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Abstract
This paper provides a common framework, a generic model, for Computerized Adaptive Testing
(CAT) for different model types. We present question selection methods for CAT for this generic
model. We use three different types of models, Item Response Theory, Bayesian Networks, and
Neural Networks, that instantiate the generic model. We illustrate the usefulness of a special model
condition – the monotonicity – and discuss its inclusion in these model types. With Bayesian net-
works we use specific type of learning using generalized linear models to ensure the monotonicity.
We conducted simulated CAT tests on empirical data. Behavior of individual models was assessed
based on these tests. The best performing model was the BN model constructed by a domain expert;
its parameters were learned from data under the monotonicity condition.
Keywords: Bayesian networks; computerized adaptive testing; generalized linear models; item
response theory.

1. Introduction

Testing human abilities and human knowledge is frequent in the modern society. The computerized
form of testing is also getting an increasing attention with the growing spread of computers, smart
phones and other devices which allow easy contact with the test audience. This paper focuses
on Computerized Adaptive Testing (CAT) (Wainer and Dorans, 1990; Almond and Mislevy, 1999;
van der Linden and Glas, 2000, 2010). CAT is a concept of testing where an examinee is performing
a computer administered and computer controlled test. The computer system selects questions for
a student taking the test and it evaluates his/her performance. This is being done in order to create
a shorter version of the test by asking correct questions (tailored for each particular student). If
performed properly the measurement of student’s ability/knowledge has better precision (Pine and
Weiss, 1978), the test is more fair, the student is better motivated, and less time is consumed (Moe
and Johnson, 1988; Tonidandel et al., 2002).

In this paper we introduce a framework for CAT. This framework is formed by a generic model
and associated methods. The goal is to provide a unifying probabilistic graphical model for diverse
models. The CAT process can be divided into two phases: model creation and testing. In the
former, the student model is created. In the later, the model is used to actually test examinees. In the
Section 2 we present a generic structure which is further used to nest different probabilistic models.
This allows us to summarize similarities in different modeling approaches. Next, in the Section 3 we
discuss the procedure of testing and associated methods. After establishing this generic structure,
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we present specific examples of models to be filled into it. We go through the use of Item Response
Theory (IRT), which is a model regularly used for CAT and Bayesian and neural networks (BNs
and NNs), which are both models commonly used in many areas of artificial intelligence for a large
variety of tasks. We conducted simulated CAT tests on an empirical dataset which we collected
for this purpose. This allows us to compare two model types (BN and NN) which are new in the
field of CAT with the standard IRT model. The overview of the dataset, experimental setup and
experimental results are presented in the concluding parts of this paper.

2. Student Skill Models

The student model is a tool which models a student. It provides assumptions about his/her skills,
expected score and other variables. There are many different student model types (Culbertson,
2015) which can be used for adaptive testing. In this work we present a common framework which
views them as special cases of one generic model for CAT.
2.1 Generic Student Model

The generic student model has the following two types of vari-
ables:

• A set of n variables we want to estimate S = {S1, . . . , Sn}.
These variables represent skills (abilities, knowledge)
of a student. We will call them skills or skill vari-
ables. We will use symbol S to denote the multivariable
S = (S1, . . . , Sn) taking states s = (s1,i1 , . . . , sn,in).

• A set of m questions X = {X1, . . . , Xm}. We will use the
symbolX to denote the multivariableX = (X1, . . . , Xm)
taking states x = (x1, . . . , xm).

X1 Xm

S1, . . . , Sn

. . .

Skills S are either continuous or discrete variables. In the continuous case they provide values
which can be interpreted as levels of skills. They also naturally make an ordering of students.
Discrete variables can be Boolean (true/false) or categorical. Boolean variables inform us that a
student has or has not the particular skill. Categorical variables are sampled from the continuous
case. Their states are different skill levels a student can have. Ordering of students can be done by
the value of expected skill computed from probabilities of each state. In addition we differentiate
between observed and unobserved skills (in the training sample). In the case of observed skills we
measure them by a certain metric (for example, score of the test), or they are produced by an expert
from a test results analysis. In the case of unobserved skills their states are not known even for
students with complete test results.

Questions X are discrete variables having Boolean or categorical states. Boolean for cor-
rect/incorrect answers, categorical for multiple choice answers. The subset of questions which
are already answered forms evidence

e = {Xi1 = xi1 , . . . , Xik = xik |i1, . . . , ik ∈ {1, . . . ,m}}.

Links connecting skills S and questions X define the relationship between these two sets.
Spa(i) ⊆ S, with the respective multivariable Spa(i) = spa(i), denotes parents of the question
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Xi. Then the probability of a correct answer to i − th question (or the probabilities of the specific
item answered) is: P (Xi = xi|Spa(i)) has to be provided in the model. In the case of continuous
skills these probabilities are given by a continuous link function pi(Xi = 1|Spa(i)) giving the prob-
ability of a correct answer based on Spa(i). In the case of discrete skills, probabilities are in the form
of conditional probability tables (CPTs). Because the state of Spa(i) is directly influenced by the
evidence e we will also use shorthanded notation pi(Xi = 1|e) and P (Xi = xi|e). We assume all
questions are conditionally independent given skills, i.e., Xi ⊥⊥ Xj |S, ∀i 6= j. The joint probability
distribution is then P (X,S) = P (S) ·

∏m
i=1 P (Xi|Spa(i))

All together it forms a graphical probabilistic model. It is formed by vertices S ∪ X , edges
between them and associated parameters with these edges. In order to create this model, we have to
establish its structure and learn parameters. In this paper we will not discuss the former and we will
focus only on the later. One way of obtaining necessary parameters is to ask an expert to provide
them based on his/her knowledge of the field. This option is very demanding (in terms of knowledge
of the expert as well as time) because the space of parameters associated with the model is very large.
The other way is to learn probabilities by a machine learning approach from collected data. Even
this approach has issues with the large space of parameters and a large volume of quality samples
has to be provided in order to obtain statistically reliable estimations. The automated learning of
parameters is discussed in this paper.

2.2 Monotonicity

For the needs of adaptive testing it is reasonable to require relations between skills and questions
to be isotone in the distribution (the model to be monotonic) (van der Gaag et al., 2004). First, we
create an ordering on states s, s′ of i-th student skill Si: si � s′i. It means that we are able to say
which of these states is better (or the same). The monotonic model then ensures that probabilities
of higher ordered states are also always higher (isotone) or always lower (antitone), i.e.:

si � s′i → P (X = x|Si = si) ≤ P (X = x|Si = s′i) , or

si � s′i → P (X = x|Si = si) ≥ P (X = x|Si = s′i)

For example, to avoid the following situation: “With the low level of student’s skills the probability
of a correct answer is small. With the medium level the probability is large. And with the high
level it is small again.” Skill states should reflect a certain ability level, thus we expect a positive or
negative correlation of the skill and student’s answers.

3. Testing Process

Regardless of the model we choose the testing part follows always the same scheme. With the
prepared and calibrated model, CAT repeats following steps:

• A question is selected, this question is asked and an answer is obtained.

• The answer is inserted into the model, the model (which provides estimates of the student’s
skills) is updated.

• (optional) Answers to all questions are estimated given the current estimates of student’s
skills.
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This procedure is repeated as long as necessary which means until we reach a termination crite-
rion. This criterion can be either a time restriction, the number of questions, or a confidence interval
of the estimated variables. Each of these criteria would lead to a different learning strategy (Vomlel,
2004a), but finding an optimal strategy is NP-hard for these criteria (Lı́n, 2005). We have chosen an
heuristic approach based on greedy optimization methods. This approach selects the next question
during the testing in every step based on a given rule. There is a large variety rules which can be
used for this task. We present some of them in the following section.

3.1 Question selection criteria

In this section we present three various criteria for question selection Cj , where j ∈ {1, 2, 3} is
an index of a criterion. Each of them works with the evidence about the student e and outputs a
value for the question Xi. The selected question X∗ is a question from all unanswered questions
maximizing this criterion given the evidence:

X∗(e) = arg max
Xi

Cj(Xi, e)

3.1.1 ITEM INFORMATION

For the continuous variables S, links to questions are given by functions pi(Xi = 1|e) (for binary
questions). The item information that is given by i− th question is then

C1(Xi, e) = I(Xi, e) =
(p′i(Xi = 1|e))2

pi(Xi = 1|e)(1− pi(Xi = 1|e))

where p′i is the derivation of pi. This item information provides one, and most straightforward,
way of the next question selection in the continuous case. It is derived form the Item Response
Theory’s classical way of measuring information, e.g., in van der Linden and Hambleton (2013).
This approach minimizes the standard error of the test procedure in each step because the standard
error of measurement SE(Xi, e) produced by the question Xi is defined as

SE(Xi, e) =
1√

I(Xi, e)
.

This means that the smallest error is produced by questions which are steep and their probability of
a correct answer is close to 50% given the current level of skill.

3.1.2 ENTROPY REDUCTION

This approach is based on reducing the expected value of entropy after asking a question. In the
following text we provide formulas for discrete case, but with minimal changes it is applicable to
continuous variables as well. The cumulative Shannon entropy over all skill variables of S given
the evidence e is

H(e) =

n∑
k=1

in∑
`=1

−P (Sk = sk,`|e) · logP (Sk = sk,`|e).

The entropy H(e) is the sum of individual entropies over all skill nodes. Another option would
be to compute the entropy of the joint probability distribution of all skill nodes. This would take into
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model skill variables type no. skill variables QS criterion
IRT continuous, unobserved 1 item information
BN discrete, unobserved 1. . . many entropy reduction
NN continuous, observed 1 students separation

Table 1: Models summary

account correlations between these nodes. In our task we want to estimate marginal probabilities
of all skill nodes. In the case of high correlations between two (or more) skills the second criterion
would assign them a lower significance in the model. This is the behavior we wanted to avoid. The
first criterion assigns the same significance to all skill nodes which is a better solution. For our
problem, the greedy strategy based on the sum of entropies provides good results. Moreover, the
computational time required for the proposed method is lower.

Assume we decide to ask a question Xi ∈ Xs with possible outcomes x1, . . . , xpi . The new
value of entropy is then computed as H(ei,j) = H(e ∪ {Xi = xj}). The expected entropy after
answering question Xi is

EH(Xi, e) =

p∑
j=1

P (Xi = xj |e) ·H(ei,j) .

C2(Xi, e) = IG(Xi, e) = H(e)− EH(Xi, e)

gives us the information gain criterion.

3.1.3 STUDENTS SEPARATION MAXIMIZATION

The last criterion, we are proposing, maximizes the distance between students within skills. That
means that a student who answers incorrectly should be as far as possible on the skill scale from the
one who answers correctly. We present this criteria for a single skill variable S1 while an extension
to more variables is possible. Let sj |ei,j be the predicted value of skill S1 given extended evidence
ei,j = e ∪ {Xi = xj} and (s̄|ei,j) be its mean value. Then we get the variance of S1 given evidence
ei,j

C3(Xi, e) =

p∑
j=1

((s̄|ei,j)− (sj |ei,j))2 · P (Xi = xj |e) .

4. Specific Models for CAT

We present three specific model types fitting into the generic CAT student model: Item Response
Theory (IRT), Bayesian networks (BN) and neural networks (NN). Basic properties of these models
are summarized in Table 1. We used question selection criteria with models as indicated in the
column QS selection. These presented choices are the most natural for the particular model but in
general, with modifications, they should be interchangeable.

4.1 Item Response Theory

The beginning of Item Response Theory (IRT) stems back to 5 decades ago and there is a large
amount of literature available, for example, Rasch (1960); Lord and Novick (1968). IRT allows
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more precise measurement of a certain ability of an examinee than classical test theory1. It is
expected a student has a skill2 which directly influences his/her chances of answering questions
correctly. In this case skills of the generic model defined in Section 2 reduce to S = {S1}. It is a
continuous variable. Links of generic model are filled by item response functions (IRF) which are
probabilities of a successful answer given S1. In our research we use 2PL IRT model which is in
the form

pi(Xi = 1|S1 = s1) =
1

1 + e−ai(s1−bi)

where ai sets the scale of the IRF (the discrimination ability - a steeper curve = better differ-
entiation between students), bi is the difficulty of the question (the position of a curve in space),
ai, bi ∈ R. Generally, we observe small (positive or negative) numbers. In this case there is one link
from the skill S1 to each question in X . Parameters of IRFs are usually fitted using maximum like-
lihood estimation from dataset. It is also possible to obtain these parameters from an expert. Given
the format of item response functions, IRT3 model satisfies monotonicity property as described in
Section 2.

4.2 Bayesian Networks

Bayesian networks are probabilistic graphical models, their structure represents conditional inde-
pendence statements. Details about BNs can be found in, for example, (Pearl, 1988; Nielsen and
Jensen, 2007; Kjærulff and Madsen, 2008). The use of BNs in educational assessment is discussed,
e.g., by Almond and Mislevy (1999); Vomlel (2004a,b); Millán et al. (2010); Almond et al. (2015);
Culbertson (2015).

A Bayesian network consists of: a set of variables (nodes), a set of edges, a set of conditional
probabilities. In our case the set of variables is formed by questions X and skills S from the generic
model. The number of skills can vary from 1 to many. The set of edges is formed by connections
between skills and from skills to questions where one questions can have more influencing skills.
An example can be found in Figure 1(a). All variables are discrete. Each variable has an associated
CPT which describes a probability for every configuration of its parents (structure given by edges).

Parameters can be obtained from an expert in the field, or we can use a machine learning ap-
proach from dataset. Skills in the model are not observed and thus it is necessary to use a method
capable of handling missing data. Most often, the EM algorithm (Lauritzen, 1995) is used.

4.3 Monotonicity in BNs

When using the general EM algorithm the monotonicity property cannot be ensured. In order to
make sure that the model satisfies the monotonicity property it is necessary to restrict CPTs to be
only of a specific form. We build on ideas from Rijmen (2008); Restificar and Dietterich (2013),
where generalized linear models are used to create CPTs.

1. Classical test theory focuses on the test as a whole, measuring the score as a sum of questions with the same difficulty.
IRT on the other hand views questions as individual items with different difficulties.

2. In the field of IRT it is often called ability or proficiency.
3. The structure of IRT model could be also modeled by a special type of Bayesian Network but we will not go into

details in this article.
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The CPT of a question Xi is from a binomial family model (glm model with the logit link
function). αi,βi are its parameters and the model takes the form:

P (Xi = 1|Spa(i) = spa(i)) =
exp(αi + βT

i spa(i))

1 + exp(αi + βT
i spa(i))

.

By calculating this value for every possible state combination of affecting skills, we are able
to fill the CPT. The problem with finding the parameters α and β is that with the glm model we
usually observe variables from S. In this case they are unknown. The situation is solvable with
a version of the EM algorithm for GLM models. Ibrahim et al. (2005) presents an algorithm for
partially unobserved variables. This approach ensures the model is not violating the monotonicity
property.

4.4 Neural Networks

Neural networks are models for approximations of non-linear functions. For more details about
NNs, please refer, e.g., to Aleksander and Morton (1995); Haykin (2009). There are three different
parts of a NN: an input layer, several hidden layers, and an output layer.

In our NN model the input layer is formed by questions X from the generic model defined in
Section 2. From this layer the NN transforms to intermediate hidden layers. Nodes of these hidden
layers represent unobserved uninterpretable skill variables. There is no general rule how to choose
a number of hidden layers and their size. Variants we experimented with are further detailed in
Section 5. The intermediate layers tranform to the output node which is a single observed student
skill. This skill (S0) is directly measured by the score of a test. The output node and hidden layers
form skills S . The choice of using an observed variable in this case is because NNs are not suitable
for unsupervised learning, unless having special structure. We need to have a target value during the
learning step of the NN. The score of a student is known for every student at the time of learning.
During the CAT test the output layer then provides an estimate of the score of the currently tested
student. For inverse estimations of answers based on student’s skill the NN structure is reversed.
These two networks are learned separately and each performs its own task.

Links between nodes form a function, f(S0|e) : Rm → R, through NN’s intermediary hidden
layers providing the score value. Reversed structure then provides functions pi(Xi|S0) : R → R.
These function break down to the regular NN neuron activation and combination functions (for
example, multi layered perceptron or radial basis functions). Learning methods are also common
NN methods, i.e., usually backpropagation.

5. Experiments

To verify the concepts presented in this paper we have collected empirical data. We designed a
paper test of mathematical knowledge of grammar school students. The test focuses on simple
functions (mostly polynomial, trigonometric, and exponential/logarithmic). Students were asked to
solve various mathematical problems4 including graph drawing and reading, calculating points on
the graph, root finding, describing function shapes and other function properties. All together, we
have obtained 281 test results. Details about data can be found in Plajner and Vomlel (2015). The

4. In this case we use the term mathematical “problem” due to its nature. In general tests, terms “question” or “item”
are often used. In this article all of these terms are interchangeable.
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model evaluation was done for each model of each type that is described in following sections. We
used 10-fold cross-validation method.

5.1 Results evaluation

To evaluate models we performed a simulation of the CAT test for every model and for every student.
During testing we first estimated the skill(s) of a student based on his/her answers. Then, based on
these estimated skills we used the model to estimate answers to all questions Xi ∈ X . More
specifically: Let the test be in the step s (s − 1 questions asked). At the end of the step s (after
updating a model with new answer) we compute marginal probability distributions for all skills S.
Then we use this to compute estimations of answers to all questions, where we select the most
probable state of each question5 Xi ∈ X :

x∗i = arg max
x′
i

P (Xi = x′i|S).

By comparing this value to the real answer to i − th question xi for each question we obtain a
success ratio

SR =

∑
Xi∈X f(x∗i = xi)

|X |
, where f(expr) =

{
1 if expr is true
0 otherwise.

The total success ratio of a model in a step is the average of success ratios of all tests in the same
step. We compare models based on this total success ratios. The quality of models could be assessed
also in other ways. One of the main goals of a student model is to predict abilities of students. As
such it would be reasonable to measure the quality of these predictions. Unfortunately, this is hard
to achieve because these skills are usually hidden variables. It is possible to create an indicator such
as student’s overall performance or his/her known qualities. Due to the nature of our data set we do
not have any of these options and because of that we decided to use the approach described above.

5.2 Models

We have performed testing with different model versions. The best IRT, BN, and neural network
models are compared together in Figure 1(c). We select the most important representatives from
each group. Below we present an overview of these versions.

IRT is a commonly used model that can be considered as a base model to compare with. We
especially wanted to provide a comparison with other models. As we can see in the Figure 1(c) this
model’s performance is exceeded by many other models.

The first group of BN models, we experimented with, has one or two skill nodes which connect
to all questions. These skill nodes have different number of states. We selected the best performing
model and it is labeled as “simple 2x3” as it has two skill nodes each having 3 states. To satisfy
the monotonicity requirement of BN models we have implemented a version of the EM algorithm.
Models which are learned using this algorithm are labeled with additional “glm”. The rest is learned
with the Hugin EM algorithm (Hugin, 2014). The source code of our version of the EM algorithm
and other algorithms used (including BN inference) is implemented in R language and it is available
at the author’s web page (http://staff.utia.cas.cz/plajner).

5. We remind that all questions are conditionally independent given skills, i.e., Xi ⊥⊥ Xj |S, ∀i 6= j.

410

http://staff.utia.cas.cz/plajner


STUDENT SKILL MODELS IN ADAPTIVE TESTING

The second group of BN models is based on our expert knowledge in the field of the test. We
identified several skills each connecting to a specific subset of questions which are relevant to the
skill represented by the variable. One version of this network is shown in Figure 1(a). In this
particular case there are 7+1 skill nodes. 7 nodes connect directly to questions and the last one
connects these skills together. This model is called “expert new”. In our experiments it appeared
that the connection of skill nodes provides a substantial improvement in the performance of the
models. The version of the same model, without the skill connecting all other skill nodes, is also
included as “expert old”.

The result of the best performing BN model of the first group, “simple 2x3”, is presented in
Figure 1(c). Results of BN expert models are displayed in Figure 1(b). In this graph we can compare
the performance of models learned with glm method and their counterparts. We can observe that
glm models are scoring similarly during first steps but quickly outperform those with the general
EM algorithm. The best BN expert model can be compared with other models in Figure 1(c).

Some of the most important facts resulting from experiments with BN models are: (1) Mod-
els with the monotonicity requirement provide better results than models without this requirement.
(2) Adding a higher level node to the expert model causes significant boost in the model’s perfor-
mance. We believe that it is caused by the possibility of an easier transition of evidence through the
network from a skill to another skill.

In our experiments with NNs we used only one hidden layer with different numbers of hidden
neurons. From them we select the model with 7 neurons in the hidden layer because it provides
the best results. The result of CAT simulation with this NN model is displayed in Figure 1(c).
As we can see in this figure, the quality of estimates while using NNs increases very slowly. We
believe this is caused by the question selection criterion. If we were selecting better questions, it is
possible that the success rate would be increasing faster. It remains to be explored which selection
criterion would provide such questions. Nevertheless, this better question selection does not change
the final prediction power of the model (the maximal success rate in the last steps would not be
exceeded). This prediction power could be increased by using a modified structure of the NN.
Additional research is needed to show which NN structure is better suited for this task. In this paper
we verified the general possibility of using NNs for CAT.

6. Conclusions and Future Work

In this paper we established a common generic model for CAT. This model was instantiated by
three different model types. The first one, IRT, serves as a reference point. The second type were
BNs which we studied the most. Especially, we discussed parameter learning which ensures the
monotonicity. In experiments this method produced better results than the same model without the
monotonicity condition. This is the most important empirical result of this paper and we believe
that every CAT model should consider monotonicity. The third model type, NNs, did not provide
the most convincing results. However, we believe that further improvements are possible.

In the future research we would like to focus on BN models because from models, we have
experimented with, we see the best potential in BNs. Possible combinations and variations in the
model structures are vast and it remains to be explored how to search for the best BN structure. In
this article we used generalized linear models to ensure monotonicity in BNs. It is possible that
this approach may introduce additional unwanted behavior. One way to resolve this is to use less
restricting techniques for ensuring monotonicity, such as, for example, in Masegosa et al. (2016);
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Figure 1: (a) Bayesian network structure (the expert model), (b) Expert Bayesian models success
rates, (c) Models comparison success rates
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de Campos et al. (2008). We plan experiments to verify the impact of glm models properties and to
compare it to the less restricting option. Furthermore, we would like to introduce CPTs with a local
structure (Dı́ez and Druzdzel, 2007) which would allow us to get even larger control of the form of
the BN model.
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