
OPTIMIZATION, 2016
http://dx.doi.org/10.1080/02331934.2016.1227981

Nash equilibrium in a pay-as-bid electricity market: Part 1 –
existence and characterization∗

D. Aussela, P. Bendottib and M. Pištěkc
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ABSTRACT
We consider a model of a pay-as-bid electricity market based on a multi-
leader-common-follower approach where the producers as leaders are at
the upper level and the regulator as a common follower is at the lower level.
We fully characterize Nash equilibria for this model by describing necessary
and sufficient conditions for their existence as well as providing explicit
formulas of such equilibria in the market.
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1. Introduction

Inmany countries, electricity markets were deregulated and privatized since the 1990s. Recently, new
models appeared in the literature as this topic abounds with open questions from a broad spectrum
of disciplines. The immanent complexity of these markets is due to a central authority operating the
electrical power system in which it is established. In particular, it is required to balance electricity
flows on the network at all times, by balancing supply and demand. This authority also guarantees
all users of the power grid fair and transparent treatment, and seeks to promote fluid exchanges.
There are different denominations for this authority depending on the country and market design.
In this article, it is referred as an Independent System Operator (ISO). Since electricity cannot be
stored, some ISOs use a balancing mechanism to balance electricity supply and demand close to real
time, e.g. the balancing mechanism set up in France in 2013 as a pay-as-bid market.[1] When an
ISO predicts that there will be a discrepancy, for a given period, between the planned production of
electricity and the demand, the ISO calls for bids from producers to adjust the electricity production.
Such a discrepancy usually comes from changes either in electricity demand due to weather forecast
updates, or in dispatch due to technical incident or due to network congestion. Here, we do not
consider possible adjustments of the demand, like e.g. erasement process.

The resulting balancing market has several specific characteristics. First, it is organized as a
multi-leader-common-follower problem, where the interaction between each market participant
is modelled as a bilevel problem with the ISO’s problem at the lower level in the role of a follower,
and all producers and consumers at the upper level in the role of leaders. Second, it is a pay-as-bid
market in which each producer (or consumer) provides the ISO with a bid (function) used to derive
directly its revenues (or expenses). Note that in our model and for the sake of simplicity we aggregate
the demand of consumers. This aggregated demand, thereafter referred as demand, is assumed to be
given, whereas it is not precisely known in real-world electricity markets. Therefore, it is a common
practice for a producer to do some ‘demand sampling’ around a reference value to elaborate his bid.
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Our aim in this couple of articles (Part 1 and Part 2) is to determine the Nash equilibria of a pay-
as-bid market. In Part 1, we characterize the equilibria depending on different values of the demand.
In Part 2, we characterize the best response of a producer that is the optimal bid(s) maximizing his
profit, see [2]. For each given producer it is assumed that the demand is known as well as an estimate
of the bids of the other producers. Such a characterization of the best response is also the cornerstone
in the proof of the existence result for the Nash equilibria. This describes how both Part 1 and Part 2
are interconnected.

In the approaches proposed in [3–8], the bids are assumed to be convex quadratic functions of
the production quantity. Actually, in most electricity markets, only piecewise linear bids or block
orders may be allowed. However, quadratic function with non-negative coefficients capture well the
typical behaviour of aggregated block offers and, at the same time, it is amenable to further analysis.
Note that a classical way to ensure uniqueness of the solution to the ISO’s problem, see e.g. the
above quoted references, is to assume that all producers are bidding true quadratic functions. In this
work, we allow producers to bid linearly or quadratically and uniqueness of the solution to the ISO’s
problem is obtained, thanks to the ‘equity property’ assumption explicitly claiming that the ISO treats
all producers in the same manner. It is also important to enlighten that only few existence results
of equilibria in electricity markets appeared in the literature. Actually, the models are usually based
on true quadratic bids only. And existence results are obtained under quite restrictive assumption;
see e.g. [5, Corollary 1] in the particular case of a ‘two-island market’. But allowing linear bids plays
a fundamental role to obtain Nash equilibria since, at equilibrium, the bids of the producers with a
positive production quantity are linear. This follows from the forthcoming existence result stated in
Theorem 3.1.

Part 1 of this couple of articles is organized as follows. In Section 2, we define the model of a
pay-as-bid electricity market that will be considered as well as the needed notation. In Section 3,
the existence and characterization of Nash equilibrium is considered while in Section 4 we illustrate
through an example the sensitivity of the Nash equilibrium with respect to the demand.

2. Problem setting and best response of a producer

2.1. Notations and problem setting

The basic notations along with some assumptions follow: D > 0 is the demand, N = {1, . . . ,N}
is the set of producers (N > 1) and for i ∈ N we use ai, bi ≥ 0 to denote the coefficients of the
ith producer’s bid aiqi + biq2i . And Ai ≥ 0,Bi > 0 stand for the coefficients of the true production
cost function Aiqi + Biq2i . The increasing behaviour of the production cost function is well known
and reflects that a producer typically ranks up its production units in merit order. Transportation
thermal losses as well as possible congestions of transmission lines are not taken into account, thus
the transmission network is not considered in this model.

Furthermore, qi ≥ 0 represents the non-negative production quantity of the ith producer.
Considering q ∈ R

N+, we use q−i ∈ R
N−1+ to denote the vector (q1, . . . , qi−1, qi+1, . . . , qN ), and

the same convention is used for other vectors hereinafter. A producer is said to be active in the
market if his bid has been accepted by the ISO, i.e. the corresponding production quantity is positive.
Finally, R++ = R+ \ {0}, then R

N++ = (R++)N , and for x, y ∈ R
2 we write x � y if xi ≥ yi for

i = 1, 2 where at least one inequality is strict.
Thus each producer provides the ISO with a quadratic bid aiqi + biq2i . Then, knowing the bid

vectors a = (a1, . . . , aN ) ∈ R
N+ and b = (b1, . . . , bN ) ∈ R

N+, the ISO computes the production
quantity to be dispatched to the producers q = (q1, . . . , qN ) ∈ R

N+ to minimize the total expenses
while satisfying the demand, see e.g. [3,5,6]. For the sake of uniqueness of the solution to the ISO’s
problem, we use the equity property assumption, see [2], which reads:
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(E) (ai, bi) = (aj, bj) =⇒ qi = qj, ∀i, j ∈ N ,

thus formalizing the ‘fairness’ of the ISO. Hence the optimization problem ISO(a, b,D) is as follows

ISO(a,b,D) min
q

∑
i∈N

(aiqi + biq2i )

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qi ≥ 0, ∀i ∈ N[
(ai, bi) = (aj, bj) ⇒ qi = qj

]
, ∀i, j ∈ N∑

i∈N
qi = D.

Then producer i ∈ N aims at maximizing his profit πi(a, b,D) given by

πi(a, b,D) = (ai − Ai) qi(a, b,D) + (bi − Bi) qi(a, b,D)2

manipulating his own strategic variables ai, bi ≥ 0 with the rest of variables (a−i, b−i) ∈ R
2N−2+ kept

fixed. Note that qi(a, b,D) stands for the unique solution of the ISO’s problem ISO(a, b,D), as shown
in [2, Theorem 2.1] where the equity property plays a fundamental role for uniqueness. In other
words, the ith producer’s problem Pi(a−i, b−i,D) reads

Pi(a−i, b−i,D) π̃i = sup
ai ,bi≥0

πi(ai, a−i, bi, b−i,D).

Note that for the sake of simplicity we omit coefficients (Ai,Bi) in the notation for πi(a, b,D) and
Pi(a−i, b−i,D), and similarly we omit (a−i, b−i,D)when writing π̃i. Then for a fixed set of producers
N and any (A,B,D) ∈ R

N+ ×R
N++ ×R++, the set of all Nash equilibria for the correspondingmarket

is denoted by

E(A,B,D) =
{

(ã, b̃) ∈ R
2N+ :πi(ã, b̃,D) = sup

ai ,bi≥0
πi(ai, ã−i, bi, b̃−i,D),∀i ∈ N

}
(1)

For a bid (ã, b̃) ∈ E(A,B,D) at equilibrium, (ãi, b̃i) solves problem Pi(a−i, b−i,D) for any producer
i ∈ N . The aim of this work is to evaluate the set E(A,B,D) for any value of the true cost coefficients
(A,B) ∈ R

N+ × R
N++ and of the demand D > 0, and to come up with basic economic interpretation

of this result.

2.2. Best response of a producer

To find all Nash equilibria of the modelled electricity market, we need first to analyse the best
responses of a given producer, that is the bid, if exists, maximizing his profit. We assume that the
demand is known as well as an estimate of the bids of the other producers. This analysis is mainly the
aim of Part 2 – [2] and we thus only recall in this subsection some notations and a key result which
will be useful to characterize the Nash equilibria of the market. We define

λm(a) = min
i∈N

ai,
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and then several critical parameters of ISO(a, b,D), namely a critical marginal price λc(a, b), a critical
value of the demand Dc(a, b), and a set of producers bidding critical (linear) bids N c(a, b) ⊂ N

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λc(a, b) = min
i∈N :bi=0

ai,

N c(a, b) = {
i ∈ N : ai = λc(a, b) and bi = 0

}
,

Dc(a, b) =
∑

i∈N :ai<λc(a,b)

λc(a, b) − ai
2bi

.

(2)

We note that ai < λc(a, b) implies bi > 0 and so Dc(a, b) is well-defined. If there is no i ∈ N
such that ai < λc(a, b), we set Dc(a, b) = 0. Looking to [2, Theorem 2.1], all active producers bid
linearly in this case. If there is no producer bidding linearly, i.e. we have bi > 0 for all i ∈ N , we
set λc(a, b) = Dc(a, b) = +∞. For the cardinality of N c(a, b) it is denoted by Nc(a, b). The above
defined critical parameters have clear economic meanings discussed in detail in [2, Remark 1]. Next
we define a set � =

{
(a, b, λ) ∈ R

2N+1+ : 0 ≤ λ ≤ λc(a, b)
}
(considering strict right inequality for

the case of λc(a, b) = +∞) and the function F : � → R+ by

F(a, b, λ) =
∑

i∈N :ai<λ

λ − ai
2bi

. (3)

Note that for λ ≤ λm(a) the set {i ∈ N : ai < λ} is empty and so F(a, b, λ) = 0. Note also that
for λ > λc(a, b) formula (3) is ill-posed as there exists i ∈ N such that ai < λ and bi = 0. For
any (a, b) ∈ R

2N+ , function λ → F(a, b, λ) is continuous, piecewise linear and strictly increasing on
[λm(a), λc(a, b)[, see [2, p.4 and Lemma A.1]. Thus, we may define a function λ(a, b,D) : R

2N+1+ →
R+ as follows

λ(a, b,D) =
⎧⎨
⎩

λ ∈ [λm(a), λc(a, b)[, s.t. F(a, b, λ) = D if D ∈ [0,Dc(a, b)[
λc(a, b), if D ≥ Dc(a, b). (4)

For any (a, b) ∈ R
2N+ function λ(a, b,D) is continuous and piecewise linear in D, and for any

D > 0 satisfies λm(a) ≤ λ(a, b,D) ≤ λc(a, b). The value of λ(a, b,D) is identified in [2, Proposition
2.4] with the marginal price in the market.

Next for any (a, b) ∈ R
2N+ , we define the following sets

�− =
{
(a, b, λ̃) ∈ R

2N+1+ : λ̃ ∈]λm(a), λc(a, b)]
}
,

�+ =
{
(a, b, λ̃) ∈ R

2N+1+ : λ̃ ∈ [λm(a), λc(a, b)]
}

.

Denoting a directional partial derivatives with respect to variable x by ∂±
x , see [2, p.9], we may

define functionsm± : �± → R+ as follows
⎧⎪⎪⎨
⎪⎪⎩
m−(a, b, λ̃) = ∂−

D λ(a, b, F(a, b, λ̃)) for λ̃ ∈]λm(a), λc(a, b)],
m+(a, b, λ̃) = ∂+

D λ(a, b, F(a, b, λ̃)) for λ̃ ∈ [λm(a), λc(a, b)[,
m+(a, b, λ̃) = 0 for λ̃ = λc(a, b),

where F(a, b, λ̃) corresponds to the production quantity given the marginal price λ̃, see (4). For
computation and properties ofm±(a, b, λ̃) we refer to [2, Lemma 2.3].
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To analyse the minimization problem Pi(a−i, b−i,D) of producer i ∈ N in detail, we need to
extend the previous notation to describe the market without producer i ∈ N , i.e. a market consisting
only of producers in N \ {i}. We define

λc(a−i, b−i) = min
j∈N \{i},bj=0

aj,

and similarly to (2) also the other critical parameters N c(a−i, b−i), Dc(a−i, b−i) of ISO(a−i, b−i,D).
Similarly, we define functions F(a−i, b−i, λ) and λ(a−i, b−i,D) following (3) and (4). Using this
notation, we may introduce several production quantities being important for finding the best
response of a producer:

q�
i (a−i, b−i) = λc(a−i, b−i) − Ai

2Bi
, (5)

q0i (a−i, b−i) = F(a−i, b−i,Ai) provided Ai ≤ λc(a−i, b−i), (6)

qmi (a−i, b−i) = λm(a−i) − Ai

2Bi + m+(a−i, b−i, λm(a−i))
, (7)

qci (a−i, b−i) =
⎧⎨
⎩

λc(a−i, b−i) − Ai

2Bi + m−(a−i, b−i, λc(a−i, b−i))
for λm(a−i)<λc(a−i, b−i),

0 for λm(a−i) = λc(a−i, b−i).
(8)

As shown in [2, Lemma 2.5], q�
i (a−i, b−i) sometimes corresponds to an ideal production quantity

that is, given the production cost coefficients Ai and Bi, the production quantity providing the
maximum of the profit function for producer i.

Now, let us recall the main result from [2] describing the best response of producer i ∈ N with
respect to various values of the demand D > 0.

Corollary 2.1 (of [2, Theorem 3.1]): Let D > 0, (a−i, b−i) ∈ R
2N−2+ for some i ∈ N and consider the

problem
Pi(a−i, b−i,D) π̃i = sup

ai ,bi≥0
πi(ai, a−i, bi, b−i,D).

Then one of the following alternatives holds:

(a) if either Ai ≥ λc(a−i, b−i) or D ∈ ]0, q0i (a−i, b−i)] then π̃i = 0,
(b) if D ∈ ]q0i (a−i, b−i),Dc(a−i, b−i)+qci (a−i, b−i)[ then π̃i > 0 and there is a unique best response

(ãi, b̃i) given by b̃i = 0 and ãi ∈ [λm(a−i), λc(a−i, b−i)[ satisfying⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ãi = λm(a−i) if D ≤ qmi (a−i, b−i),

ãi − Ai

2Bi + m−(a−i, b−i, ãi)
≤ D − F(a−i, b−i, ãi)

≤ ãi − Ai

2Bi + m+(a−i, b−i, ãi)

if D > qmi (a−i, b−i),
(9)

(c) if D ≥ Dc(a−i, b−i) + qci (a−i, b−i) and D �= Dc(a−i, b−i) + (Nc(a−i, b−i) + 1) q�
i (a−i, b−i)

then π̃i > 0 and the best response does not exist,
(d) if D = Dc(a−i, b−i) + (Nc(a−i, b−i) + 1) q�

i (a−i, b−i) then π̃i > 0 and there is a unique best
response (ãi, b̃i) = (λc(a−i, b−i), 0).

Fixing (a−i, b−i) ∈ R
2N−2+ , we see that for some values of D there is no maximizer in problem

Pi(a−i, b−i,D) and so the best response of producer i ∈ N does not exist. This situation is fully
analysed in [2, Theorem 3.1], where a sequence of bids yielding a supremum of the profit is provided
and the concept of limiting best response is used.
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3. Main results

In this section, we fully characterize the set E(A,B,D) of Nash equilibria in the market (see definition
(1)). To this end, we order all producers according to the linear coefficients of their true cost of
production, thus we can assume that A1 ≤ A2 ≤ · · · ≤ AN . Then, we define accordingly

Nact(A,B,D) = {i ∈ N : Ai < λ(A,B,D)} = {1, . . . ,Nact(A,B,D)}.

Note that Nact(A,B,D) ≥ 1 since we always have λ(A,B,D) > A1 using monotonicity of F stated
in [2, Lemma A.1] and observing F(A,B,A1) = 0. By similar arguments λ(A,B,D) < A2 implies
A1 < A2. Now, the main result of this article is as follows.
Theorem 3.1: Let (A,B,D) ∈ R

N+ ×R
N++ ×R++ be given. Then, Nash equilibrium exists if and only

if

(a) either λ(A,B,D) < A2,
(b) or λ(A,B,D) > A2 and the following condition is satisfied

Nact(A,B,D)(Ai − A1) = 2D(B1 − Bi), ∀i ≤ Nact(A,B,D). (10)

In equilibrium, the set of active producers is Nact(A,B,D). Moreover, in case (a) it holds
Nact(A,B,D) = 1 and the set of Nash equilibria reads

E(A,B,D) =
⋃

λ̃∈]A1,A2]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a, b) ∈ R
2N+ :

D ≤ λ̃ − A1

2B1

∑
j>1;aj=λ̃

1
bj

1
B1 + ∑

j>1;aj=λ̃
1
bj

,

(a1, b1) = (λ̃, 0), λm(a−1) = λ̃,

(ai, bi) � (λ̃, 0), ∀i > 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (11)

and in case (b) we have

E(A,B,D) =
{
(a, b) ∈ R

2N+ : (ai, bi) = (λ(A,B,D), 0), ∀i ≤ Nact(A,B,D)

(ai, bi) � (λ(A,B,D), 0), ∀i > Nact(A,B,D)

}
. (12)

Note that the set defined by formula (11), respectively (12), is not empty in case (a), respectively
(b), of the above theorem. Indeed, in the forthcoming Corollary 4.1, some particular elements of
these sets will be described.

To prove Theorem 3.1 we first provide several auxiliary lemmas describing properties of the
following subsets of producers:

N0(a, bD) = {i ∈ N : πi(a, b,D) = 0, and Ai ≥ λ(a−i, b−i,D)},
N1(a, b,D) = {i ∈ N : D ∈]q0i (a−i, b−i),Dc(a−i, b−i) + qci (a−i, b−i)[,

ai ∈ [λm(a−i), λc(a−i, b−i)[ satisfies (9), bi = 0},
N2(a, b,D) =

{
i ∈ N : D = Dc(a−i, b−i) + (Nc(a−i, b−i) + 1) q�

i (a−i, b−i),
ai = λc(a−i, b−i), bi = 0

}
,

omitting the true cost coefficients (A,B) ∈ R
N+ ×R

N++ in the notation for the sake of simplicity again.
In the lemma below, we show that in Nash equilibrium these groups of producers form a partition
of N .
Lemma 3.2: For any (A,B,D) ∈ R

N+ × R
N++ × R++ it holds (a, b) ∈ E(A,B,D) if and only if

N = N0(a, b,D) ∪ N1(a, b,D) ∪ N2(a, b,D).
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Proof: By definition of a Nash equilibrium, any producer i ∈ N provides the ISO with the best
response bid, i.e. one of the bids described by statements (a), (b), (d) of Corollary 2.1. Similarly, once
N = N0(a, b,D) ∪ N1(a, b,D) ∪ N2(a, b,D) we are necessarily at equilibrium (a, b) ∈ E(A,B,D).
To finish the proof we observe N0(a, b,D) = {i ∈ N |πi(a, b,D) = 0 and [Ai ≥ λc(a−i, b−i) or D ≤
q0i (a−i, b−i)]} due to Corollary 2.1, definition of q0i (a−i, b−i) and λ(a−i, b−i,D). �

To further describe the producers in N0(a, b,D) the following lemma is useful.
Lemma 3.3: At equilibrium, the producers of subset N0(a, b,D) are non active, that is, for any
(a, b) ∈ E(A,B,D) and any i ∈ N0(a, b,D) it holds qi(a, b,D) = 0.
Proof: For brevity we use λ as a shortcut to denote λ(a, b,D) and assume qi(a, b,D) > 0 for a
contradiction. Using [2, Theorem 2.1] we know that either ai < λ and qi(a, b,D) = λ−ai

2bi , or ai = λ

and qi(a, b,D) = D−Dc(a,b)
Nc(a,b) . Moreover, we have πi(a, b,D) = 0 by definition of N0(a, b,D) and

since qi(a, b,D) > 0 we necessarily have ai − Ai + (bi − Bi)qi(a, b,D) = 0. Altogether, we obtain
either λ + ai − 2Ai = Bi qi(a, b,D) or λ − Ai = Bi qi(a, b,D), respectively. Finally, observing
λ ≤ λ(a−i, b−i,D) ≤ Ai due to [2, Lemma A.2] and i ∈ N0(a, b,D), we have Bi qi(a, b,D) < 0, a
contradiction with qi(a, b,D) > 0. �

Then, from Corollary 2.1 we observe that if (a, b) ∈ E(A,B,D) then for any i ∈ N1(a, b,D) ∪
N2(a, b,D) we have πi(a, b,D) > 0. Thus, recalling Lemmas 3.2 and 3.3, we may state the following
remark.
Remark 1: Note that once there is Nash Equilibrium in the market, (a, b) ∈ E(A,B,D), we have
qi(a, b,D) = 0 ⇔ πi(a, b,D) = 0 ⇔ i ∈ N0(a, b,D), and similarly qi(a, b,D) > 0 ⇔ πi(a, b,D) >
0 ⇔ i ∈ N1(a, b,D) ∪ N2(a, b,D).

The following properties of Nash equilibria will be of future use.
Lemma 3.4: Let (a, b) ∈ E(A,B,D), then

(i) D > Dc(a, b) = 0 and λ(a, b,D) = λc(a, b),
(ii) for any i ∈ N0(a, b,D) it holds (ai, bi) � (λ(a, b,D), 0),
(iii) N c(a, b) = N1(a, b,D) ∪ N2(a, b,D).

Proof: Using D > 0 and Lemma 3.3 there has to be some j ∈ N1(a, b,D) ∪ N2(a, b,D) such that
qj(a, b,D) > 0. For such j we have bj = 0, thus also aj = λ(a, b,D) and D > Dc(a, b) due to [2,
Theorem 2.1]. Then, λ(a, b,D) = λc(a, b) results directly from the definition of λ(a, b,D). Thus, the
proof of (i) is done except for statement Dc(a, b) = 0 which will be shown later.

Now for any i ∈ N0(a, b,D) and according to Lemma 3.3 we have qi(a, b,D) = 0, and by [2,
Theorem2.1] there are three variants of bids leading toqi(a, b,D) = 0.However, variantD = Dc(a, b)
with ai = λ(a, b,D) and bi = 0 is avoided due to the statement (i). Thus, we showed (ii).

By combining the statements (ii) and λ(a, b,D) = λc(a, b) we see N0(a, b,D) ∩ N c(a, b) = ∅.
Now, for any i ∈ N1(a, b,D) ∪ N2(a, b,D) we have bi = 0 and ai ≤ λc(a−i, b−i), thus ai = λc(a, b),
i ∈ N c(a, b), and so (iii) is proved.

Finally, we can deduceDc(a, b) = 0 from the definition using statements (ii), (iii) and λ(a, b,D) =
λc(a, b) to finish the proof of (i). �

Let us now describe splitting of the active producers between the sets N1(a, b,D) and N2(a, b,D)

for (a, b) being a Nash equilibrium. We will see that there are only two possibilities.
Proposition 3.5: Let (a, b) ∈ E(A,B,D), then one of these alternatives is satisfied:

(a) |N1(a, b,D)| = 1 and N2(a, b,D) = ∅.
(b) N1(a, b,D) = ∅ and |N2(a, b,D)| ≥ 2,

Note that both alternative configurations of the market in equilibrium described by the above
proposition have clear economic meaning:
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• case (a) corresponds to a ‘monopolistic configuration’ where only one producer is active in the
market.

• case (b) corresponds to ‘competitive configuration’ where several producers are active in the
market.

Proof: We prove this proposition in three steps. First we show |N1(a, b,D)| ≤ 1 by contradiction.
To this end, observe that if k, l ∈ N1(a, b,D), k �= l then ak < λc(a−k, b−k) ≤ al < λc(a−l , b−l) ≤ ak
where both definitions of N1(a, b,D) and λc are used twice.

Next, we show that |N1(a, b,D)| = 1 implies N2(a, b,D) = ∅. Assuming k ∈ N1(a, b,D) and
l ∈ N2(a, b,D) for a contradiction, wemaywriteλc(a, b) = ak < λc(a−k, b−k) ≤ al = λc(a−l , b−l) =
λc(a, b) where we use the definitions of λc(a−i, b−i,D) and N1(a, b,D), the fact that k �= l, and the
definition of N2(a, b,D).

Finally, for N1(a, b,D) = ∅ we show that |N2(a, b,D)| ≥ 2. First, if N2(a, b,D) = ∅ then
we have N = N0(a, b,D), and by using Lemma 3.3 we observe D = 0, a contradiction with
D > 0. Second, assuming N2(a, b,D) = {k} and using Lemma 3.4(iii) we have N c(a, b) = {k},
thus ak < λc(a−k, b−k), a contradiction with k ∈ N2(a, b,D). �

4. A numerical example

The set of Nash equilibria E(A,B,D) as given by Theorem 3.1 is too rich to be well illustrated by
a figure. This is caused by the fact that in Corollary 2.1 we do not prescribe any particular bid to
non-profiting producers, i.e. producers i ∈ N such that π̃i = 0, see also the definition ofN0(a, b,D).
We have already shown that these producers do not produce, see Lemma 3.3, but still their actual bids
have influence on the marginal price in equilibrium, see Theorem 3.1(b). To simplify the problem,
we will further consider just equilibria (a, b) ∈ E(A,B,D) such that condition

(H) π̃i = 0 ⇒ (ai, bi) = (Ai,Bi), ∀i ∈ N

is satisfied. Denoting a set of such equilibria Ẽ(A,B,D), we show that it contains at maximum one
element, and may be fully described in terms of the data (A,B,D).

Corollary 4.1 (of Theorem 3.1): Let (A,B,D) ∈ R
N+ ×R

N++ ×R++ be given. Then, Nash equilibrium
such that (H) is satisfied exists if and only if

(a) either

D ≤ A2 − A1

2B1

∑
j;Aj=A2

1
Bj

1
B1 + ∑

j;Aj=A2
1
Bj

, (13)

(b) or D >
A2 − A1

2B1
and the following condition is satisfied

Nact(A,B,D)(Ai − A1) = 2D(B1 − Bi), ∀i ≤ Nact(A,B,D). (14)

Moreover, in both cases such an equilibrium is unique, Ẽ(A,B,D) = {(ã, b̃)}, in case (a) given by

(ã1, b̃1) = (A2, 0), (ãi, b̃i) = (Ai,Bi), ∀i > 1,

and in case (b) by

(ai, bi) = (λ(A,B,D), 0), ∀i ≤ Nact(A,B,D),
(ai, bi) = (Ai,Bi), ∀i > Nact(A,B,D).
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Figure 1. This figure shows the set � = �a ∪ �b1 ∪ �b2 of all points (A2, B2,D) such that Nash equilibrium satisfying (H) exists
provided (A1, B1) = (5, 3), as given in Example 4.2. Component �a corresponds to the blue volume, component �b1 is given
by the above curved surface, and �b2 is the black line. The red plane given by D = 0.04 denotes the cutting plane used to plot
Figure 2.

Proof of Corollary 4.1: We find all (a, b) ∈ E(A,B,D) such that (ai, bi) = (Ai,Bi) for all i >
Nact(A,B,D). First, assuming λ(A,B,D) < A2 and using Theorem 3.1(a), we necessarily obtain
λ̃ = λm(a−1) = λm(A−1) = A2, thus arriving at condition (13). Moreover, this condition implies
D < A2−A1

2B1 , or equivalently λ(A,B,D) < A2 since (A2 − A1)/(2B1) = F(A,B,A2) and using [2,
Lemma A.1], and so we may drop the latter inequality from our assumptions. To show statement
(b), we use (12), set (ai, bi) = (Ai,Bi) for all i > Nact(A,B,D), and then reformulate assumption
λ(A,B,D) > A2 in terms of D in the same way as in the case (a), the proof is done. �
Example 4.2: To illustrate the properties of a set of Nash equilibria satisfying (H), consider a simple
market with two producersN = {1, 2}, such that (A1,B1) = (5, 3). Note that we still assumeA1 ≤ A2
as discussed in the beginning of Section 3. Then we may define a set

� =
{
(A2,B2,D) ∈ R+ × R++ × R+ : Ẽ(A1,A2,B1,B2,D) �= ∅

}
.

From Corollary 4.1 we can deduce that � consists of a union of two subsets �a and �b. Moreover,
for �b we see that �b = �b1 ∪ �b2, with all these sets given as follows:

�a =
{
(A2,B2,D) ∈]A1,+∞[×R++ × R+ : D ≤ 1

2
A2 − A1

B1 + B2

}
,

�b1 =
{
(A2,B2,D) ∈]A1,+∞[×]0,B1[×R+ : D = A2 − A1

B1 − B2

}
,

�b2 = {(A2,B2,D) ∈ {A1} × {B1} × R+} .

These sets of Nash equilibria are depicted in Figures 1 and 2.

5. Proof of Theorem 3.1

To prove Theorem 3.1, we denote the right-hand side of (11) and (12) by E1(A,B,D) and E2(A,B,D),
respectively, and state several auxiliary lemmas.



10 D. AUSSEL ET AL.
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Figure 2. In this figure we depict all points (A2, B2) such that Nash equilibrium satisfying (H) exists provided (A1, B1) = (5, 3), as
given in Example 4.2, and D = 0.04. This value of demand corresponds to the red cutting plane plotted in Figure 1.

Lemma 5.1: Let (a, b) ∈ R
2N+ be such that a1 = λm(a−1). Then D ≤ qm1 (a−1, b−1) if and only if

D ≤ a1 − A1

2B1

∑
j>1;aj=a1

1
bj

1
B1 + ∑

j>1;aj=a1
1
bj

. (15)

Proof: From the definition of qmi (a−i, b−i), see (7), we observe that condition D ≤ qm1 (a−1, b−1) in
our setting actually reads

D ≤ a1 − A1

2B1 + m+(a−1, b−1, a1)
.

This is, after a short calculation, equivalent to (15) due to [2, Lemma 2.3]. �
We will now demonstrate that any equilibrium of the market corresponding to a monopolistic

configuration has to be an element of E1(A,B,D).
Lemma 5.2: Let (a, b) ∈ E(A,B,D) be such that |N1(a, b,D)| = 1 and N2(a, b,D) = ∅, then
(a, b) ∈ E1(A,B,D).
Proof: Let (a, b) ∈ E(A,B,D) and denote N1(a, b,D) = {k} and λeq = λ(a, b,D). Then we have
(ai, bi) � (λeq, 0) for all i ∈ N0(a, b,D) due to Lemma 3.4(ii), thus according to Lemma 3.2 also
λm(a−k) ≥ λeq. Now, we observe λeq = λc(a, b) = ak ≥ λm(a−k) using Lemma 3.4(i) and k ∈
N1(a, b,D). Thus, necessarily ak = λeq = λm(a−k). Now, we prove that ak = λm(a−k) and k ∈
N1(a, b,D) implies

D ≤ qmk (a−k, b−k) = ak − Ak

2Bk + m+(a−k, b−k, ak)
. (16)

Indeed, if D > qmk (a−k, b−k) then one obtains D − F(a−k, b−k, ak) ≤ qmk (a−k, b−k) in (9) due to
k ∈ N1(a, b,D), a contradiction since F(a−k, b−k, ak) = 0 because ak = λm(a−k).

For any j ∈ N0(a, b,D) we have Aj ≥ λ(a−j, b−j,D) ≥ λeq using [2, Lemma A.2], thus also
λm(A−k) ≥ λeq = ak. Moreover, ak > Ak due to (16) together with D > 0. Thus, we may identify
k = 1 with respect to the ordering of producers, and the proof is complete by setting λ̃ = λeq,
rewriting (16) according to Lemma 5.1, and realizing that λm(A−k) = λm(A−1) = A2. �

Symmetrically to the previous lemma, we will now show that any equilibrium of the market
corresponding to a non-monopolistic configuration must be an element of E2(A,B,D).
Lemma 5.3: Let (a, b) ∈ E(A,B,D) be such that N1(a, b,D) = ∅ and |N2(a, b,D)| ≥ 2, then
(a, b) ∈ E2(A,B,D).
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Proof: Let us denote λeq = λ(a, b,D) and show first thatNact(A,B,D) = N2(a, b,D). Using Lemma
3.4 and the definition of N2(a, b,D) we observe Dc(a, b) = 0, N c(a, b) = N2(a, b,D) and λeq =
λc(a, b) = λc(a−i, b−i) = ai for any i ∈ N2(a, b,D). Then we have 0 ≤ Dc(a−i, b−i) ≤ Dc(a, b) = 0
and so

q�
i (a−i, b−i) = D

|N2(a, b,D)| = λeq − Ai

2Bi
> 0 (17)

still for any i ∈ N2(a, b,D).
Now, for any j ∈ N0(a, b,D) we observe

λeq ≤ λ(a−j, b−j,D) ≤ Aj (18)

due to [2, Lemma A.2] and the definition of N0(a, b,D). Thus, {j : Aj < λeq} ∩ N0(a, b,D) = ∅ and,
according to Lemma 3.2, {j : Aj < λeq} ⊂ N2(a, b,D). Using the inequality stated in (17), we observe
that the previous inclusion is, actually, an equality . Since Bi > 0 for any i ∈ N , it holds λc(A,B) =
+∞. Thus recalling the definition of F and using (17), we have F(A,B, λeq) = ∑

i∈N2(a,b,D)

λeq−Ai
2Bi =

D, or equivalently λeq = λ(A,B,D). This prove that Nact(A,B,D) = {j : Aj < λeq} = N2(a, b,D).
Now, assumption |N2(a, b,D)| ≥ 2 implies λ(A,B,D) > A2. To verify (10) we may use (17). In-

deed, for any i ≤ Nact(A,B,D)we haveNact(A,B,D)(λeq−Ai) = 2DBi, thus alsoNact(A,B,D)(λeq−
A1) = 2DB1, and finally (10). To finish the proof, we observe that Nact(A,B,D) < j ≤ N is now
equivalent to j ∈ N0(a, b,D) using (18), and so (aj, bj) � (λeq, 0) due to Lemma 3.4(ii). �
Lemma 5.4: Let (A,B,D) ∈ R

N+ × R
N++ × R++, then E1(A,B,D) ⊂ E(A,B,D).

Proof: To show E1(A,B,D) ⊂ E(A,B,D) we may equivalently prove that N = N0(a, b,D) ∪
N1(a, b,D)∪N2(a, b,D) for any (a, b) ∈ E1(A,B,D), see Lemma3.2. To this endwewill prove that 1 ∈
N1(a, b,D) and N \ {1} ⊂ N0(a, b,D) for any (a, b) ∈ E1(A,B,D), since N0(a, b,D) ∪ N1(a, b,D) ∪
N2(a, b,D) ⊂ N always. Take any (a, b) ∈ E1(A,B,D) and denote the respective value λ̃ in (11) by
λeq ∈]A1,A2]. From the definition of E1(A,B,D) we have D ≤ qm1 (a−1, b−1) due to a1 = λm(a−1)
using Lemma5.1, thus also (9) for i = 1. Additionally, the last equality togetherwith (ai, bi) � (λeq, 0)
for all i > 1 implies λm(a−1) < λc(a−1, b−1). This means that qc1(a−1, b−1) is given by the first part of
(8), andusing formulas in [2, Lemma2.3] alsom+(a−1, b−1, λm(a−1)) ≥ m−(a−1, b−1, λc(a−1, b−1)).
Thus qm1 (a−1, b−1) < qc1(a−1, b−1) and so D ≤ qm1 (a−1, b−1) < Dc(a−1, b−1) + qc1(a−1, b−1).
Moreover, we have D > q01(a−1, b−1) = F(a−1, b−1,A1) = 0 since A1 < a1 = λm(a−1) and so
1 ∈ N1(a, b,D). Next, we take any k ∈ N such that k > 1, and show k ∈ N0(a, b,D). From the
definition of E1(A,B,D) and Dc(a, b) we observe Dc(a, b) = F(a, b, λc(a, b)) = 0 since λc(a, b) =
a1 = λm(a−1), then qk(a, b,D) = 0 as given by [2, Theorem 2.1] due to (ak, bk) � (λeq, 0), and so
πk(a, b,D) = 0. Then we show Dc(a−k, b−k) = 0 again from the definition since λc(a−k, b−k) = a1.
Finally, λ(a−k, b−k,D) = λc(a−k, b−k) = a1 ≤ Ak using a1 ≤ λm(A−1), and so k ∈ N0(a, b,D).
Thus we showed E1(A,B,D) ⊂ E(A,B,D). �
Lemma 5.5: Let (A,B,D) ∈ R

N+ × R
N++ × R++ be such that λ(A,B,D) > A2 and condition (10) is

satisfied, then E2(A,B,D) ⊂ E(A,B,D).
Proof: By similar arguments as in the proof of Lemma 5.4 it suffices to show {1, . . . ,Nact(A,B,D)} ⊂
N2(a, b,D) and {Nact(A,B,D)+1, . . . ,N} ⊂ N0(a, b,D) for any (a, b) ∈ E2(A,B,D). Fromdefinition
we see that λ(A,B,D) > A2 is equivalent to Nact(A,B,D) ≥ 2. Then for any (a, b) ∈ E2(A,B,D)

and for any i ∈ N it holds ai ≥ λc(a, b) = λc(a−i, b−i) = λ(A,B,D), and so also Dc(a, b) =
Dc(a−i, b−i) = 0 and Nc(a, b) = Nact(A,B,D) due to the definition of E2(A,B,D).

Further, consider i ≤ Nact(A,B,D), then Nc(a−i, b−i) + 1 = Nc(a, b) = Nact(A,B,D), thus if we
show also D = Nact(A,B,D) q�

i (a−i, b−i) we will prove i ∈ N2(a, b,D). To this end we show that the
last equality is implied by (10). First observe that λ̄ = Ai + 2Bi(D/Nact(A,B,D)) is well defined for
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any i ≤ Nact(A,B,D) due to (10). Thus, we have also

λ̄ − Ai

2Bi
= D

Nact(A,B,D)
,

and by summing over all i ∈ Nact(A,B,D) we obtain F(A,B, λ̄) = D. In other words λ̄ = λ(A,B,D)

and so λ̄−Ai
2Bi = q�

i (a−i, b−i) using λ(A,B,D) = λc(a−i, b−i) from the previous paragraph.
On the other hand, if i > Nact(A,B,D) than from the definition of E2(A,B,D) we have

qi(a, b,D) = 0 using [2, Theorem 2.1], thus also πi(a, b,D) = 0. Moreover, we may write Ai ≥
λ(A,B,D) = λc(a−i, b−i) = λ(a−i, b−i,D) using the definition of Nact(A,B,D), the previous
considerations and D > Dc(a−i, b−i) = 0. In other words i ∈ N0(a, b,D), and so E2(A,B,D) ⊂
E(A,B,D). �
Lemma 5.6: Let (A,B,D) ∈ R

N+ × R
N++ × R++ be such that E1(A,B,D) �= ∅, then λ(A,B,D) < A2.

Proof: For any (a, b) ∈ E1(A,B,D) we have D ≤ qm1 (a−1, b−1), λm(a−1) = a1 ≤ A2, and after a
short calculation also λm(a−1) < λc(a−1, b−1). Then, moreover, m+(a−1, b−1, λm(a−1)) > 0 due to
[2, Lemma 2.3], and so

D ≤ qm1 (a−1, b−1) ≤ A2 − A1

2B1 + m+(a−1, b−1, λm(a−1))
<
A2 − A1

2B1
= F(A,B,A2).

Now we may conclude using monotonicity of F, see [2, Lemma A.1]. �
Lemma 5.7: Let (A,B,D) ∈ R

N+ × R
N++ × R++ and (a, b) ∈ E(A,B,D). Then

λ(A,B,D) > A2 and (10) ⇐⇒ N1(a, b,D) = ∅, |N2(a, b,D)| ≥ 2.

Proof: One implication is due to Lemma 5.3, to show the other take (a, b) ∈ E(A,B,D) and assume
that λ(A,B,D) > A2 and (10) hold. Then we observe that (a, b) �∈ E1(A,B,D) due to Lemma 5.6,
and so |N1(a, b,D)| = 1 and N2(a, b,D) = ∅ is avoided using Lemma 5.2. Thus, we necessarily have
N1(a, b,D) = ∅ and |N2(a, b,D)| ≥ 2 as given by Proposition 3.5. �
Proof of Theorem 3.1: The proof will be composed of three cases.

Case (i): first, assume that λ(A,B,D) > A2 and (10) are satisfied. Then E2(A,B,D) ⊂ E(A,B,D)

due to Lemma 5.5. To show the opposite inclusion, consider any (a, b) ∈ E(A,B,D). Using Lemma
5.7 we obtain N1(a, b,D) = ∅ and |N2(a, b,D)| ≥ 2, and so (a, b) ∈ E2(A,B,D) due to Lemma 5.3.
Thus, if λ(A,B,D) > A2 and (10) holds then E2(A,B,D) = E(A,B,D).

Case (ii): now, consider (A,B,D) such that λ(A,B,D) < A2. It immediately implies that
Nact(A,B,D) = {1}. Moreover, we have E1(A,B,D) ⊂ E(A,B,D) due to Lemma 5.4. Consider
now any (a, b) ∈ E(A,B,D). Using Lemma 5.7 and Proposition 3.5 we obtain |N1(a, b,D)| = 1 and
N2(a, b,D) = ∅. Thus, (a, b) ∈ E1(A,B,D) due to Lemma 5.2 and thus E1(A,B,D) = E(A,B,D)

providing λ(A,B,D) < A2.
Case (iii): to end the proof, let us assume that (A,B,D) are such that none of the previous case

(i) and (ii) occurs. It can be easily seen that it is equivalent to assume that (A,B,D) satisfies either
λ(A,B,D) = A2, or

[
λ(A,B,D) > A2 and (10) is not satisfied

]
. It implies that, in both cases, assertion[

λ(A,B,D) > A2 and (10)
]
of Lemma 5.7 do not hold true. Therefore, combining with Proposition

3.5, we immediately have, for any (a, b) ∈ E(A,B,D), |N1(a, b,D)| = 1 and N2(a, b,D) = ∅.
According to Lemma 5.2, (a, b) is an element of E1(A,B,D) and a contradiction is obtained since, by
Lemma 5.6, λ(A,B,D) < A2. It shows that E(A,B,D) = ∅, that is no Nash equilibrium exist in this
case.

Let us observe that in both cases (i) and (ii) above, at equilibrium, the active producers are the ones
of Nact(A,B,D). Indeed, first following both formulas (11) and (12), and according to [2, Theorem
2.1], the producers that are not inNact(A,B,D) are not active. Based on the same theorem, producers
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in Nact(A,B,D) have to produce D/N c(a, b) > 0 since for any (a, b) ∈ E(A,B,D), λm(a) = λc(a, b),
and so Dc(a, b) = 0. �

6. Conclusion

We considered a pay-as-bid balancing market that we modelled as a multi-leader-common-follower
problem. This is a bilevel problem which is from a producer’s viewpoint to determine the optimal
bids for a given demand, and from the ISO’s viewpoint to determine the optimal dispatch of the
demand among the producers.

The main result is that we proved the existence and came up with explicit formulas for the Nash
equilibria. Such a result is noteworthy in more than one respect. First, we considered a larger class
of bid functions compared to that commonly used in the literature. Allowing linear bids instead of
pure quadratic bids proved to be fruitful, as the bids of active producers have shown to be linear at
equilibrium. Second, few comparable results are reported in the literature, and the consideredmodels
are with quite restrictive assumptions.

A noticeable feature follows from the equity property. Since at the equilibrium the ISO shares
equally the demand among the active producers, it may appear that the producers could not follow
their best response. The mismatch could be interpreted as a ‘price of fairness’.

As a perspective work, we could think of considering explicit production bounds. First, it would
alleviate the main limitation of our model, even though we showed that implicit bounds are in fact
enforced. Second, such bounds could be used in the bidding process, and eventually would have an
impact on the share of the production quantity assigned to each active producer.
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