4t25≤ o4t251 i ∈ SI1

and since qi4ȳ + tv+ 1
2 t

2z5 < 0, i 6∈ SI, and M is assumed to be metrically subregular at 4ȳ105, we can find for
every t ∈ 601 t̄7 some point ỹt ∈ â with �ȳ+ tv+ 1

2 t
2z− ỹt� = o4t25. Hence

∥

∥ȳ+ tv+ 1
2 t

2z+�4ȳ∗
+ tv∗5− yt

∥

∥

2
≤
∥

∥ȳ+ tv+ 1
2 t

2z+�4ȳ∗
+ tv∗5− ỹt

∥

∥

2

for all t ≥ 0 sufficiently small, implying
∥

∥ȳ+ tv+ 1
2 t

2z− yt
∥

∥

2
+ 2�4ȳ∗

+ tv∗5T
(

ȳ+ tv+ 1
2 t

2z− yt
)

≤ o4t250 (22)



Gfrerer and Outrata: Generalized Derivatives of the Normal Cone Mapping
1542 Mathematics of Operations Research 41(4), pp. 1535–1556, © 2016 INFORMS

From �+ t� ∈ N̂�l
−
4q4ȳ55, q4yt5− q4ȳ5 ∈ T�l

−
4q4ȳ55 and v∗ = ï 24�T q54ȳ5v+ïq4ȳ5T� we obtain

0 ≥ 4�+ t�5T 4q4yt5− q4ȳ55

= 4�+ t�5Tïq4ȳ54yt − ȳ5+ 1
2 4yt − ȳ5Tï 24�T q54ȳ54yt − ȳ5+

t

2
4yt − ȳ5Tï 24�T q54ȳ54yt − ȳ5+ o4�yt − ȳ�25

= 4�+ t�5Tïq4ȳ54yt − ȳ5+ 1
2 4yt − ȳ5Tï 24�T q54ȳ54yt − ȳ5+ o4�yt − ȳ�25

= 4ȳ∗
+ tv∗5T 4yt − ȳ5− tvTï 24�T q54ȳ54yt − ȳ5+ 1

2 4yt − ȳ5Tï 24�T q54ȳ54yt − ȳ5+ o4�yt − ȳ�25

and, consequently, by taking into account ȳ∗T v = 0 and relations (19), (20),

4ȳ∗
+ tv∗5T

(

ȳ+ tv+ 1
2 t

2z− yt
)

= 4ȳ∗
+ tv∗5T 4ȳ− yt5+ tȳ∗T v+ 1

2 t
2ȳ∗T z+ t2v∗T v+ o4t25

≥ tvTï 24�T q54ȳ54ȳ− yt5+ 1
2 4yt − ȳ5Tï 24�T q54ȳ54yt − ȳ5+ tȳ∗T v+ 1

2 t
2�Tïq4ȳ5z+ t2vTï 24�T q54ȳ5v

+ o4t25+ o4�yt − ȳ�25

= tvTï 24�T q54ȳ54ȳ− yt5+ 1
2 4yt − ȳ5Tï 24�T q54ȳ54yt − ȳ5+ 1

2 t
2vTï 24�T q54ȳ5v+ o4t25+ o4�yt − ȳ�25

= 1
2 4ȳ+ tv− yt5

Tï 24�T q54ȳ54ȳ+ tv− yt5+ o4t25+ o4�yt − ȳ�25

≥ − 1
2�ï

24�T q54ȳ5��ȳ+ tv− yt�
2
+ o4t25+ o4�yt − ȳ�250

Since ��ï 24�T q54ȳ5�< 1
2 , it follows that

∥

∥ȳ+ tv+ 1
2 t

2z− yt
∥

∥

2
− 1

2�ȳ+ tv− yt�
2

≤
∥

∥ȳ+ tv+ 1
2 t

2z− yt
∥

∥

2
+ 2�4ȳ∗

+ tv∗5T
(

ȳ+ tv+ 1
2 t

2z− yt
)

+ o4t25+ o4�yt − ȳ�25

≤ o4t25+ o4�yt − ȳ�251

where the last inequality follows from (22), and

1
2�ȳ+ tv− yt�

2
≤ o4t25+ o4�yt − ȳ�250 (23)

Hence there is some t̃ > 0 such that 1
2�ȳ+ tv− yt�

2 ≤ 1
4 4t

2 +�yt − ȳ�25, ∀ t ∈ 601 t̃7. After rearranging we obtain
1
4�ȳ− yt�

2 + tvT 4ȳ− yt5+ 1
2 t

2�v�2 ≤ 1
4 t

2 showing

1
4�ȳ+ 2tv− yt�

2
= 1

4�ȳ− yt�
2
+ tvT 4ȳ− yt5+ t2

�v�2
≤ 1

4 t
241 + 2�v�25

and �ȳ−yt� ≤ t42�v�+
√

1 + 2�v�25. From (23) we conclude that (21) holds and therefore 4v1 v∗5 ∈ Tgph N̂â
4ȳ1 ȳ∗5

follows.
Next we show that the reverse inclusion T4ȳ1 ȳ∗5 ⊃ Tgph N̂â

4ȳ1 ȳ∗5 is valid under the additional assumption
that M is metrically regular in the vicinity of ȳ. Let � > 0 denote the modulus of metric regularity according
to Definition 2, let 4v1 v∗5 ∈ Tgph N̂â

4ȳ1 ȳ∗5 and consider sequences 4tk5 ↓ 0, 4vk5 → v and 4v∗
k5 → v∗ such that

y∗
k 2= ȳ∗ + tkv

∗
k ∈ N̂â 4yk5, where yk 2= ȳ + tkvk. By passing to a subsequence if necessary we can assume that

there is some index set Ĩ ⊂ SI such that I4yk5 = Ĩ holds for all k and that for every k with yk 6= ȳ the
multifunction M is metrically regular with modulus � near 4yk105. For every i ∈ SI we have

qi4yk5= qi4ȳ5+ tkïqi4ȳ5vk + o4tk5= tkïqi4ȳ5vk + o4tk5

{

= 0 if i ∈ Ĩ,

≤ 0 if i ∈ SI\Ĩ.

Dividing by tk and passing to the limit we obtain

ïqi4ȳ5v

{

= 0 if i ∈ Ĩ,

≤ 0 if i ∈ SI\Ĩ0
(24)

Next, consider for each y∗ ∈�m the set

ëĨ4y
∗5 2=

{

� ∈�l
� ïq4ȳ5T�= y∗1 �i ≥ 01 i ∈ Ĩ1 �i = 01 i 6∈ Ĩ

}

0 (25)
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By Hoffman’s Lemma there is some constant � such that for every � ∈�l and every y∗ ∈�m with ëĨ4y
∗5 6= �

one has

d4�1ëĨ4y
∗55≤ �

(

�ïq4ȳ5T�− y∗
� −

∑

i∈Ĩ

min8�i109+
∑

i 6∈Ĩ

��i�

)

0 (26)

If yk 6= ȳ then, as a consequence of the assumption that M is metrically regular in the vicinity of ȳ, there is some
multiplier �k ∈ N̂�l

−
4q4yk55 with y∗

k = ïq4yk5
T�k and using Proposition 1, we have �k = 0 when y∗

k = 0 and

��k�

�y∗
k�

=
1

�ïq4yk5
T 4�k/��k�5�

≤ �1 whenever y∗

k 6= 01

showing ��k� ≤ ��y∗
k�. On the other hand, if yk = ȳ, since M is assumed to be metrically subregular at 4ȳ105,

there is also some multiplier �k ∈ N̂�l
−
4q4yk55 with y∗

k = ïq4yk5
T�k and by using (26), we can choose �k such

that ��k� = d401ëĨ4y
∗
k55 ≤ ��y∗

k�. Hence we can assume that the sequence 4�k5 is uniformly bounded by
some constant c1 and, by passing to a subsequence if necessary, we can assume that 4�k5 converges to �̄.
Because of the definition of �k we have ïq4ȳ5T �̄= 0, �̄i ≥ 0 with i 6∈ Ĩ, and �̄i = 0 with i 6∈ Ĩ, which ensures
�̄ ∈ëĨ4ȳ

∗5. Since
ïq4ȳ5T�k

− ȳ∗
= tkv

∗

k + 4ïq4ȳ5−ïq4yk55
T�k

and �ïq4ȳ5 − ïq4yk5� ≤ c2�yk − ȳ� = c2tk�vk� for some constant c2 ≥ 0, by using (26) once more we can
find for each k some �̃k ∈ ëĨ4ȳ

∗5 ⊂ å̄ with ��̃k − �k� ≤ �tk4�v
∗
k� + c1c2�vk�5. Taking �k 2= 4�k − �̃k5/tk,

we have that 4�k5 is uniformly bounded. By passing to subsequences if necessary we can assume that both
sequences 4�̃k5 and 4�k5 are convergent to some �̃ ∈ ëĨ4ȳ

∗5 ⊂ å̄ and some �. Since �k
i = �̃k

i = 0, i 6∈ Ĩ, we
have 4�k5Tïq4ȳ5v = 01 ∀k implying � ∈ 4ïq4ȳ5v5⊥.

Taking into account 4�̃k5T q4yk5= 01 ∀k, we obtain

0 = lim
k→�

4�̃k5T q4yk5

tk
= lim

k→�
4�̃k5Tïq4ȳ5vk = ȳ∗T v1

which, together with (24), shows v ∈ K̄.
Further, we have for all � ∈ å̄

0 ≤ 4�̃k
−�5T q4yk5= 4�̃k

−�5T
(

q4ȳ5+ tkïq4ȳ5vk + 1
2 t

2
kv

T
k ï

2q4ȳ5vk + o4t2
k5
)

= 4�̃k
−�5T

(

1
2 t

2
kv

T
k ï

2q4ȳ5vk + o4t2
k5
)

0

Dividing by t2
k and passing to the limit, we obtain 4�̃−�5T vTï 2q4ȳ5v ≥ 01 ∀� ∈ å̄ and hence �̃ ∈ å̄4v5 follows.

Since
y∗

k = ïq4ȳ5T �̃k
+ tkv

∗

k = ïq4yk5
T�k1

we obtain

v∗
= lim

k→�
v∗

k = lim
k→�

ïq4yk5
T�k −ïq4ȳ5T �̃k

tk

= lim
k→�

4ïq4yk5−ïq4ȳ55T �̃k +ïq4yk5
T 4�k − �̃k5

tk

= ï 24�̃T q54ȳ5v+ïq4ȳ5T�0

If

� ∈ TN̂�l−
4q4ȳ554�̃5=











� ∈�l

∣

∣

∣

∣

∣

�i











∈� if i ∈ SI1 �̃i > 0

≥ 0 if i ∈ SI1 �̃i = 0

= 0 if i 6∈ SI











1

the assertion is proved by virtue of Lemma 1. Otherwise the set J 2= 8i ∈ Ĩ � �̃i = 01�i < 09 is not empty, where
we have taken into account that Ĩ⊂ SI and for all i 6∈ Ĩ we have �̃k

i = 01 ∀k, �̃i = 0 and �i = 0. Let us choose
some index k̄ such that 4�k̄

i − �̃k̄
i 5/tk̄ ≤�i/21 ∀ i ∈ J and set �̃ 2=�+ 24�̃k̄ − �̃5/tk̄. Then for all i 6∈ Ĩ we have

�̃i = 0, for all i ∈ Ĩ with �̃i = 0 we have �̃i ≥�i and for all i ∈ J we have

�̃i =�i + 24�̃k̄
i − �̃i5/tk̄ ≥�i + 24�̃k̄

i −�k̄
i 5/tk̄ ≥ 0

and therefore �̃ ∈ TN̂�l−
4q4ȳ554�̃5. Observing that ïq4ȳ5T �̃= ïq4ȳ5T� because of �̃1 �̃k̄ ∈ å̄ and taking into account

Lemma 1 completes the proof. �
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Under the assumptions ensuring equality in (17) one has thus the formula

DN̂â 4ȳ1 ȳ
∗54v5= 8ï 24�T q54ȳ5v � � ∈ å̄4v59+ N̂K̄4v51 v ∈�m0

In this way we have recovered formula (3) under substantially weaker assumptions.
Let us turn our attention to the regular coderivative of N̂â .

Proposition 4. Assume that å̄ 6= �. Then

T4ȳ1 ȳ∗5� =
{

4w∗1w5 �w ∈ K̄1w∗T v+wTï 24�T q54ȳ5v ≤ 01 v ∈ K̄1 � ∈ å̄4v5
}

0

Proof. By definition of the polar cone, we have 4w∗1w5 ∈ T4ȳ1 ȳ∗5� if and only if w∗T v + wT v∗ ≤ 01
∀ 4v1 v∗5 ∈T4ȳ1 ȳ∗5, i.e.,

w∗T v+wT 4ï 24�T q54ȳ5v+ �∗5≤ 01 v ∈ K̄1 � ∈ å̄4v51 �∗
∈ N̂K̄4v50

Taking v = 0, � ∈ å̄405 = å̄ 6= �, we obtain wT v∗ ≤ 01 ∀v∗ ∈ N̂K̄405 = K̄
�

showing w ∈ K̄. Since N̂K̄4v5 =

8�∗ ∈ K̄
�
� �∗T v = 09 ⊂ K̄

�
we have wT �∗ ≤ 01 ∀�∗ ∈ N̂K̄4v5 and, because of 0 ∈ N̂K̄4v5, we see that 4w∗1w5 ∈

T4ȳ1 ȳ∗5� if and only if w ∈ K̄ and

w∗T v+wTï 24�T q54ȳ5v ≤ 01 v ∈ K̄1 � ∈ å̄4v50 �

By using Theorem 1 we obtain that N̂gph N̂â
4ȳ1 ȳ∗5 ⊂ T4ȳ1 ȳ∗5� if M is metrically subregular at 4ȳ105 and

this inclusion holds with equality if in addition M is metrically regular in the vicinity of ȳ. However, the
representation of T4ȳ1 ȳ∗5� by Proposition 4 is not very useful in practice because of the simultaneous appearance
of v and � ∈ å̄4v5.

We now define for each v ∈ N̄ the sets

W̄4v5 2=
{

w ∈ K̄ �wTï 244�1
−�25T q54ȳ5v = 01 ∀�11�2

∈ å̄4v5
}

1

å̃E4v5 2=











å̄E4v5 if v 6= 0,

conv
(

⋃

0 6=u∈K̄

å̄E4u5

)

if v = 01 K̄ 6= 809

and for each w ∈ K̄

L̄4v3w5 2=

{

8−ï 24�T q54ȳ5w � � ∈ å̃E4v59+ K̄
�

if K̄ 6= 8091

�m if K̄ = 8090

Note that å̃E405 is a convex compact polyhedron, since there are only finitely many subsets of the finite set E.

Proposition 5. Assume that å̄4v5 6= �1 ∀v ∈ K̄. Then

T4ȳ1 ȳ∗5� ⊂

{

4w∗1w5

∣

∣

∣

∣

w ∈
⋂

v∈N̄

W̄4v51w∗
∈
⋂

v∈N̄

L̄4v3w5

}

(27)

and equality holds, if either for any 0 6= v11 v2 ∈ K̄ it holds å̄E4v15= å̄E4v25 or if Ī+ = SI.

Proof. If K̄ = 809, by Proposition 4 we have T4ȳ1 ȳ∗5� =�m×809 and (27) holds with equality. Now assume
that K̄ 6= 0, consider 4w∗1w5 ∈T4ȳ1 ȳ∗5� and fix v ∈ N̄⊂ K̄. Then also −v ∈ N̄, å̄4v5= å̄4−v5 and by Propo-
sition 4 we obtain w∗T 4±v5 + wTï 24�T q54ȳ54±v5 ≤ 0, � ∈ å̄4v5 and therefore w∗T v+wTï 24�T q54ȳ5v = 0,
� ∈ å̄4v5, implying w ∈ W̄4v5. By Lemma 3 together with the assumption of the proposition there is some
compact convex neighborhood U of v such that � 6= å̄4u5 ⊂ å̄4v51 ∀u ∈ U ∩ K̄ and therefore also � 6=

å̄E4u5⊂ å̄E4v5. We now claim that for every u ∈U ∩ K̄ there is some � ∈ å̃E4v5 such that

w∗T u+wTï 24�T q54ȳ5u≤ 00 (28)
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Indeed, consider any u ∈U ∩K̄. If v 6= 0, then (28) holds for every � ∈ å̄E4u5⊂ å̄E4v5= å̃E4v5 by Proposition 4.
If v = u = 0, then (28) is trivially fulfilled for arbitrary � ∈ å̃E4v5 6= �. Finally, if v = 0 and u 6= 0, then again
by Proposition 4, for every � ∈ å̄E4u5⊂ å̃E4v5 the inequality (28) holds. Hence our claim is proved and since
both U ∩ K̄ and å̃E4v5 are nonempty compact convex sets, we obtain

0 ≥ max
u∈U∩K̄

min
�∈å̃E4v5

{

w∗T u+wTï 24�T q54ȳ5u
}

= min
�∈å̃E4v5

max
u∈U∩K̄

{

w∗T u+wTï 24�T q54ȳ5u
}

0

We infer that there is some �̄ ∈ å̃E4v5 such that maxu∈U∩K̄ w
∗T u + wTï 24�̄T q54ȳ5u ≤ 0. Together with

w∗T v + wTï 24�̄T q54ȳ5v = 0 we conclude 4w∗ + ï 24�̄T q54ȳ5w5T 4u − v5 ≤ 01 ∀u ∈ U ∩ K̄ and thus w∗ +

ï 24�̄T q54ȳ5w ∈ N̂K̄4v5. Taking into account that for v ∈ N̄ we have N̂K̄4v5= K̄
�
, we obtain w∗ ∈ L̄4v3w5. Since

v ∈ N̄ was arbitrarily fixed, inclusion (27) follows.
To prove equality, we may also assume that K̄ 6= 809 and consider first the case when å̂ 2= å̄E4v15= å̄E4v25

for all 0 6= v1, v2 ∈ K̄. Then we have å̃E4v5= å̂1 ∀v ∈ N̄ and the set on the right-hand side of the inclusion (27)
amounts to

æ 2=
⋃

�∈å̂

{

4w∗1w5

∣

∣

∣

∣

w ∈
⋂

v∈N̄

W̄4v51 w∗
∈ −ï 24�T q54ȳ5w+ K̄

�

}

0

Now assume that there is some element 4w∗1w5 ∈ æ\T4ȳ1 ȳ∗5�, i.e., there is some element 4v1 v∗5 ∈ T4ȳ1 ȳ∗5
with w∗T v + wT v∗ > 0. Then there are multipliers �̂ ∈ å̂, � ∈ å̄4v5 with w∗ ∈ −ï 24�̂T q54ȳ5w + K̄

�
and v∗ ∈

ï 24�T q54ȳ5v+ N̂K̄4v5 and hence

0 <w∗T v+wT v∗
≤wTï 244�− �̂5T q54ȳ5v0

Thus v 6= 0, å̄E4v5= å̂ and therefore vTï 244�− �̂5T q54ȳ5v = 0. For �> 0 with 0 < 2wTï 244�− �̂5T q54ȳ5v+

�wTï 244�− �̂5T q54ȳ5w it follows that 0 < 4v + �w5Tï 244�− �̂5T q54ȳ54v + �w5 and hence v + �w 6= 0 and
�̂ 6∈ å̄4v+�w5 contradicting �̂ ∈ å̂ = å̄E4v+�w5 ⊂ å̄4v+�w5. Hence æ ⊂ T4ȳ1 ȳ∗5� and equality in (27) is
established.

To prove equality in the second case, note that Ī+ = SI implies K̄ = N̄ by Lemma 2. Consider now 4w∗1w5

belonging to the set on the right-hand side of (27) and an arbitrary element 4v1 v∗5 ∈ T4ȳ1 ȳ∗5, i.e., v ∈ N̄
and v∗ ∈ ï 24�T q4ȳ55w + N̂K̄4v5 for some � ∈ å̄4v5. Because of v ∈ N̄ we have N̂K̄4v5 = K̄

�
and, by using the

representation w∗ ∈ −ï 24�̄T q54ȳ5w+ K̄
�

with �̄ ∈ å̃E4v5, we obtain

w∗T v+wT v∗
≤wTï 244�− �̄5T q54ȳ5v = 0

because of w ∈ W̄4v5. Hence 4w∗1w5 ∈T4ȳ1 ȳ∗5� and equality in (27) follows. �

Theorem 2. Assume that M is metrically subregular at 4ȳ105. Then

N̂gph N̂â
4ȳ1 ȳ∗5⊂

{

4w∗1w5

∣

∣

∣

∣

w ∈
⋂

v∈N̄

W̄4v51w∗
∈
⋂

v∈N̄

L̄4v3w5

}

0 (29)

Equality holds if, in addition, M is metrically regular in the vicinity of ȳ and either for any 0 6= v11 v2 ∈ K̄ it
holds å̄E4v15= å̄E4v25 or Ī+ = SI.

Proof. If M is metrically subregular, then by Gfrerer [6, Theorem 6.1(2.b)] one has that for every v ∈ T lin
â 4ȳ5

we have vTï 24�T q54ȳ5v ≤ 0 for all � belonging to the recession cone R of å̄. Hence, å̄4v5 6= �1 ∀v ∈

T lin
â 4ȳ5⊃ K̄ and the assertion of the theorem follows from Theorem 1 and Proposition 5. �

It follows from the definition of the regular coderivative that under metric subregularity of M at 4ȳ105 one has

D̂∗N̂â 4ȳ1 ȳ
∗54w5







⊂
⋂

v∈N̄

L̄4v3−w5 if w ∈
⋂

v∈N̄

−W̄4v5,

= � else.
(30)
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Equality holds in this formula provided M is metrically regular in the vicinity of ȳ and either for any 0 6= v1,
v2 ∈ K̄ it holds å̄E4v15= å̄E4v25 or Ī+ = SI.

Example 2. The normal cone mapping of the set

â 2=

{

y ∈�3

∣

∣

∣

∣

y1 + 1
2y

2
2 ≤ 0

y1 + y2
2 − y2y3 ≤ 0

}

is given by

N̂â 4y5=



















































840101059 if y1 <−max
{

1
2y

2
21 y

2
2 − y2y3

}

1

84�11�1y2105 � �1 ≥ 09 if y1 = − 1
2y

2
2 <−y2

2 + y2y3,

84�21�242y2 − y351−�2y25 � �2 ≥ 09 if y1 = −y2
2 + y2y3 <− 1

2y
2
2 ,

84�1 +�21 42�1 + 3�25y31−2�2y35 � �11�2 ≥ 09 if y1 = −y2
2 + y2y3 = − 1

2y
2
21 y2 6= 0,

84�1 +�21−�2y3105 � �11�2 ≥ 09 if y1 = y2 = 0,

� else.

Note that MFCQ is fulfilled at every point y ∈ â . The tangent cone and the Fréchet normal cone to gph N̂â at
ȳ = 4010105, ȳ∗ = 4110105 are given by

Tgph N̂â
4ȳ1 ȳ∗5 =

{

4401 v21 v351 4v
∗

11 v21055 � 40 ≤ v2 ≤ 2v35∨ 40 ≥ v2 ≥ 2v35
}

∪
{

4401 v21 v351 4v
∗

112v2 − v31−v255 � 4v2 ≤ 0 ∧ 2v3 ≥ v25∨ 4v2 ≥ 0 ∧ 2v3 ≤ v25
}

∪
{

44012v31 v351 4v
∗

11 42 +�25v31−2�2v355 � 0 ≤ �2 ≤ 1
}

∪
{

440101 v351 4v
∗

11−�2v31055 � 0 ≤ �2 ≤ 1
}

and

N̂gph N̂â
4ȳ1 ȳ∗5 =

{

44w∗

11−w21051 401w21w355
}

∩
{

44w∗

11w3 − 2w21w251 401w21w355
}

∩
{

44w∗

11w
∗

21w
∗

351 4012w31w355 � 2w∗

2 +w∗

3 + 4w3 = 0
}

∩
{

44w∗

11w
∗

21051 40101w355
}

=
{

44w∗

1101051 40101055
}

0

Further we have K̄ = N̄= 809×�×�, å̄= 84�11�25 � �1 ≥ 01�2 ≥ 01�1 +�2 = 19 and for v ∈ K̄ we obtain

å̄4v5=











8411059 if v2
2 > 2v2v3,

å̄ if v2 = 0 or v2 = 2v3,

8401159 if v2
2 < 2v2v3.

For ṽ 2= 4012115 ∈ N̄, v̂ 2= 4010115 ∈ N̄ we have å̄4ṽ5= å̄4v̂5= å̄ and for every �11�2 ∈ å̄ we obtain

wTï 244�1
−�25T q54ȳ5ṽ = w2ṽ24�

1
1 −�2

1 + 24�1
2 −�2

255− 4w2ṽ3 +w3ṽ254�
1
2 −�2

25

= 4�1
2 −�2

254w2ṽ2 −w2ṽ3 −w3ṽ25= 4�1
2 −�2

254w2 − 2w35

and, similarly,

wTï 244�1
−�25T q54ȳ5v̂ = −4�1

2 −�2
25w20
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Thus W̄4ṽ5= 8401w21w35 �w2 = 2w39, W̄4v̂5= 840101w359 and
⋂

v∈N̄ W̄4v5= 840101059. Since for every v ∈ N̄
we have

L̄4v305= K̄
�
=�× 809× 8091

we obtain
{

4w∗1w5

∣

∣

∣

∣

w ∈
⋂

v∈N̄

W̄4v51w∗
∈
⋂

v∈N̄

L̄4v3w5

}

= K̄
�
× 840101059= N̂gph N̂â

4ȳ1 ȳ∗5

or D̂∗N̂â 4ȳ1 ȳ
∗5405= K̄

�
, D̂∗N̂â 4ȳ1 ȳ

∗54w5= �, w 6= 0 and equality in (29) holds. 4

Example 3. The normal cone mapping of the set

â 2=











y ∈�3

∣

∣

∣

∣

∣

∣

∣

y1 + 1
2y

2
2 ≤ 0

y1 + y2
2 − y2y3 ≤ 0

y2 ≤ 0











is given by

N̂â 4y5=































































8401�3105 � �3 ≥ 09 if y1 < 01 y2 = 0,

84�1 +�21−�2y3 +�3105 � �11�21�3 ≥ 09 if y1 = y2 = 0,

84�11�1y2105 � �1 ≥ 09 if 2y3 < y2 < 01 y1 = − 1
2y

2
2 ,

84�21�242y2 − y351−�2y25 � �2 ≥ 09 if 2y3 > y21 y2 < 01 y1 = −y2
2 + y2y3,

84�1 +�21 42�1 + 3�25y31−2�2y35 � �11�2 ≥ 09 if 2y3 = y2 < 01 y1 = − 1
2y

2
2 ,

840101059 if y2 < 01 y1 <−max
{

1
2y

2
21 y

2
2 − y2y3

}

,

� else.

The tangent cone and the Fréchet normal cone to gph N̂â at ȳ = 4010105, ȳ∗ = 4110105 are given by

Tgph N̂â
4ȳ1 ȳ∗5 =

{

440101 v351 4v
∗

11 v
∗

21055 � v∗

2 ≥ min8−v3109
}

∪
{

4401 v21 v351 4v
∗

11 v21055 � 2v3 ≤ v2 ≤ 0
}

∪
{

4401 v21 v351 4v
∗

112v2 − v31−v255 � 2v3 ≥ v21 v2 ≤ 0
}

∪
{

44012v31 v351 4v
∗

11 42 +�25v31−2�2v355 � v3 ≤ 010 ≤ �2 ≤ 1
}

and

N̂gph N̂â
4ȳ1 ȳ∗5 =

{

44w∗

11w
∗

21w
∗

351 401w21w355 �w2 ≤w∗

3 ≤ 0
}

∩
{

44w∗

11w
∗

21w
∗

351 401w21w355 �w∗

2 + 1
2w

∗

3 +w2 ≥ 01w∗

3 ≥ 0
}

∩
{

44w∗

11w
∗

21w
∗

351 401w21w355 �w2 −w∗

3 ≥ 01w∗

2 + 3
2w2 + 1

2w
∗

3 −w3 ≥ 0
}

∩
{

44w∗

11w
∗

21w
∗

351 401w21w355 � 2w∗

2 +w∗

3 + 2w2 + min8w2 − 2w3109≥ 0
}

=
{

44w∗

11w
∗

21051 40101w355 �w∗

2 ≥ max8w3109
}

0

Then K̄ = 809×�− ×�, N̄ = 809× 809×�, å̄ = 84�11�2105 � �1 ≥ 01�2 ≥ 01�1 + �2 = 19 and for v ∈ K̄
we have

å̄4v5=











841101059 if 0 > v2 > 2v3,

å̄ if v2 = 0 or 0 > v2 = 2v3,

840111059 if v2 < 2v3 and v2 < 0.

For every 0 6= v = 40101 v35 ∈ N̄ we obtain

W̄4v5=
{

w ∈ K̄ �wTï 244�1
−�25T q54ȳ5v =w24�

2
2 −�1

25v3 = 01 ∀�11�2
∈ å̄4v5= å̄

}

= 809× 809×�1

å̃E4v5= å̄E4v5= å̄
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and for w ∈ W̄4v5

L̄4v3w5= 8401�2w3105 � 0 ≤ �2 ≤ 19+ K̄
�
=�× 6min8w31091�5× 8090

Hence
{

4w∗1w5

∣

∣

∣

∣

w ∈
⋂

v∈N̄

W̄4v51w∗
∈
⋂

v∈N̄

L̄4v3w5

}

= 844w∗

11w
∗

21051 40101w355 �w∗

2 ≥ min8w31099

6= 844w∗

11w
∗

21051 40101w355 �w∗

2 ≥ max8w31099

= N̂gph N̂â
4ȳ1 ȳ∗5

yielding

D̂∗N̂â 4ȳ1 ȳ
∗54w5

{

⊂ 84w∗
11w

∗
2105 �w∗

2 ≥ min8−w31099 if w1 =w2 = 01

= � else

and equality does not hold. 4

In the case when the set å̄4v5 remains constant for all 0 6= v ∈ K̄, the formulas for the contingent cone and
the regular normal cone of gph N̂â can be simplified considerably.

Lemma 4. Assume that å̄4v15= å̄4v251 ∀0 6= v11 v2 ∈ K̄. Then for all v ∈ K̄ and all �11�2 ∈ å̄4v5 we have

ï 244�1
−�25T q54ȳ5v ∈ span8ïqi4ȳ5

T
� i ∈ Ī+90

Proof by contraposition. Assume on the contrary that there are v ∈ K̄ and �11�2 ∈ å̄4v5 such that
ï 244�1 − �25T q54ȳ5v 6∈ span8ïqi4ȳ5

T � i ∈ Ī+9. This is equivalent with the existence of some w satisfying
ïqi4ȳ5w = 01 i ∈ Ī+, and wTï 244�1 −�25T q54ȳ5v 6= 0. By Lemma 2 there is some ṽ with

ïqi4ȳ5ṽ

{

= 0 i ∈ Ī+1

< 0 i ∈ Ī 0

and hence w + �ṽ ∈ K̄ for all � sufficiently large. Moreover, we can choose the value of � such that, in
addition, w̃Tï 244�1 − �25T q54ȳ5v 6= 0, where w̃ = w + �ṽ. We can assume without loss of generality that
w̃Tï 244�1 − �25T q54ȳ5v < 0, because otherwise we can interchange �1 and �2. Then we can choose the value
of �> 0 with v+�w̃ 6= 0 and w̃Tï 244�1 − �25T q54ȳ542v+�w̃5 < 0. It follows v+�w̃ ∈ K̄ and, together with
vTï 244�1 −�25T q54ȳ5v = 0 because of �11�2 ∈ å̄4v5,

4v+�w̃5Tï 244�1
−�25T q54ȳ54v+�w̃5= �w̃Tï 244�1

−�25T q54ȳ542v+�w̃5 < 0

showing �1 6∈ å̄4v+�w̃5. Therefore å̄4v+�w̃5 6= å̄4v5, a contradiction, since we also have v 6= 0. �

Note that the condition å̄4v15 = å̄4v251 ∀0 6= v11 v2 ∈ K̄ implies in particular the corresponding property for
the sets å̄E used in Theorem 2.

Theorem 3. Assume that M is metrically subregular at 4ȳ105 and metrically regular in the vicinity of ȳ.
Further assume that å̄4v15 = å̄4v251 ∀0 6= v11 v2 ∈ K̄ and let �̄ be an arbitrary multiplier from å̄4v5 for some
0 6= v ∈ K̄, if K̄ 6= 809 and �̄ ∈ å̄ otherwise. Then

Tgph N̂â
4ȳ1 ȳ∗5= 84v1 v∗5 � v∗

∈ ï 24�̄T q54ȳ5v+ N̂K̄4v59 (31)

and
N̂gph N̂â

4ȳ1 ȳ∗5= 84w∗1w5 �w ∈ K̄1w∗
∈ −ï 24�̄T q54ȳ5w+ K̄

�
90 (32)

Consequently,

DN̂â 4ȳ1 ȳ
∗54v5 = ï 24�̄T q54ȳ5v+ N̂K̄4v51 v ∈�m1

D̂∗N̂â 4ȳ1 ȳ
∗54w5 =

{

ï 24�̄T q54ȳ5w+ K̄
�

if −w ∈ K̄,

� else.
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Proof. By Theorem 1 it is clear that the set on the right-hand side of (31) is contained in Tgph N̂â
4ȳ1 ȳ∗5. To

show the reverse inclusion, fix any 4v1 v∗5 ∈ Tgph N̂â
4ȳ1 ȳ∗5. Then there is some � ∈ å̄4v5 with v∗ ∈ ï 24�T q54ȳ5v+

N̂K̄4v5 and by Lemma 4 together with the identity span8ïqi4ȳ5
T � i ∈ Ī+9 + N̂K̄4v5 = N̂K̄4v5 we obtain v∗ ∈

ï 24�̄T q54ȳ5v+ span8ïqi4ȳ5
T � i ∈ Ī+9+ N̂K̄4v5= ï 24�̄T q54ȳ5v+ N̂K̄4v5, showing the desired inclusion.

To show (32), note that by our assumptions equality holds in (29). Further, by Lemmas 4 and 2 we obtain
W̄4v5 = K̄1 ∀v ∈ N̄ and, by using the same arguments as above, L4v3w5 = −ï 24�̄T q54ȳ5w + K̄

�
1 ∀w ∈ K̄.

Equality (32) follows now from Theorem 2. �
The behavior of the mapping å̄ required in the above theorem is automatically fulfilled whenever MFCQ and

CRCQ1 hold at ȳ; see Henrion et al. [10, Corollary 3.2, Remark 3.1]. The following example shows, however,
that the requirements of the theorem can very well be satisfied even without CRCQ.

Example 4. Let â ⊂�2 be given by

q4y5=







−y2
1 + y2

−y2
1 − y2

y1







0

Put ȳ = 01 ȳ∗ = 0 and let us compute Tgph N̂â
40105. It follows that

K̄ = Tâ 405= 8v�v1 ≤ 01 v2 = 091

å̄= 8� ∈�3
+

� �1 = �21�3 = 091

and

å̄4v5=

{

8� ∈ å̄ � �1 +�2 = 09= 809 if 0 6= v ∈ K̄1

å̄ if v = 00

It is easy to show that the second-order sufficient conditions for metric subregularity SOSCMS from Propo-
sition 2 are fulfilled and thus M is metrically subregular and even metrically regular in the vicinity of 0 by
Proposition 3. It follows that we can compute Tgph N̂â

40105 according to Theorem 3 and obtain

Tgph N̂â
40105= 84v1 v∗5 � v∗

∈ N̂K̄4v591

and, since K̄� = N̂â 405=�+ ×�, one has

Tgph N̂â
40105=

(

8v � v1 ≤ 01 v2 = 09× 8v∗
� v∗

1 = 09
)

∪ 480109×�+ ×�50

Consequently,

N̂gph N̂â
40105= 4Tgph N̂â

401055� = 84v∗

11 v
∗

25 � v∗

1 ≥ 09× 84v1105 � v1 ≤ 09= 4K̄5� × K̄

verifying (32) with �̄= 0. 4

5. Regular coderivative of the solution map. In the preceding section, we have computed (an upper
estimate of) the regular coderivative of N̂â . To compute the regular coderivative of S we need, in addition, a
chain rule for regular normal cones without any convexity assumptions. Such a chain rule is provided in the
next statement, which is important for its own sake and can be used also in completely different situations.

Theorem 4. Let
ì 2= 8x ∈�n

�G4x5 ∈D9

for a closed set D ⊂�m and a mapping G2 �n →�m continuously differentiable near x̄ ∈ì. If the multifunction
x⇒G4x5−D is metrically subregular at 4x̄105 and there exists a subspace L⊂Rm such that

TD4G4x̄55+L⊂ TD4G4x̄55 (33)

and
ïG4x̄5�n

+L=�m1 (34)

1 One says that â fulfills CRCQ at ȳ provided there exists a neighborhood M of ȳ such that for any subsets I of Ī, the family of gradients
8ïqi4y5 � i ∈ I9 has the same rank for all y ∈M.
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then
N̂ì4x̄5= ïG4x̄5T N̂D4G4x̄550

Proof. The inclusion N̂ì4x̄5 ⊃ ïG4x̄5T N̂D4G4x̄5 follows immediately from Rockafellar and Wets [26,
Theorem 6.14]. To show the reverse inclusion, let x∗ ∈ N̂ì4x̄5 and consider h ∈ S 2= 8h ∈ �n � ïG4x̄5h ∈

convTD4G4x̄559. Then ïG4x̄5h can be written as convex combination of elements of TD4G4x̄55:

ïG4x̄5h=

N
∑

i=1

�iti1 ti ∈ TD4G4x̄551 �i ≥ 01 i = 11 : : : 1N 3
N
∑

i=1

�i = 10

By the assumptions of the theorem, each of the tangents ti can be represented as ti = ïG4x̄5hi + li, where hi ∈�n

and li ∈ L. Since L is a subspace we also have −li ∈ L showing ïG4x̄5hi = ti − li ∈ TD4G4x̄55+L⊂ TD4G4x̄55.
Because G4 · 5 − D is assumed to be metrically subregular at 4x̄105, it follows from Henrion and Outrata [9,
Proposition 1] that

Tì4x̄5= 8u � ïG4x̄5u ∈ TD4G4x̄5590 (35)

Hence, we conclude hi ∈ Tì4x̄5 and �x∗1 hi� ≤ 0. Further we have

ïG4x̄5

(

h−

N
∑

i=1

�ihi

)

=

N
∑

i=1

�i4ti −ïG4x̄5hi5=

N
∑

i=1

�ili ∈ L⊂ TD4G4x̄551

and, again by (35), we obtain h−
∑N

i=1 �ihi ∈ Tì4x̄5. Thus �x∗1 h−
∑N

i=1 �ihi� ≤ 0 implying

�x∗1 h� ≤

〈

x∗1
N
∑

i=1

�ihi

〉

=

N
∑

i=1

�i�x
∗1 hi� ≤ 00

From this it follows that x∗ ∈ S� and, by Rockafellar [25, Corollary 16.3.2], we can conclude N̂ì4x̄5 ⊂ S� =

ïG4x̄5T 4convTD4G4x̄555� = ïG4x̄5T N̂D4G4x̄55, provided there exists some u with ïG4x̄5u ∈ ri convTD4G4x̄55.
To show the existence of such an element u, choose any t ∈ ri convTD4G4x̄55 and select u and l ∈ L such that
ïG4x̄5u+ l = t. Since we also have convTD4x̄5+L⊂ convTD4x̄5, we obtain from Rockafellar [25, Theorem 6.1]
that ïG4x̄5u = 1

2 4t − 2l5 + 1
2 t ∈ ri convTD4G4x̄55. Hence N̂ì4x̄5 ⊂ ïG4x̄5T N̂D4G4x̄5 holds and this completes

the proof. �
If D is convex, then the conditions (33), (34) amount to

ïG4x̄5�n
+ linTD4G4x̄55=�m1 (36)

where lin stands for the lineality space. This condition is known as nondegeneracy Bonnans and Shapiro [2,
Definition 4.70]. In the nonconvex case, however, the formulation (36) cannot be used because of (33).

Consider now the mapping S̃2 �n ⇒�m defined by

S̃4x5=

{

8y ∈�m � 0 ∈ F 4x1 y5+ N̂â 4y59 if x ∈C,

� otherwise,

where F 2 �n ×�m →�m is continuously differentiable and C ⊂�n is a closed set.
Associated with S̃ is the perturbation mapping ë2 �n ×�m ⇒ 4�m ×�m5×�n given by

ë4x1 y5 2=G4x1 y5−D1 G4x1 y5 2=

(

4y1−F 4x1 y55
x

)

1 D 2= gph N̂â ×C1 (37)

so that gph S̃ = 84x1 y5 � 0 ∈ë4x1 y59.

Theorem 5. Consider 4x̄1 ȳ5 ∈ gph S̃. Assume that M is metrically subregular at 4ȳ105 and metrically reg-
ular in the vicinity of ȳ. Further assume that the set-valued mapping ë given by (37) is metrically subregular
at 44x̄1 ȳ551 40101055, and suppose that there exists a subspace P ⊂ TC4x̄5 with TC4x̄5+P ⊂ TC4x̄5 and

ïxF 4x̄1 ȳ5P + span8ïqi4ȳ5
T

� i ∈ Ī+9=�m0 (38)

Then one has, with ȳ∗ 2= −F 4x̄1 ȳ5, that

N̂gph S̃4x̄1 ȳ5 = ïG4x̄1 ȳ5T N̂D4G4x̄1 ȳ55 (39)

=

{

(

−ïxF 4x̄1 ȳ5
Tw+ c∗

−ïyF 4x̄1 ȳ5
Tw+w∗

)

∣

∣

∣

∣

∣

c∗
∈ N̂C4x̄51 4w

∗1w5 ∈ N̂gph N̂â
4ȳ1 ȳ∗5

}

0
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Proof. Set ì 2= 84x1 y5 � G4x1 y5 ∈ D9 = gph S̃. We will invoke Theorem 4 to prove that N̂ì4x̄1 ȳ5 =

ïG4x̄1 ȳ5T N̂D4G4x̄1 ȳ55. Using Lemmas 1, 2 we obtain L̃ 2= span8ïqi4ȳ5
T � i ∈ Ī+9 ⊂ N̂K̄4v51 ∀v ∈ K̄. Hence

Tgph N̂â
4ȳ1 ȳ∗5+80m9× L̃⊂ Tgph N̂â

4ȳ1 ȳ∗5 by virtue of Theorem 1. Defining the subspace L by L 2= 480m9× L̃5×P

and taking into account TD4G4x̄1 ȳ55= Tgph N̂â
4ȳ1 ȳ∗5× TC4x̄5, we obtain TD4G4x̄1 ȳ55+L⊂ TD4G4x̄1 ȳ55. Next,

we shall prove that

ïG4x̄1 ȳ54�n
×�m5+L= 4�m

×�m5×�n (40)

holds true. By the assumptions for any 44v1 v∗51 u5 ∈ 4�m × �m5 × �n we can choose p ∈ P and l̃ ∈ L̃ with
ïxF 4x̄1 ȳ5p+ l̃ = v∗ +ïxF 4x̄1 ȳ5u+ïyF 4x̄1 ȳ5v. Then l = 440m1 l̃51 p5 ∈ L and

ïG4x̄1 ȳ5

(

u−p
v

)

+ l =

(

4v1−ïxF 4x̄1 ȳ54u−p5−ïyF 4x̄1 ȳ5v+ l̃5
u−p+p

)

=

(

4v1 v∗5
u

)

0

This verifies (40) and we can apply Theorem 4 to obtain the result. �

Corollary 1. In the setting of Theorem 5 for any v∗ ∈�m one has

D̂∗S̃4x̄1 ȳ54v∗5=
{

ïxF 4x̄1 ȳ5
Tw+ N̂C4x̄5 � 0 ∈ v∗

+ïyF 4x̄1 ȳ5
Tw+ D̂∗N̂â 4ȳ1 ȳ

∗54w5
}

0 (41)

There are various possibilities for verifying the metric subregularity of ë at 44x̄1 ȳ51 40101055. Sometimes one
can use even the following simple sufficient condition for metric regularity stated in Proposition 6. We think
that this criterion is far away from being necessary, but it is easy to verify.

Proposition 6. Let ë be given by (37), and let 0 ∈ ë4x̄1 ȳ5. Assume that M is metrically subregular at
4ȳ105 and metrically regular in the vicinity of ȳ. Further assume that for every � ∈E, the set of extreme points
of å4ȳ1−F 4x̄1 ȳ55, one has

ïxF 4x̄1 ȳ5
T v ∈NC4x̄51

ïqi4x̄5v = 01 i ∈ I+4�5

}

⇒ v = 00

Then ë is metrically regular near 44x̄1 ȳ51 40101055.

Proof. By contraposition. Assuming now on the contrary that ë is not metrically regular near
44x̄1 ȳ51 40101055, by Rockafellar and Wets [26, Example 9.44] there is some nonzero � = 44v∗1 v51 x∗5 ∈

ND4G4x̄1 ȳ55 such that

ïG4x̄1 ȳ5T � =

(

−ïxF 4x̄1 ȳ5
T v+ x∗

−ïyF 4x̄1 ȳ5
T v+ v∗

)

= 01 (42)

where G and D are given by (37). It can be easily seen from (42) that v 6= 0 since otherwise � = 44v∗1 v51 x∗5

would be 0. By Rockafellar and Wets [26, Proposition 6.41] we have ND4G4x̄1 ȳ55 = Ngph N̂â
4ȳ1 ȳ∗5 × NC4x̄5

with ȳ∗ 2= −F 4x̄1 ȳ5, implying ïxF 4x̄1 ȳ5
T v = x∗ ∈ NC4x̄5 and we will now show the existence of some � ∈ E

satisfying ïqi4ȳ5v = 0, i ∈ I+4�5, contradicting the assumption of the proposition.

Since 4v∗1 v5 ∈ Ngph N̂â
4ȳ1 ȳ∗5, there are sequences 4yk1 y

∗
k5

gph N̂â
−→ 4ȳ1 ȳ∗5 and 4v∗

k1 vk5 → 4v∗1 v5 with 4v∗
k1 vk5 ∈

N̂gph N̂â
4yk1 y

∗
k5. For every 4y1 y∗5 ∈ gph N̂â near 4ȳ1 ȳ∗5 we have that M is at least metrically subregular at 4y105.

Thus, by Theorem 1 the cone 80m9×K4y1 y∗5� is a subset of Tgph N̂â
4y1 y∗5 and this implies

4v∗

k1 vk5 ∈ N̂gph N̂â
4yk1 y

∗

k5= 4Tgph N̂â
4yk1 y

∗

k55
�
⊂ 480m9×K4yk1 y

∗

k5
�5� =�m

×K4yk1 y
∗

k5

for all k sufficiently large. Using similar arguments as in the second part of the proof of Theorem 1, where we
showed equality in (17), we can find a bounded sequence 4�k5 ∈ å4yk1 y

∗
k5 and, by passing to a subsequence

if necessary, we can assume that it converges to some �̃ ∈ å̄. However, å̄ is the sum of the convex hull
of its extreme points and its recession cone and therefore there is some � ∈ E with I+4�5 ⊂ I+4�̃5. Then
I+4�5⊂ I+4�k5 for all k sufficiently large and from vk ∈K4yk1 y

∗
k5 we deduce ïqi4yk5vk = 0, i ∈ I+4�k5. Hence,

by passing to the limit we obtain the claimed contradiction ïqi4ȳ5v = 0, i ∈ I+4�5, and the proposition is
proved. �
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The assumption (38) can be considerably weakened, if we strengthen our assumptions imposed on å̄4 · 5. To
simplify the formulas in the following theorem it is reasonable to introduce the Lagrangian associated with our
generalized equation, i.e.,

L4x1 y1�5= F 4x1 y5+ïq4y5T�0

Theorem 6. Let 4x̄1 ȳ5 ∈ gph S̃ and assume that M is metrically subregular at 4ȳ105 and metrically regular
in the vicinity of ȳ. Further assume that the set-valued mapping ë given by (37) is metrically subregular at
44x̄1 ȳ551 40101055, that å̄4v15 = å̄4v251 ∀0 6= v11 v2 ∈ K̄ and suppose that there exists a subspace P ⊂ TC4x̄5
with TC4x̄5+P ⊂ TC4x̄5 and

ïxF 4x̄1 ȳ5P +ïyL4x̄1 ȳ1 �̄5N̄+ span8ïqi4ȳ5
T

� i ∈ Ī+9=�m1 (43)

where �̄ ∈ å̄4v5 for some 0 6= v ∈ N̄ is chosen arbitrary, if N̄ 6= 809, and �̄= 0 otherwise. Then (39) holds true
and simplifies to

N̂gph S̃4x̄1 ȳ5 =

{

(

−ïxF 4x̄1 ȳ5
Tw

−ïyL4x̄1 ȳ1 �̄5w

)

∣

∣

∣

∣

∣

w ∈ K̄

}

+ N̂C4x̄5× K̄
�
1 (44)

where K̄1 K̄
�

are computed with ȳ∗ 2= −F 4x̄1 ȳ5. Moreover, for any v∗ ∈�m one has

D̂∗S̃4x̄1 ȳ54v∗5=
{

ïxF 4x̄1 ȳ5
Tw+ N̂C4x̄5 � 0 ∈ v∗

+ïyL4x̄1 ȳ1 �̄5w+ K̄
�
1 −w ∈ K̄

}

0 (45)

Proof. The proof follows the same lines as the proof of Theorem 5 with the exception that we choose now
L = L̂ × P , where L̂ = 84w1ï 24�̄T q54ȳ5w5 � w ∈ N̄9 + 80m9 × L̃. To prove Tgph N̂â

4ȳ1 ȳ∗5 + L̂ ⊂ Tgph N̂â
4ȳ1 ȳ∗5,

choose any 4v1 v∗5 ∈ Tgph N̂â
4ȳ1 ȳ∗5, w ∈ N̄ and � ∈ L̃. By Theorem 1 we have v ∈ K̄ and there is some � ∈ å̄4v5

such that v∗ ∈ ï 24�T q54ȳ5v+N̂K̄4v5. By Lemma 4 we have ï 24�T q54ȳ5v ∈ ï 24�̄T q54ȳ5v+ L̃. Since N̂K̄4v5+ L̃=

N̂K̄4v5 because of L̃⊂ N̂K̄4v5, since ïq4ȳ5w = 0 because of w ∈ N̄ and since

N̂K̄4v5 = 8ïq4ȳ5T� ��Tïq4ȳ5v = 01� ∈ TN̂�l−
4q4ȳ554�59

= 8ïq4ȳ5T� ��Tïq4ȳ54v+w5= 01� ∈ TN̂�l−
4q4ȳ554�59= N̂K̄4v+w5

by virtue of Lemma 1, we obtain that

4v1 v∗5+ 4w1ï 24�̄T q54ȳ5w5+ 40m1 �5 ∈ 4v+w1ï 24�̄T q54ȳ54v+w55+ 80m9× N̂K̄4v+w50

This, together with v+w ∈ K̄, shows the desired inclusion. To show (40), fix any 44v1 v∗51 u5 ∈ 4�m ×�m5×�n

and choose p ∈ P , w ∈ N̄ and l̃ ∈ L̃ with

ïxF 4x̄1 ȳ5p+ 4ïyF 4x̄1 ȳ5+ï 24�̄T q54ȳ55w+ l̃ = v∗
+ïxF 4x̄1 ȳ5u+ïyF 4x̄1 ȳ5v0

Then l = 44w1ï 24�̄T q54ȳ55w+ l̃51 p5 ∈ L and

ïG4x̄1 ȳ5

(

u−p
v−w

)

+ l

=

(

4v−w+w1−ïxF 4x̄1 ȳ54u−p5−ïyF 4x̄1 ȳ54v−w5+ï 24�̄T q54ȳ5w+ l̃5
u−p+p

)

=

(

4v1 v∗5
u

)

0

This verifies (40) and then again (39) follows from Theorem 4. Theorem 3 now yields the assertion. �
Remark 1. In Henrion et al. [11] the authors have derived (45) under the assumptions that C =�n1ïxF 4x̄1 ȳ5

is surjective and MFCQ and CRCQ are fulfilled at ȳ. We conclude that this statement follows from Theorem 6
in a straightforward way.

Remark 2. If SI = Ī+, then span8ïqi4ȳ5
T � i ∈ Ī+9 = N̄⊥. If, in addition, ïyL4x̄1 ȳ1 �̄5 is positive definite

on N̄, i.e., vTïyL4x̄1 ȳ1 �̄5v > 01 ∀0 6= v ∈ N̄, then for every v∗ ∈�m the generalized equation

0 ∈ ïyL4x̄1 ȳ1 �̄5v+ v∗
+ N̂N̄4v5
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has a solution; see, e.g., Outrata et al. [20, Theorem 4.6]. We conclude that in this case assumption (43) is
fulfilled with P = 809.

6. Applications.

6.1. Isolated calmness. A multifunction ë2 �d ⇒ �s is said to have the isolated calmness property at
4ū1 v̄5 ∈ gphë , provided there exist neighborhoods U of ū and V of v̄ and a constant �≥ 0 such that

ë4u5∩V⊂ 8v̄9+��u− ū�� when u ∈U0

In Levy [14], it has been proved that ë possesses the isolated calmness property at 4ū1 v̄5 if and only if

Dë4ū1 v̄5405= 8093 (46)

cf. also Dontchev and Rockafellar [5, Theorem 4C.1].
This result has been applied in Henrion et al. [10, Theorem 4.1] to the solution map S given by (4). On the

basis of Theorem 1 the latter result can be substantially generalized.

Theorem 7. Let 4x̄1 ȳ5 ∈ gphS and assume that M is metrically subregular at 4ȳ105 and metrically regular
in the vicinity of ȳ. Then S has the isolated calmness property provided for all v ∈�m one has the implication

0 ∈ ïyL4x̄1 ȳ1 �5v+ N̂K̄4v5

� ∈ å̄4v5

}

⇒ v = 00 (47)

Moreover, if ïxF 4x̄1 ȳ5 is surjective, than (47) is not just sufficient but also necessary for S to have the isolated
calmness property at 4x̄1 ȳ5.

Proof. By virtue of Rockafellar and Wets [26, Theorem 6.31] for all h ∈�n

DS4x̄1 ȳ54h5⊂
{

v ∈�m
� 0 ∈ ïxF 4x̄1 ȳ5h+ïyF 4x̄1 ȳ5v+DN̂â 4ȳ1−F 4x̄1 ȳ554v55

}

0 (48)

The first assertion thus follows from the combination of (46), (48), and Theorem 1.
The second assertion follows from the fact that inclusion (48) becomes equality whenever ïxF 4x̄1 ȳ5 is

surjective; cf. Rockafellar and Wets [26, Exercise 6.32]. �

Note that in the setting of Theorem 3 condition (47) can be simplified and attains the form

0 ∈ ïyL4x̄1 ȳ1 �̄5v+ N̂K̄4v5 ⇒ v = 01

where �̄ is an arbitrary multiplier from å̄4v5 for some nonzero v ∈ K̄. The case when K̄ = 809 is, of course,
trivial.

Example 5. Consider the GE
0 ∈ −x+ N̂â 4y5 (49)

with â given in Example 4. Let x̄ = 40115 and ȳ = 40105 so that ȳ∗ = x̄, K̄ = Tâ 405= 8v � v1 ≤ 01 v2 = 09,

å̄= 8� ∈�3
+

� �1 −�2 = 11�3 = 09

and

å̄4v5=

{

8� ∈ å̄ � �1 = 11�2 = 09 if 0 6= v ∈ K̄

å̄ if v = 00

As in Example 4, all conditions of Theorem 3 are fulfilled and so we may invoke Theorem 7 and conclude that
the left-hand side of (47) attains for nonzero v the form of the system

0 ∈

[

−2v1

0

]

+�

[

0
1

]

v1 ≤ 01 v2 = 00
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This system clearly implies that v = 0 and so the solution map of GE (49) has the isolated calmness property at
4x̄1 ȳ5. 4

6.2. S-stationarity conditions for MPECs. Consider the mathematical program with equilibrium constraints

min f 4x1 y5 subject to 0 ∈ F 4x1 y5+ N̂â 4y51 x ∈C1 (50)

where f 2 �n ×�m →�, F 2 �n ×�m →�m are continuously differentiable and C ⊂�n is a closed set.

Theorem 8. Let 4x̄1 ȳ5 be a local solution of the MPEC (50). Suppose that the assumptions of Theorem 5
are fulfilled. Then there exists a MPEC multiplier w such that

0 ∈ ïxf 4x̄1 ȳ5
T

+ïxF 4x̄1 ȳ5
Tw+ N̂C4x̄5 (51)

0 ∈ ïyf 4x̄1 ȳ5
T

+ïyF 4x̄1 ȳ5
Tw+ D̂∗N̂gph N̂â

4ȳ1 ȳ∗54w51 (52)

where ȳ∗ 2= −F 4x̄1 ȳ5. In particular we have w ∈ −
⋂

v∈N̄ W̄4v5 and

0 ∈ ïxf 4x̄1 ȳ5
T

+ïxF 4x̄1 ȳ5
Tw+ N̂C4x̄5

0 ∈ ïyf 4x̄1 ȳ5
T

+ïyF 4x̄1 ȳ5
Tw+

⋂

v∈N̄

L̄4v3−w50

Proof. Follows from Theorem 5 combined with the standard optimality condition 0 ∈ ïf 4x1 y5 +

N̂gph S̃4x̄1 ȳ5. �

Example 6. Consider the MPEC (50) with x ∈�3, y ∈�3,

f 4x1 y5= −x1 − y1 + 1
2y

2
2 + y2

31 F 4x1 y5= x1 C = 8a ∈�3
� a1 ≤ −19

and â from Example 2. We claim that the pair 4x̄1 ȳ5= 44−1101051 40101055 ∈C×â is a solution of this MPEC.
Indeed, −x̄ ∈ N̂â 4ȳ5 by Example 2 and for any feasible pair 4x̃1 ỹ5 one has

f 4x̃1 ỹ5≥ inf
x∈C
y∈â

f 4x1 y5≥ inf
x1≤−1

4y21 y35∈�
2

(

−x1 + 1
2y

2
2 + y2

3

)

= 1 = f 4x̄1 ȳ50

Next, we verify the assumptions of Theorem 8. The required properties of the corresponding perturbation
mapping M hold by virtue of MFCQ. Put P = 809 × � × �. Since TC4x̄5 = �− × � × �, one has TC4x̄5 +

P ⊂ TC4x̄5. Further, ȳ∗ = −x̄ = 4110105, å̄= 8� ∈�2
+

� �1 +�2 = 19, Ī+ = 81129 and so

ïxF 4x̄1 ȳ5P + span8ïqi4ȳ5 � i ∈ Ī+9= 4809×�×�5+ 4�× 809× 8095=�30

Note thatE=8401151411059 andNC4x̄5=�+×809×809. Hence for every�∈E the conditionsïFx4x̄1ȳ5
T v∈NC4x̄5,

ïqi4ȳ5v=0, i∈ I+4�5, amount to

4v11 v21 v35= ïFx4x̄1 ȳ5
T v ∈NC4x̄5=�+

× 809× 8091 v1 = 0

implying v = 0. Thus all conditions of Proposition 6 and also of Theorem 8 have been verified. As derived in
Example 2,

N̂gphN̂â
4ȳ1 ȳ∗5= K̄

�
× 840101059= 4�× 809× 8095× 40101051

and so we may conclude that conditions (51), (52) are fulfilled with w = 0 and with the point 4110105 belonging
to D̂∗N̂gphN̂â

4ȳ1 ȳ∗5405. 4
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7. Conclusion. It is well known that, in contrast to metric regularity and some other stability notions,
the property of metric subregularity at a point does not carry over to a neighborhood. This lack of stability
does not cause any troubles in the first-order nonsmooth calculus, where qualification conditions based on
metric subregularity have been developed for all basic calculus rules; cf. Ioffe and Outrata [12]. In the second-
order calculus, however, more stable qualification conditions are needed. One typically uses a surjectivity/
nondegeneracy assumption (Mordukhovich and Outrata [17, 18]) or at least MFCQ. In this paper, we suggest in
this context to require, in addition to the metric subregularity, the metric regularity in the vicinity of the point in
question introduced in Definition 2. At the first glance this combination may look somewhat cumbersome, but
it turns out that at least in some second-order calculations (like the computation of generalized derivatives of
the normal-cone mapping) it can very well be used. Moreover, as shown by examples, there are indeed realistic
situations in which this combined property holds.

After completing this paper, some of the results were successfully applied to characterize tilt stability in
nonlinear programming in the very recent paper by Gfrerer and Mordukhovich [8]. Thereby it was observed that
the assumption of metric regularity in the vicinity of ȳ can be weakened by the so-called bounded extreme point
property, which is not only implied by SOSCMS but also, e.g., by CRCQ; see Gfrerer and Mordukhovich [8,
Proposition 3.4]. In fact, by carefully checking the proof of Theorem 1, one can see that the assumption of
metric regularity in the vicinity of ȳ can be replaced by the requirement, that for all sequences 4tk5 ↓ 0, 4vk5→ v
and 4v∗

k5 → v∗ such that ȳ∗ + tkv
∗
k ∈ N̂â 4ȳ + tkvk5 there exists a bounded sequence of multipliers 4�k5 with

�k ∈ N̂�l
−
4q4ȳ + tkvk55 and ïq4ȳ + tkvk5

T�k = ȳ∗ + tkv
∗
k for each k. In Gfrerer and Mordukhovich [8], this

requirement is ensured via the bounded extreme point property.
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