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Preface

More than 30 years have passed since MATLAB was introduced by Cleve Moler in 1984.
With its initial idea to provide numerical linear algebra packages to students without de‐
manding the knowledge of FORTRAN language, MATLAB became very popular with engi‐
neers and scientists from many fields. Having been an undergraduate student of applied
mathematics and engineering, I can still remember building a Simulink model and solving
underlying nonlinear ordinary differential equation numerically more than 20 years ago. Ev‐
ery time since I have used MATLAB in my computations and also in teaching of numerical
analysis and linear algebra, I was also involved in projects where the core part of the code
was written in C/C++ to get some time speedup. At the final stage of every project I ended
up at writing all my codes again in MATLAB. Recently, I became fascinated with the vecto‐
rization of MATLAB codes for the numerical solution of partial differential equations by the
finite element method.

The work on this book started in 2015, when I was asked by InTech, the open access publish‐
er, to act as an editor of a book on MATLAB. Currently, there are many books on MATLAB,
ranging from introductory courses for beginners up to advanced books on various accelera‐
tions techniques including parallel computing. The aim of this book is to present selected
scientific problems of contributors and demonstrate their solutions in MATLAB. Chapters
include image and signal processing, mechanics and dynamics, models and data identifica‐
tion in biology, fuzzy logic, discrete event systems, and data acquisition systems. Instead of
giving exhausting amount of technical details, authors were advised to explain relations of
their problems to actual MATLAB concepts. During the selection process, many contribu‐
tions with no relation to MATLAB were received and had to be rejected. In the presented
version of this book, most chapters contain links to functioning MATLAB codes that can be
tested. I believe that the availability of the codes increases the readability of chapters.

I am thankful to each author for the technical effort presented in each book chapter and the
patience when working on revisions. My biggest thanks goes to Ms. Ana Simčić, Publishing
Process Manager from INTECH, who instructed me through many stages of the editorial
process. Together, we did our best to ensure the book quality.

I hope our book entitled “Applications from Engineering with MATLAB Concepts“ will
serve as a useful reference to students, scientists, or engineers and will motivate them to use
MATLAB more intensely.

Dr. Jan Valdman
Institute of Mathematics and Biomathematics, University of South Bohemia

České Budějovice, Czech Republic
Institute of Information Theory and Automation of the ASCR

Prague, Czech Republic





Chapter 1

Digital Image Processing with MATLAB

Mahmut Sіnecen

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/63028

Abstract

The chapter relates to the Image Processing Toolbox in MATLAB. We learn about its
general information and some examples will be solved using it. After finishing this
chapter,  you  can  use  MATLAB  Image  Processing  Toolbox  and  write  script  for
processing of images.

Keywords: MATLAB, digital, image, processing, Fundamental

1. Digital image processing

The image may be defined as a two‐dimensional visual information that are stored and displayed.
An image is created by photosensitive devices which capture the reflection light from two‐
dimensional surface of object in the three‐dimensional real world (Figure 1). Each image has
intensity or gray value in x – y coordinate plane. If it is finite and discrete quantities, image is
called digital image. In Figure 2, some digital images are shown.

Digital image processing (DIP) has the different techniques for processing of digital images.
DIP has been applying many fields with technological advances, such as Medicine, Geograph‐
ical Information Technologies, Space Sciences, Military Applications, Security, Industrial
Applications.

1.1. Pixel

Pixels, which are called pel or picture elements, may be defined as the smallest addressable
element in the digital image. Pixels of a color image have Red, Green, and Blue gray values
(Figure 3).

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Figure 1. Image.

Figure 2. Digital images.
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Figure 3. Pixels of a color image.

1.1.1. Pixels relationships

1.1.1.1. Neighbors of a pixel

A pixel has three different neighbor types that are 4, 8, and diagonal. As shown in Table 1,
neighbor of a pixel (p) in the x, y point of image (f) is defined in that 4‐neighbors;

f(x - 1, y - 1) f(x - 1, y) f(x - 1, y + 1)

f(x, y - 1) p f(x, y + 1)

f(x + 1, y - 1) f(x + 1, y) f(x + 1, y + 1)

Table 1. Neighbor of a pixel.

N4(p) is shown as 4‐neighbor of p pixel. Any pixel p in the image has two vertical and horizontal
neighbors, and each of them is a unit distance of p, given by

( ) ( ) ( ) ( ) ( ){ }4N p  = f x, y - 1 , f x - 1, y , f x, y + 1 , f x + 1, y

Diagonal neighbors;

Although diagonal neighbors are the same of 4‐neighbor, neighbor pixels are the corner of
pixels (p) and each of them is at Euclidean distance of p, given by

Digital Image Processing with MATLAB
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( ) ( ) ( ) ( ) ( ){ }DN p  = f x - 1, y - 1 , f x - 1, y + 1 , f x + 1, y + 1 , f x + 1, y - 1

8‐neighbors;

8‐neighbors is a combination of N4(p) and ND(p) and shown as N8(p).

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )8

f x - 1, y - 1 , f x - 1, y + 1 , f x + 1, y + 1 , f x + 1, y - 1 , 
N p  = 

f x, y - 1 , f x - 1,y , f x, y + 1 , f x + 1, y

ì üï ï
í ý
ï ïî þ

1.1.1.2. Adjacency

If two pixels are neighbors and their gray level values satisfy some specified criterion, then
they are connected. A set of intensity values (V) is used to define adjacency and connectivity.
There are three types of adjacency (Figure 4).

Figure 4. Pixel adjacency.

4‐adjacency

p and q pixels are 4‐adjacency if they are N4(p) with values from V.

8‐adjacency

p and q pixels are 8‐adjacency if they are N8(p) with values from V.

m‐adjacency (mixed)

p and q pixels are m‐adjacency if;

• q is in N4(p) or,

Applications from Engineering with MATLAB Concepts4



• q is in ND(p) and,

• N4(p) ⋂ N4(q) = ⦰ with values from V.

1.1.1.3. Path

A path from pixel p with coordinate (x, y) to pixel q with coordinate (s, t) with values from V
is defined as 4‐ ,8‐ , or m‐paths depending on the type of adjacency specified.

According to V = {2,3,5}, If we want to find p and q pixels 4‐, 8‐ and m‐path, (Figure 5)

Figure 5. Finding 4‐, 8‐, m‐path between p and q pixels.

1.1.1.4. Distance measures of pixels

• Euclidean Distance (De)

( )2 2( , ) ( )eD p q x s y t= - + -

• City‐block Distance (D4)

( )4 ,D p q x s y t= - + -

• Chessboard Distance (D8)

( )8 , max( , )D p q x s y t= - -

• Dm Distance; it is defined as the shortest m‐path.

Digital Image Processing with MATLAB
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According to V = {2,3,5}, if we want to find Dm distance from p pixel to q pixel (Figures 6, 7, 8);

Figure 6. Distance between p and q pixels.

Figure 7. Example about the shortest m‐path.

Figure 8. Solving example in the Figure 7.

Dm is 5 because orange path is shorter than blue path.

Applications from Engineering with MATLAB Concepts6



Figure 9. Distance measuring types.

Digital Image Processing with MATLAB
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1.2. Spatial resolution

Spatial resolution can be defined as the number of pixels per inch. Different spatial resolutions
of same image are shown in the Figure 10. Spatial resolution has different measuring methods
for different devices.

Figure 10 .Different spatial resolutions of same image.

1.2.1. Dots per inch (DPI)

DPI is generally used in monitors. Sometimes it is called PPI (Pixels Per Inch). But the two
expressions have a difference. DPI is also used for measuring spatial resolution of printers. It
means DPI defines how many dots of ink on printed image per inch.

1.2.2. Pixels per inch (PPI)

PPI is generally used in tablets, mobile phones, etc. If a and b are height and width resolutions
of image, we can calculate ppi value of any device using Equation 1.

2 2

   
a bPPI

Diagonal Size of Devices
+

= (1)

For example; 1080 × 1920 pixels, 5.5 inch Iphone 6s Plus PPI value;

PPI = 10802 + 19202

5.5 ≅401  (it  is  shown  in  apple  web  site)

Applications from Engineering with MATLAB Concepts8



2 21080 1920 401 (       )
5.5

PPI it is shownin apple web site+
= @

1.2.3. Lines per inch (LPI)

LPI is referred lines of dots per inch of printers. Printer has different LPI values as shown in
Tables 2.

Printer LPI value

Screen printing 45–65 LPI

Laser printing (300 dpi) 65 LPI

Laser printing (600 dpi) 85–105 LPI

Table 2. LPI Value of Printer.

1.3. Image file formats

Image file formats are important for printing, scanning, using on the Internet, etc. The different
formats are used in the world. The most common formats are jpg, tif, png, and gif (Fig‐
ures 11). In this section, the most common file formats (JPG, TIF, PNG, and GIF) are explained.

Figure 11. Image formats.

Digital Image Processing with MATLAB
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1.3.1. JPG (Joint Photographic Expert Group)

JPEG or JPG is the most common standard for compressing digital image. It is used in web
pages, document, email, etc. Because digital images have smaller size than other file formats.
However, JPEG images have very low resolution.

1.3.2. TIF (Tagged Image File Format)

TIFF or TIF has the best resolution for using commercial works. Although it is very high quality,
the files have very big size.

1.3.3. GIF (Graphics Interchange Format)

GIF, which was used 8‐bit video for the people connecting to internet using dial‐up modem,
was designed by CompuServe.

1.3.4. PNG (Portable Network Graphics)

PNG file format has smaller size than TIF and more resolution than GIF and JPG. Nowadays,
it is used in the web pages because of having transparency property.

2. Basic image processing with MATLAB

MATLAB is a very simple software for coding. All data variable in MATLAB are thought a
matrix and matrix operations are used for analyzing them. MATLAB has the different
toolboxes according to application areas. In this section, MATLAB Image Processing Toolbox
is presented and the use of its basic functions for digital image is explained.

2.1. Read, write, and show image

imread() function is used for reading image. If we run this function with requiring data, image
is converted to a two‐dimensional matrix (gray image is two‐dimensional, but, color image is
three‐dimensional) with rows and columns including gray value in the each cell.

I = imread(‘path/filename.fileextension');

imread() function only needs an image file. If the result of imread() function is equal to a
variable, a matrix variable (I) is created. File name, extension, and directory path that contains
image must be written between two single quotes. If script and image file are in the same folder,
path is not necessary.

The matrix variable of image is showed using imshow() function. If many images show with
sequence on the different figure windows, we use “figure” function for opening new window.

Applications from Engineering with MATLAB Concepts10



imwrite() function is used to create an image. This function only requires a new image file
name with extension. If the new image is saved to a specific directory, the path of directory is
necessary.

2.2. Image reverse

Image reserve technique, each all elements of the matrix is replaced to be the top row elements
to bottom row and the bottom row elements to top row. In the other words, the image rotates
on the vertical axis.

MATLAB Image Processing Toolbox does not have function for it. Either the script is written
or flipdim function can be used (Figure 12).

Digital Image Processing with MATLAB
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Figure 12. Vertical and horizontal reverse.

2.3. Image mirroring

Mirroring technique is the rotating of reversed image on the horizontal axis. In MATLAB
Image Processing Toolbox has imrotate() function for rotating image. This function needs three
properties which are image matrix variable, rotating angle, and interpolation method
(Figure 13).

Figure 13. Image rotate.

I_rotate = imrotate(Image Matrix Variable, Angle, Interpolation Method)

Interpolation method

• ‘nearest’: Nearest‐Neighbor Interpolation

Applications from Engineering with MATLAB Concepts12



• ‘bilinear’: Bilinear Interpolation

• ‘bicubic’: Bicubic Interpolation

Example

2.4. Image shift

Sometimes, an image can be wanted to shift up to certain pixel value on the horizontal and
vertical axis. imtranslate() function is used to shift of an image. In the Figure 14 the image shifts
15 px right and 25 px bottom.

Figure 14. Image shift.

Digital Image Processing with MATLAB
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2.5. Image resize

If an image is displayed big or small size for showing details or general view, its resolution
must be changed. These situations are called zoom‐in and zoom‐out. Digital cameras or
photosensitive devices use optic lenses for zoom‐in and zoom‐out. But, interpolation methods
are only used for digital images. Most common problem of interpolation methods is the
changing quality of image (Figures 15, 16).

Figure 15. Zoom‐in and zoom‐out.

I_resize = imresize(I, Resize Rate, Interpolation Method)

I is image variable, if Resize Rate is bigger than 1, it means zoom‐in, otherwise zoom‐out.

Applications from Engineering with MATLAB Concepts14



Figure 16. Image resize.

3. Image enhancement

In some cases, an image has useless or insufficient information for extracting objects because
of different defects. So that, the image must be processed using different digital image
processing techniques for removing the defects or artifacts. In this section, some principal
methods are explained for increasing the visibility and decreasing defects.

3.1. Brightness

Brightness of an image is adjusted with adding or subtracting a certain value to gray level of
each pixel.

( ) ( )
 0  

,  ,  
0  

b Brightness incerease
G i j F i j b

b Brightness decrease
>

= +
<

I_adjust = imadjust(I, [low_in; hig_in], [low_out;high_out])

New image (I_adjust) intensity values are between low_out and high_out gray values
(Figure 17).

Digital Image Processing with MATLAB
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Figure 17. Changing brightness of the image.

Figure 18. Adjusting Brightness of Color Image.

The MATLAB script above is used for gray image, but we want to change brightness of color
image, so, we must change all intensity values of R (red), G (green) and B (blue) channel of the
image (Figure 18).

3.2. Contrast

Contrast of an image can be changed by multiplying all pixel gray value by a certain value.

Applications from Engineering with MATLAB Concepts16



( ) ( )
0  

, * ,  
0  

c contrast increase
G i j c F i j

c contrast decrease
>

=
<

MATLAB Image Processing Toolbox has the Contrast Adjust tool to change contrast of an
image. As shown in Figure 19, GUI allows the user for changing contrast using handling.

Figure 19. Adjust contrast tool.

3.3. Negative

Intensity values of image are reversed as linear for negative image (Figure 20).

Digital Image Processing with MATLAB
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Figure 20. Negative Image.

Figure 21. Thresholding.

Applications from Engineering with MATLAB Concepts18



3.4. Thresholding

Thresholding is generally used for converting image to binary image (0 and 1 gray value). The
algorithm of thresholding is defined in Equation 2.

( ) ( )
( )

,        1 
,

,         0
I x y T

G x y
I x y T

ì ³ï= í <ïî
(2)

I is original image, x and y are row and column number, T is threshold value, G is new image
fter applying threshold (Figure 21).

Figure 22. Histogram of the image.

Gray value Counting of pixel number

75 2

76 38

77 0

78 389

79 1245

80 0

81 1518

Table 3. Histogram of Specific Gray Values.

3.5. Histogram

Histogram counts the number of gray value of pixels in the images. Each pixel in the image
has gray value between 0 and 255. As shown in Table 3, counting pixels give us information
about image or objects in the image. The histogram of image is shown in Figure 22.

Digital Image Processing with MATLAB
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The histogram of image is calculated using imhist(image) function in the MATLAB.

3.6. Histogram equalization

Histogram equalization is defined a technique for adjusting contrast of an image using all gray
values to equalize as much as possible. Some situations work fine and image are shown very
well; sometimes, it is not good and new image is darker than original image (Figure 24).

1 1 1 1 1

3 3 0 0 2

3 3 2 2 2

6 4 4 2 6

6 7 7 5 5

Table 4. An Image Pixel Gray Values.

We explain histogram equalization with an exam. You think about an image, and, its intensity
mapping is shown below. There are eight possible gray levels from 0 to 7. If we apply histogram
equalization to the image pixel gray values that are shown in Table 4, how new image
histogram will be?

Step 1: Find histogram of the image (Table 5)

I 0 1 2 3 4 5 6 7

f(I) 2 5 5 4 2 2 3 2

Table 5. Histogram.

Step 2: Calculate Cumulative Frequency Distribution (CFD)

I 0 1 2 3 4 5 6 7

f(I) 2 5 5 4 2 2 3 2

CFD 2 2 + 5 = 7 7 + 5 = 12 12 + 4 = 16 16 + 2 = 18 18 + 2 = 20 20 + 3 = 23 23 + 2 = 25

Table 6. Calculate Cumulative Frequency Distrubiton (CFD).

Step 3: Calculate new pixel gray value using Equation 3

Applications from Engineering with MATLAB Concepts20



( ) ( )
( ) ( )1min

min

CFD v CFD
h v floor x L

MxN CFD
æ ö-

= -ç ÷ç ÷-è ø
(3)

h is new gray value, v is pixel number, MxN is image row and column value, L is gray level
(in our image L is 8)

If we calculate the 4 number pixel;

(4) ((16 2) / ((5 5) 2) (8 1)) (4,26) 4h floor x x floor= - - - @ @

Figure 23. Original and new image gray values.

After all pixel gray values are calculated using Equation 3 the results of new gray values will
be like in Table 7.

I 0 1 2 3 4 5 6 7

f(I) 2 5 5 4 2 2 3 2

CFD 2 7 12 16 18 20 23 25

h 0 1 3 4 4 5 6 7

Table 7. New Gray Values.

After histogram equalization is applied to the image, new gray values are shown in the
Figure 23.

Digital Image Processing with MATLAB
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Figure 24. Histogram equalization.

Matlab Image Processing Toolbox has the different filter types as shown in Table 8.

4. Color

Humans have very good photosensitive devices that are called eyes. Newton discovered that
the light has different color spectrum passing through the glass prism. We think human eye
is a glass prism that is called the lens. The lens focuses light to the retina of eyes. So that, humans
see visible color spectrum of light reflected from the objects. Color spectrum is shown in the
Figure 25. Human senses wavelength of light between 400 and 700 nm.

Figure 25. Color spectrum.

Applications from Engineering with MATLAB Concepts22



Eyes see colors as combining of primary that are Red (R), Green (G), and Blue (B). So that, all
visible colors are produced from primary colors. Secondary colors, which are produced with
adding of primary colors, are Yellow (Red + Green), Magenta (Red + Blue), and Cyan (Green 
+ Blue) as shown in Figure 26.

Figure 26. Primary and secondary colors.

In the MATLAB Image Processing Toolbox, a color image has three‐dimensional uint8 (8‐bit
unsigned integer) data. Each dimension corresponds to a color channel that is Red, Green, or
Blue channel. If we want, we can process each color channel. As shown in Figure 27, each color
channel splits from image.

Figure 27. R, G, B channel values in the MATLAB workspace.

Digital Image Processing with MATLAB
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Figure 28. R, G, B channel.

4.1. HSI

As shown in Figure 29 each color represents three components as H (Hue), S (Saturation), I
(Intensity). The Hue, which can be defined rate of pure color, is an angle form between 0° and
360°. Red, Green, Blue are 0°, 120°, and 360°, and Yellow, Cyan, and Magenta are 60°, 180°,

Applications from Engineering with MATLAB Concepts24



300°. The Saturation, which shows how the color to be pure, takes value between [0, 1]. The
intensity is the dimensions of lightness or darkness. The range of intensity is between 0 (black)
and 1 (white).

Figure 29. HSI components.

MATLAB use rgb2hsv(image) or write script using Eqs. (4)–(6) for converting the color image
to HSI components. If we want to convert from HSI image to RGB image, we use hsv2rgb(hsi
image).

( ) ( )

( ) ( )( )
1

1
2 2

1
 2    

360  

R G R Bif B G
H with cos

if B G R G R B G B

q
q

q
-

ì üé - + - ùë ûï ï£ì
= =í í ý- >î ï ïé ù- + - -ë ûî þ

(4)
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( )31 , ,
( )

S min R G B
R G B

= - é ùë û+ + (5)

[ ]1
3

I R G B= + + (6)

Figure 30. HIS of the image.

4.2. YIQ

YIQ, which is defined by the National Television System Committee (NTSC), produces the
luminance and the chrominance. We use Equation 7 for producing of YIQ components from
RGB image (Figure 31), and Equation 8 is used for converting from YIQ to RGB.

0.299 0.587 0.114
0.596 .0274 0.322
0.211 0.523 0.311

Y R
I G
Q B

é ù é ù é ù
ê ú ê ú ê ú= - -ê ú ê ú ê ú
ê ú ê ú ê ú-ë û ë û ë û

(7)

1 0.986 0.621
1 .0272 0.649
1 1.106 1.703

R Y
G I
B Q

é ù é ù é ù
ê ú ê ú ê ú= - -ê ú ê ú ê ú
ê ú ê ú ê ú-ë û ë û ë û

(8)
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Figure 31. YIQ of the Image.

4.3. Gray image

Gray image is produced using Equation 9 by NTSC standards. However, we can calculate
different methods, but MATLAB uses NTSC standards and it has rgb2gray(RGB image)
function (Figure 32).
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0.299 0.587 0.114GI R G B= + + (9)

Figure 32. Gray image.

Other methods;

• The average; GI = 0.33R + 0.33G + 0.33B

• The lightness; GI = (max(R,G,B) + (min(R,G,B))/2

• The luminosity; GI = 0.21R + 0.72G + 0.07B
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5. Morphologic operations

MATLAB Image Processing Toolbox only use binary image for morphologic operations such
as opening, closing, etc.

5.1. Structuring element

Structuring element (SE) is a shape that has different sizes (3 × 3, 4 × 4, 5 × 5, etc.) and shapes
(Figure 33). SE is applied to an image for drawing results on how the objects change in the
image (Figure 34). SE is generally used for dilation, erosion, opening, closing operations.

Figure 33. Different structuring elements.

5.2. Dilation

Dilation is a morphologic processing for growing an object in the binary image. It is shown
with ⊕ image (Figure 35).

C A B= Å

C is the new image, A is the original image, and B is the structuring element.
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Figure 34. Dilation.

5.3. Erosion

Erosion is the other morphologic operator of a binary image for using eroding the pixels of
objects in the image. It is shown as ⊖ symbol.

C A B= !
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Figure 35. Erosion.

5.4. Opening and closing

As shown in (Figure 36), opening and closing are the combination of erosion and dilation
operators as shown in Equations 10 and 11.

( )C A B B= Å! (10)

( )C A B B= Å ! (11)
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Figure 36. Opening and closing.

5.5. Convolution

Convolution is generally used for modifying the spatial characteristic of an image (Figure 38).
In the convolution, a new pixel gray value is found by the weighted average pixels that are
neighbor of it. Neighbor pixels gray value is weighted by a matrix coefficient that is called
convolution kernel. According to the applications, kernel matrix has different sizes such as 3 
× 3, 5 × 5, 7 × 7 (Figure 37).

Mathematical definition of convolution is shown in Equation 12;

( ) ( ) ( ), , , *
j n i m

n m

G x y k i j F x i y j k F
=- =-

= - - =å å (12)

k: convolution kernel matrix

F: processing image

if w and h are row and column of image ⇒(m = (w - 1)/2)|(n = (h - 1)/2)
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Figure 37. Kernel matrices.

Matlab Image Processing Toolbox has the different filter types as shown in Table 8.

Value Description
average Averaging filter

disk Circular averaging filter (pillbox)

gaussian Gaussian low‐pass filter

laplacian Approximates the two‐dimensional Laplacian operator

log Laplacian of Gaussian filter

motion Approximates the linear motion of a camera

prewitt Prewitt horizontal edge‐emphasizing filter

sobel Sobel horizontal edge‐emphasizing filter

Table 8. Matlab Image Processing Toolbox Filter Types.
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Figure 38. Applying different filters.

5.6. Edge detection

Edge detection is used for finding the border of objects in the image (Figure 39). Common edge
detection algorithms are Sobel, Canny, Prewitt, Roberts, etc.
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Figure 39. Edge detection.

5.7. Labeling

Pixels are assigned different labels because of belonging to different regions (or components
or objects). In Figure 40, the objects in the image have the different label values and show
different colors in the MATLAB.

Figure 40. Labeling.

[Boundary,Labels] = bwboundaries(binary image, ‘noholes') function uses for labeling. Firstly,
the image must be binary image, if it is not, you must convert to binary image. Secondly, all
objects must be white (1) and background must be black (0) for using ‘noholes’ method. We
use this function with two variables. One of them is address of boundary pixels, and other one
is label numbers and their addresses.
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6. Sample application

The last section in this chapter is a sample application that is about extraction of some
morphological features of multiple apricots in a digital image. Firstly, original and background
digital images are read (Figures 41, 42). After that, cropped original image is subtracted from
background image. Cropping process is used for extracting specific area from original image
(Figure 42). Subtracted image (Figure 44) converts to gray image as shown in Figure 45.
Thresholding process is applied to gray image for converting binary image (Figure 46).
Sometimes, some artifacts can occurred in binary images. Before labelling, connecting pixel
groups which are smaller than specific value (smaller than 50 px in this application) are
removed (Figure 47). After labelling (Figure 48), we can find all objects morphological features
as shown in Figure 49.

Figure 41. Original digital image.

Figure 42. Background image.
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Figure 43. Background image.

Figure 44. Subtracting from background to cropped image.

Figure 45. Converting gray image.
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Figure 46. Thresholding.

Figure 47. Remove artifacts.

Figure 48. Labelling.
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Figure 49. Show morphological features.
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Chapter 2

Information Entropy

Jan Urban

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/63401

Abstract

“The chapter begins with the short description about the concept of entropy, formula,
and matlab code. Within the main chapter body, three different approaches how to use
the information entropy in dataset analysis: (i) for data segmentation into two groups; (ii)
for filtration of the noise in the dataset; (iii) for enhancement of the entropy contribu‐
tion via point information gain. Finally, the conclusion is briefly about extended analysis
using more generalized entropy, and the usability of described algorithms: advantages
and disadvantages.”

Keywords: information, entropy, Shannon, segmentation, thresholding, filtration,
point information gain

1. Introduction

MATLAB environment enables advanced data processing and analysis, especially using its
toolboxes like signal processing, image processing, and statistics.1 The real signals have to be
evaluated with numerous methods for filtration, transformation, alignment, comparison, and
so on to extract the hidden knowledge. These methods are belonging to the large group of data
processing and analysis. Their origin is different from statistics, physics, artificial intelligence,
or systems theory. Recently, Katajama [1] pronounced a clear distinction between the process‐
ing and analysis (Figures 1 and 2).

Processing

1 MATLAB and its toolboxes are trademarks or registered trademarks of The MathWorks, Inc.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



• is the necessary step before the analysis.

• transforms the raw data into more transparent format for the analysis.

• includes tasks as calibration, filtering, feature detection, alignment, normalization, model‐
ing, and so on.

Analysis

• is the interpretation of the processed data.

• consists of comparison, classification, clustering, decomposition, pattern recognition,
identification, and so on.

One of the most useful plots in the signal or image analysis is the signal histogram, an
expression of signal abundance, first introduced by Pearson [2]. The estimation of proper
histogram, as a representation of the probability distribution function, suffers with the
question of the proper binning. However, in the digital era, we are live with the datasets, which
are discrete representation of discrete events of the real signal. Thus, the amount of bins is
usually given by the amount of quantization levels during the sampling process (Figures 3
and 4).

In this chapter, the question of image processing is discussed. The lecture opens the intensity
histogram function, and the induction continues through the statistical parameters, like central
moments, to the information entropy. Three different methods for using the entropy in image
processing are introduced, entropy filtration, entropy segmentation, and point information
gain. The description is completed by mathematical equations as well as by commented
MATLAB commands. The results of the commands are the plots and figures presented within
the text. This chapter aims to serve as guiding overview for the entropy consideration as a
processing method. The simple examples show the methods steps and additional features
(Figure 5).

2. Histogram function

In digital image representation, intensity histogram H (p) of a grayscale image is an intensity
function shows count of pixel Φ(i, j) with the intensity equals d  independently on the position
(i, j):

,
( ) = ( , , );

( , , ) = 1,  ( , ) = ;
= 0,  ( , ) ;

i j
H d h i j d

h i j d if i j d
if i j d
F
F ¹

å
(1)
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In MATLAB, the grayscale image circuit 2 could be loaded by the following commands:

Im = imread(‘circuit.tif’); %load the image;

Im = double (Im) / 255; %convert to double, range 0-1;

figure, imshow (Im); %show the image;

title (’Image of circuit’); %add caption to the image;

Do not forget the ’; ’ symbol at the end of each command, otherwise MATLAB will write all
the pixels values!

The image is loaded into the variable Im. Its intensity levels are between zero and 255 (8-bit
coding) with single precision. The second command coverts the image Im into double precision
and rescale the intensity values for the range from zero to one. The size of the image is MxN ,
which is also the amount of the pixels in the image.

,

, 0,0

< 0; >;
< 0; >;

= ;

< 0,1 >;

M N

i j

i M
j N

d

Î
Î

Î

å å (2)

To compute the histogram:

[H,d] = imhist (Im); %compute histogram of the image;

figure, plot (d, H); %show the histogram function;

xlabel (‘d’); %add caption to the x-axis;

ylabel (‘H’); %add caption to the y-axis;

Figure 1. Image of circuit.

2 MathWorks builtin demo image pre-packaged into MATLAB.
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title (‘Histogram of circuit’); %add caption to the plot;

where the variable H  is the histogram function, and variable d  are the d  values (intensity levels).
The H  is a function of d .

Figure 2. Histogram of circuit.

The histogram represents almost the distribution of the values in the image. To obtain the
estimation of the distribution function, it is necessary to normalize the histogram function H
to sum equals one 3:

= ;

= ;

d
MN H

HH
MN

å
(3)

MN = sum (H); %count histogram area;

H = H./MN; %normalize histogram;

figure, plot (d,H); %show normalized histogram;

xlabel (‘d’);

3 The 0th  moment: μ0 = E (D −E D )0 =∑idk
0p(dk )=∑k p(dk ). The fact that the probability distribution of D is

normalized means that the 0th  moment is always 1.
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ylabel (‘probability’);

title (‘Probability of circuit’);

This could be used for many modification (contrast enhancement, frequency evaluation,
segmentation, …, etc.).

2.1. Statistical parameters

The distribution function allows us to compute some statistical parameters relevant for the
further processing. The distribution is well characterized by two parameters, the location
parameter and scaling parameter. The location parameter describes the value around which
are all other values.

*
=

k k
k

k

H d

H
m

å
å

(4)

%compute mean value from the histogram;

mu = sum (H.*d) / sum(H)

This time, do not write the * ;′ symbol at the end of the sentence, to see the result of calculation.
This value express the position on the x-axis (d-value), around which is the distribution
centered. The value means weighted arithmetic average of all intensity levels. The levels are
weighted according to the probability estimated from the histogram function H ; The value of
the weighted arithmetic average is called mean value4 μ. Mean is also the first central moment.

figure, plot (d,H);

xlabel (‘d’);

ylabel (‘probability’);

title (‘Probability of circuit and mean value’);

%add mean value to the probability plot;

hold on, plot ([mu, mu], [0, max(H)], ‘r’);

There is another way how to obtain the mean value directly from the intensity levels of all
pixels in the image Im.

%compute mean value from the image;

mu = mean ( reshape ( Im,size (Im,1)*size (Im,2),1 ) )

The image is reshaped into vector of the size MxN , 1 . No information is lost, only some
computations will be simpler to proceed (Figures 6 and 7).

4 There are three Pythagorean means: Arithmetic, Geometric, and Harmonic
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There are two other parameters for the distribution location, median, and mode. The median
of the distribution is a value separating the higher half of plot from the lower half, it is a d
value. The mode is the value that appears most often in a set of data, the one with highest
probability (the d , where is highest H ). MATLAB has implemented functions:

%compute median from the image;

Me = median ( reshape ( Im,size (Im,1)*size(Im,2),1 ) )

%compute mode from the image;

Mo = mode ( reshape ( Im,size (Im,1)*size (Im,2),1 ) )

figure, plot (d, H);

xlabel (‘d’);

ylabel (‘probability’);

title (‘Probability of circuit with median and mode values’);

%add median value to the probability plot;

hold on, plot ([Me, Me], [0, max(H)], ‘-.*r’);

%add mode value to the probability plot;

hold on, plot ([Mo, Mo], [0, max (H)], ‘:*g’);

Figure 3. Mean value.
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When plotted, median is dash-dotted red and mode-dotted green. The median often serves
instead of mean for the distributions that are not Gaussian. The mode expresses the most
frequent value in the distributions that has only one such peak, and thus they are unimodal
(Figures 8 and 9).

The second parameter of the distribution is the scaling parameter. It describes how far the
other d  values are from the location parameter μ. The second central moment estimates the
variance σ 2, measures how far the d  values are spread out (dispersed). An equivalent measure
is the square root of the variance, called the standard deviation σ. Standard deviation thus
measure dispersion of the d  values.

2 2= * ( )k k
k

H ds m-å (5)

%compute variance from the normalized histogram;

sigma2 = sum (H.*(d-mu). ^2)

%compute standard deviation;

sigma = sqrt (sigma2)

or

%compute variance from the image;

sigma2 = var ( reshape ( Im,size (Im,1)*size (Im,2),1 ) )

%compute standard deviation;

sigma = std ( reshape ( Im,size (Im,1)*size (Im,2),1 ) )

In case, that the dispersion is skewed, thus has different dispersions on left and right side of
the plot (from the point of view of the location parameter), it is recommended to use the Inter
Quartile Range IQR as robust measure of scale. Usage of the IQR also removes the affects of
the outliers to the distribution dispersion.

%compute inter quartile range;

Q = iqr (reshape (Im,size (Im,1) * size (Im,2),1 ) )

The value of the Inter Quartile Range IQR is usually bigger than the standard deviation σ.5

However, the basic statistical parameters do not cover the distributions that have more than
one mode (multimodal), and also cannot describe the negative exponential distributions
without location parameter. In that case, we are using different measure of the distribution,
the entropy S . Entropy is a measure of unpredictability of information content:

5 Approximately 1.349 times for Gaussian distribution

Information Entropy
http://dx.doi.org/10.5772/63401

49



%compute entropy of the image;

S = entropy (Im)

or

%find where normalized histogram equals zero;

f = find (H==0);

%exclude zero values from computation;

Hx = H;

Hx(f) = [];

%compute entropy from the normalized histogram without zero values;

S = -sum (Hx.*log2 (Hx))

Figure 4. Media and mode values.
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Figure 5. Bimodal distribution.

Figure 6. Exponential distribution.
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Figure 7. Entropy of the circuit.

Figure 8. Entropy and histogram of the circuit.
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Figure 9. Entropy of the Gaussian distributed intensities, μ =0.5, σ =0.1.

Figure 10. Entropy and histogram of the Gaussian distributed intensities, μ =0.5, σ =0.1.
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Figure 11. Entropy of the cells.

Figure 12. Entropy and histogram of the cells.
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Figure 13. Entropy of the unique intensity value for all pixels d =0.5.

Figure 14. Entropy and histograms of the unique intensity value for all pixels d =0.5.
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There will be completely different values of entropy S  for images with different distributions/
histograms.

%show histogram and entropy of circuit image;

figure, imshow (Im);

title ([‘Circuit, entropy S = ’, num2str(S) ] );

figure, imhist (Im);

title ([‘Histogram of circuit, entropy S = ’, num2str(S) ] );

%show histogram and entropy of Gaussian noise;

J = imnoise (zeros (size (Im)), ‘Gaussian’,.5, .1);

SJ = entropy(J)

figure, imshow(J);

title ([‘Gaussian noise, entropy S = ’,num2str (SJ)]);

figure, imhist(J);

title ([‘Histogram of Gaussian noise, entropy S = ’,num2str(SJ) ] );

%show histogram and entropy of cell image;

C = imread (‘cell.tif’);

C = double (C) / 255;

SC = entropy (C)

figure, imshow (C);

title ([‘Cells, entropy S = ’, num2str (SC) ] );

figure, imhist (C);

title ([‘Histogram of cells, entropy S = ’,num2str (SC) ] );

%show histogram and entropy of unique value;

U = ones (size (Im))*.5;

SU = entropy (U)

figure, imshow (U);

title ([‘Unique intensity value, entropy S = ’, num2str(SU) ] );

figure, imhist(U);

title ([‘Histogram of unique intensity value, entropy S = ’,num2str(SU) ] );

Entropy is a number that somehow characterize the distribution:
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Distribution S

Circuit 6.9439

Gaussian 7.6278

Cells 4.6024

Unique 0

Bimodal 4.2245

Exponential 1.5928

3. Entropy

Let start with a reminder of the form of Shannon entropy from information theory with respect
to the image analysis terminology. Any given normalized discrete probability distribution
H * h 1,h 2,...,h D *  fulfills the condition:

=1

0

= 1.

d
D

d
d

h

h

³

å (6)

Usually, in an intensity image, there exists an approximation of probability distribution given
by the normalized histogram function H (d ). H  is an intensity function that shows the count of
the pixels Φ(i, j) with intensity equals to d  independent on the image position (i, j) [3,4]. The
histogram is normalized by the number of pixels to fulfill the conditions.6

More conditions are assumed when measuring the information. Information must be additive
for two independent events a, b:

( ) = ( ) ( ).I ab I a I b+ (7)

The information itself should be dependent only on the probability distribution or normalized
histogram function in our cases. Equation 7 describes the conditions referred to. This equation
is the well-known modified Cauchy’s functional equation with unique solution
I (h )= −κ × log2(h ). In statistical thermodynamic theory, the constant κ refers to the Boltzman
constant [5]. In the Hartley measure of information, κ equals one [6,7]. Let us focus on Hartley
measure. If different amounts of information occur with different probabilities, the total

6 The 0th  central moment again.
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amount of information is the average of the individual information, weighted by the proba‐
bilities of their individual occurrences [7,8]. Therefore, the total amount of information is:

( ),d d
d

h Iå (8)

which leads us to the definition of Shannon entropy as a measure of information:

2= ( ).d d
d

S h log h-å (9)

Thus, entropy is the sum of the individual information weighted by the probabilities of their
occurrences.

In image analysis, the unknown probability distribution function of intensity values is
approximated via histogram function H (d ): The histogram H (d ) has to be normalized to the
total amount of pixels [9,10]. Shannon entropy allows information content of the whole image
or just from the selected part of the image to be measured (Figures 10 and 11).

The entropy implemented in MATLAB function

S = entropy(Im)

is Shannon entropy.

4. Entropy filtration

Entropy allows all the information content of the entire image to be measured. However, when
we change the number of pixels in the histogram computation, we obtain partial information
content that is strictly dependent on the area entering the computation (Figures 12 and 13).

Entropy filtering is based on the replacement of pixel values in the image by values of entropy.
Entropy is computed in a specified area, usually from the pixel’s n-by-n symmetric
neighborhood in the input image [4,11]. The shape of the neighborhood should be also defined
by the users. The computed entropy is

( , ) ,( ) 2 ,( )= ( ),i j d se d seF h log h-å (10)

where se(i, j) is the pixel’s Φ(i, j) neighborhood.
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Figure 15. Entropy filtering of circuit image with se = true(9).

Figure 16. Entropy filtering of circuit image with se = true(41).
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Figure 17. Entropy filtering of circuit image with se = true(91).

It is clear that the output image (as computed by entropy filtration) is strongly dependent on
the area selected. For small se, the local disturbances will be given sufficient weight, and the
output image will be too noisy. On the other hand, too large an se value will not preserve details
and the output image will be blurred. Therefore, the key question in the filtration method is
how to select a suitable neighborhood. se selection is always a compromise between a noisy or
blurry image. Of course, filtration can be very useful for decreasing the area and thus allowing
further analysis (Figures 14 and 15).

%compute entropy filtering with small structure element;

F = entropyfilt (Im);

figure, imshow (F,[]);

title (‘Entropy filtering of circuit, se = true(9)’);

%compute entropy filtering with middle structure element;

F = entropyfilt (Im,true (41));

figure, imshow (F,[]);

title (‘Entropy filtering of circuit, se = true(41)’);

%compute entropy filtering with large structure element;

F = entropyfilt (Im,true(91));

figure, imshow (F,[]);

title (‘Entropy filtering of circuit, se = true(91)’);
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5. Entropy thresholding and segmentation

Thresholding is a time cheap method searching for point in the intensity histogram H  for
separating image into the objects related to the real objects. It takes from the image parts that
corresponding to the threshold parameter(s). Automatic threshold selection using the entropy
is based on the maximization of entropy segmentation. The histogram function H (d ) is
separated into two parts, A and B, iteratively in d . For both parts, the Shannon’s entropies are
computed

=

2
=1

= ( )
w k

A w w
w

S h log h-å (11)

=

2 2 1
=

= ( ), = : .
w D

B w w max
w k

S h log h k d d --å (12)

Then, the entropy of part A and B (taken together) is computed as

2 2
( ) ( )= ( ) ( ) .V A B

A B

S A S BS log H log H
H H

- - - - (13)

A threshold value is set for d , where SVk  is maximized [12,13]. This method uses the global
histogram function; therefore, it is not sensitive to the random noise contribution and suc‐
cessfully removes the noise. However, the use of thresholds also ignores local changes in the
background, illumination, and non-uniformity. For images with different conditions within
the scene, thresholds generally produce loses and artifacts. The use of thresholds without any
previous preprocessing, for example,, light normalization, is applicable only with objects that
are well separable from the background. Automatic segmentation techniques [3,4,12,14,15] are
very powerful tools under easily-separable conditions (Figures 16 and 17).

HA = zeros(size(H)); %empty lower histogram;

HB = zeros(size(H)); %empty upper histogram;

%empty cumulative distribution function;

C = zeros(size(H));

%cumulative distribution function;

C(1) = H(1);

for k = 2:length(H),

C(k) = C(k-1) + H(k);

end;
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C = double(C);

%cycle through intensity levels;

for k = 1:length(H),

if C(k) > 0, %only for positive cumulation;

for w = 1:k, %from beginning till now;

if H(w) > 0, %only for positive histogram

%compute the lower histogram value

HA(k) = HA(k) - ( H(w)/C(k)) * log2(H(w)/C(k) );

end; %endif;

end; %endfor;

end; %endif;

if ( 1-C(k) ) > 0, %only for positive cumulation residuals;

for w = k + 1:length(H); %from now till end;

if H(w) > 0, %only for positive histogram

%compute the lower histogram value

HB(k) = HB(k) - ( H(w)/(1-C(k))) * log2(H(w)/(1-C(k)) );

end; %endif;

end; %endfor

end; %endif

end; %endfor

%locate the maxima for joined histograms

[co, kde] = max(HA+HB);

%selet threshold

Th = d( kde-1 )

%segment image

II = im2bw(Im, Th);

figure, imshow(II);

title([‘Entropy segmentation of circuit, Th = ‘, num2str(Th)]);

The value d  where the entropy SV  is maximized represents the threshold for segmentation of
the image (Figure 18).
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Figure 19. Segmentation of circuit image by Otsu.

Figure 18. Segmentation of circuit image by entropy.
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5.1. Grayscale thresholding

The entropy segmentation gives similar results with the Otsu thresholding. Otsu gray level
thresholding is a nonparametric method of automatic threshold selection for image segmen‐
tation also from the normalized intensity histogram H (d ). For separating histogram into two
classes, the between class variance is maximized:

%cycle through the histogram;

for T=2:length(H)-1,

w(1) = sum( H(1:T) ); %probability of first class

u(1) = sum( H(1:T) .* d(1:T) ); %class mean

%protection against zero;

if w(1) == 0,

u(1) = 0;

else

%class mean recomputation;

u(1) = u(1)/w(1);

end;

w(2) = sum( H( (T+1):end) ); %probability of second class

u(2) = sum( H( (T+1):end) .* d( (T+1):end) ); %class mean

%protection against zero;

if w(2) == 0,

u(2) = 0;

else

%class mean recomputation;

u(2) = u(2)/w(2);

end;

%between class variance;

ut = w*u’;

sigmaB(T) = w(1)*(u(1)-ut)^2 + w(2)*(u(2)-ut)^2;

end;

%find maximal between class variance

[e,r] = max(sigmaB);
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TTh(1) = d(r); %set Threshold

or

TTh = graythresh(Im); %compute threshold;

IO = im2bw(Im, TTh); %segment image;

figure, imshow(IO);

title ([‘Otsu segmentation of circuit, Th = ’, num2str(TTh)]);

6. Point Information Gain

The most interesting is the point information gain (PIG) which asks the question: How
important is one pixel for the whole image or for the selected part? In other words, is the
occurrence of the value of one single pixel a surprise? It is predictable that for value of
background pixels it will not carry a lot of information, if we discard one of them. On the other
hand, the objects, especially if they are complicated in structure, will increase the entropy on
their position. Shannon equation evaluate total amount of the information entropy from the
whole histogram. Let evaluate the normalized image histogram H (d ) and compute the
Shannon information entropy S :

2= ( ),d d
d

S H log H-å (14)

To investigate the contribution of one single pixel with intensity value v to the total entropy,
we need to evaluate the second histogram G(d ) which is created without this investigated pixel:

( , , ) = ( , , ),  ;
( , , ) = ( , , ) 1,  = .

g i j d q i j d if d v
g i j d q i j d if d v

¹
-

(15)

This time we discard the value v of the center investigated Φ(i, j) from the computation, but
only once.

One single pixel of intensity value d  will only decrease the histogram value g(d ) on its intensity
position d . Then, the histogram is again normalized. The probability of intensity value d  is
slightly lower than the probability H (d ) of the primary normalized histogram (with all pixels).
The other probabilities g(d ), where d  is not the value of investigated pixel, are slightly higher
than the probability H (d ) of the primary normalized histogram (with all pixels). Then, in the
second computation of entropy E , computed from the modified normalized histogram G(r):
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2= ( ),d d
d

E g log g-å (16)

the individual information log2(g(d )) as well as their weights g(d ) differs according to the
computation of whole entropy S . Therefore, we obtained two different entropy values S  and
E . Entropy S  represents the whole measure of information in original image. Entropy E
represents the measure of information in the image without the investigated pixel. The
difference PIG [16]:

= ,PIG S E- (17)

refers to the difference between the entropy of the two histograms, and therefore also difference
between the entropy of the two images (the first one with contains our investigated pixel Φ(i, j)
and the second one without this investigated pixel). Recall that the both histograms H  and G
were normalized, and therefore, any difference in the number of pixels in the images is
immaterial. Difference PIG represents either the entropy contribution of pixel Φ(i, j) or the
contribution of the value of the pixel Φ(i, j) to the information content of the whole image. The
transformation of each image pixel Φ(i, j) value to its contribution to the whole image via
equation 17 represents the measure of the information carried by that pixel, the Point Infor‐
mation Gain (PIG). Repeated computation 17 for every single pixel of the image transforms
the original image into the entropy map: the image that shows contribution of every pixel to
the whole information content of the image (Figures 19 and 20).

Figure 20. Point information gain of grayscale image cells.

It is predictable that the values of background pixels will not carry a lot of information, even
if we discard one of them. On the other, the objects, especially if they are complicated in
structure, will increase the entropy in their immediate area. According to the information
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theory, the object occurrence produces a bigger surprise than does background occurrence,
and the PIG quantifies this effect. For this reason, the details in the image are preserved: they
are the surprise. For the same reason, random noise is removed: We always know it is
presented, and no surprise occurs (Figures 21 and 22).

Figure 21. Point Information Gain of grayscale image cameraman.

Figure 22. Point Information Gain of grayscale image circuit.
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%load images(s)

C = imread(‘cell.tif’);

%C = imread(‘cameraman.tif’);

%C = imread(‘circuit.tif’);

C = double(C)/255;

S = entropy(C); %compute entropy

%compute average probability of one pixel

pomo = 1/numel(C);

[H,d] = imhist(C); %compute histogram

H = H./sum(H); %normalize histogram

IE = zeros(size(C)); %empty result image;

%cycle through intensity levels;

for k=1:length(H);

%precompute second histograms;

G = H;

%remove pixel contribution;

if G(k)>=pomo,

G(k) = G(k) - pomo;

end;

%protection against zero;

f =find(G==0);

G(f) = [];

G = G./sum(G); %renormalization;

%entropy without pixel;

E(k) = -sum(G.*log2(G));

%point information gain;

PIG(k) = S-E(k);

%assign pig to pixels;

f = find(C==k/255);

IE(f) = PIG(k);
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end;

figure, imshow(IE,[]);

title(‘Point Information Gain of the cells.’);

%title(‘Point Information Gain of the cameraman.’);

%title(‘Point Information Gain of the circuit.’);

7. Conclusion and discussion

For those, who are interested in the entropy processing, the things are little bit more compli‐
cated.

PIG approach is dependent only on pixel Φ(i, j), there is no information about pixel’s position.
Therefore, the area se of the histogram function computation could include not the whole
image, but only some selected area around the investigated pixel. The se could be the whole
row and whole column in which the pixel is located. Difference PIG =S −E  in this case refers
to the difference between the information content of the two crosses. Difference PIG represents
either the entropy contribution of pixel Φ(i, j) or the contribution of the value of pixel Φ(i, j) to
the cross. Even more derivation from the original PIG algorithm were developed recently [17–
19].

There also exist different entropies, not only Shannon, namely Tsallis-Havrda-Charvát and
Rényi definitions at least. The Rényi entropy:

2
1= ,log

1 d
d

R ha
a a

æ ö
ç ÷- è ø
å (18)

is the generalization of the Shannon entropy. For the α =0, the Rényi entropy equals Shannon
(R0 =S).

The evaluation of entropy has heavy computational burden; therefore, it is recommended to
use parallelization on GPU. For the processing of the color images, it is usual to tread each
color channel independently like a grayscale image.

Overall, the entropy is a representative parameter of the image and there is still a lot of potential
in its usage for processing and analysis.

The code presented in this chapter could be downloaded at: https://www.mathworks.com/
matlabcentral/fileexchange/55493-information-entropy.
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Chapter 3
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Abstract

With the recent advances in computer technology and digital simulation software, it
is now possible to rapidly and accurately build computer models for complex linear
and nonlinear dynamic systems. MATLAB is a unique system that can be used for
structural and earthquake engineering problems. This study presents MATLAB tools
developed for numerical process of all steps of dynamic vibration test of structures.
The  functions  of  the  tools  are  processing  the  signals  obtained  from  forced  and
ambient  vibration  tests  of  structures,  determining  the  dynamic  characteristics  of
structural  systems,  and  automatically  updating  the  analytical  finite  element  (FE)
models. The software group is composed of three programs named as SignalCAD,
ModalCAD, and FemUP. The SignalCAD program is developed for processing raw
measured  data  obtained  from  forced  and  ambient  vibration  tests  of  engineering
structures.  The  ModalCAD  program  is  developed  for  dynamic  characteristic
identification  and  validation  procedure.  The  peak  picking  method,  complex
exponential  method,  and  polyreference  time  domain  method  are  used  for  modal
identification process.  The FemUP program is  developed for  automatically  updat‐
ing  the  numerical  models  of  structures  compared  to  modal  testing  results.  Each
program has a unique graphical user interface and is designed as user friendly. The
possibilities of the programs are demonstrated with the model vibration test of a steel
cantilever beam. The obtained results are compared to the analytical model, and the
FE model is automatically updated, whereas the experimental model is considered
as the reference model. Finally, it is seen that MATLAB can be used as a scientific
programming platform in all vibration test and modal analysis applications.

Keywords: MATLAB, SignalCAD, ModalCAD, FemUP, vibration test of structures,
experimental modal analysis, operational modal analysis, FE model updating
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1. Introduction

The recent developments in computer technology give us the opportunity to construct full-
scale models of all kinds of structural systems. Advanced analysis methods can be used to
determine the dynamic characteristics of the structures and to simulate the structural behav‐
iors.  Although the numerical  methods have reached to an advanced level,  experimental
validations are still necessary to obtain realistic models. Full-scale vibration tests are one of the
most reliable and widely used validation techniques. The dynamic vibration tests can be used
for dynamic characteristic identification of all structural systems [1–5]. The determined dynamic
characteristics are natural vibration frequencies, damping ratios, and mode shapes. These
parameters may be used to validate and update the numerical models [6–9].

A complete structural evaluation process, including numerical and experimental studies,
consists of some procedures. First, the numerical model of the structural system is constructed.
The critical points for vibration test are determined and the structure system is equipped with
the accelerometers. Then, the vibration test is performed via artificial or natural excitation
sources. Generally, ambient vibration tests are carried out in large civil engineering structures,
as it is not easy to record natural exciting sources in real time. After the vibration tests are
completed, the raw measured acceleration records are first filtered to clean noise from the
signal. Then, the data are processed and spectral functions are produced. These functions are
frequency response function (FRF), cross-power spectrum (CPS), power spectral density
(PSD), auto power spectrum (APS), and spectrogram. The system identification methods are
applied to the produced spectral functions, and the dynamic characteristics of the structure
are extracted. The obtained dynamic parameters are natural vibration frequency, damping
ratio, and modal vectors of the structure of interest. These parameters are experimental
dynamic characteristics of the structures and they are used for validating or updating the
numerical models. In the model updating process, all parameters, including material proper‐
ties, boundary conditions, stiffness distribution, connection details, and damaged parts over
the structure, may be considered and the optimal numerical model is obtained, showing the
closest behavior to the experimental model.

2. Forced and ambient vibration tests of structures

The dynamic vibration tests on structures are generally subdivided into two groups: (a) forced
vibration test and (b) ambient vibration test. In the forced vibration test, the structure is usually
excited by artificial means. The excitation force and the response of the structure are recorded
at the same time and the spectral functions are developed using these data. In the ambient
vibration test, the structure is excited by natural effects, such as wind load and traffic load. The
response of the structure is recorded under operational conditions and the spectral functions
are developed using these data. The dynamic parameters of the structures are determined from
the produced spectral functions.

The modal parameter estimation stage of the forced vibration test is called the experimental
modal analysis or input-output modal analysis. On the contrary, the modal parameter
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estimation stage is called operational modal analysis or output-only modal analysis if the
vibration test is carried out under operational conditions (ambient vibration test).

The experimental and operational modal analyses of structures are carried out in four distinct
steps. In the first step, data are collected from the test structure. In the second step, digital
signal processing is applied to collected raw measured data and the spectral functions are
produced. In the third step, modal parameters (natural frequencies, damping ratios, and mode
shapes) are extracted and these parameters are visualized and validated. In the last step, the
numerical finite element (FE) model is updated by comparing to the experimental model. In
the first part, the forced or ambient vibration test is carried out and data are collected from the
structural system. This stage is the experimental procedure. The remaining stages are compu‐
tational procedures and require the development of mathematical algorithms and program‐
ming tools. In this study, the developed tools in MATLAB platform for these numerical
procedures are presented.

3. Digital signal processing for vibration test of structures

The first step of computational procedure is digital signal processing. In this stage, signals are
converted from the time domain to the frequency domain usually through the Fourier
transform. In the forced vibration test, FRFs are used to estimate the dynamic properties of a
structure. Excitation force and response accelerations are used to obtain these functions. In
large-scale civil engineering structures (such as bridges and towers), the structure is under
excitation of natural sources such as traffic load and wind load. It is difficult to measure the
input to the structure under the operational conditions. The CPSs may be used for output-only
modal analysis. The response signals are used to obtain these functions.

3.1. Development of digital signal processing tool

The SignalCAD [10] program is developed for digital signal processing and may be used for
forced and ambient vibration tests of structures. In the forced vibration test analysis process,
first excitation forces and response signals are collected from the structure as shown in Figure
1a. The SignalCAD program reads these records and apply fast Fourier transform (FFT) to
these signals using MATLAB Signal Processing Toolbox [11]. Then, coherence functions
between input and output signals are generated.

In the ambient vibration spectral analysis process, the acceleration records are collected from
the structure as shown in Figure 1b. These records may be single signals or signal groups. The
ambient vibration test requires more time; therefore, the record time may be much longer. The
collected signal may be divided into small signals and the signal series are processed in the
system. The SignalCAD program reads these signal groups and applies FFT to these signals
using MATLAB Signal Processing Toolbox [11]. The spectrum series, such as CPSs, PSDs,
APSs, and spectrograms, are produced. The singular value decomposition (SVD) or averaging
methods are applied to the produced spectrum series and the single spectra for each channel
are produced. This process is repeated for every channel that collects signal from the structure.
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As can be seen in Figure 1, the leakage errors occur in spectral functions because of the FFT.
Windowing functions need be applied to the spectra to eliminate these errors. In SignalCAD,
some windowing alternatives may be applied. The main window of SignalCAD program is
presented in Figure 2.

Figure 2. SignalCAD program main window [10].

Figure 1. Flow chart of digital signal processing procedure with SignalCAD [10]: (a) forced vibration test and (b) ambi‐
ent vibration test.
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4. Dynamic characteristic identification

After the collected raw measured acceleration records are processed and spectral functions are
produced, dynamic characteristics are extracted from these spectra. MATLAB System Identi‐
fication Toolbox [12] offers mathematical functions for system identification studies. It
identifies time domain models from the data and can be used in modal identification studies.
However, it is clear that some postprocessing is needed for the purpose of dynamic charac‐
teristic identification of structure. New functions need to be prepared to extract modal
parameters from the spectral functions, to produce stabilization diagrams, to visualize

Figure 3. Flow chart of the ModalCAD program [13].
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structure’s geometry and mode shapes, and to evaluate modal validation tools. From this
overview, about 250 new functions have been developed depending on the solution methods
and are used together with general System Identification Toolbox functions.

4.1. Development of system identification tool

The ModalCAD [13] program is developed for system identification and may be used for the
experimental and operational modal analyses of structures. In ModalCAD, three modal
identification methods are used. First is the peak picking method or half-power band method
in frequency domain. It may be called the operating vectors (OV) method. The second one is
the complex exponential (CE) method in time domain and the polyreference time domain
(PTD) method. The detailed explanations of these methods can be found in [13]. The flow chart
of the program is given in Figure 3 and the main window of ModalCAD is presented in Figure
4.

Figure 4. ModalCAD program main window [13].

5. FE model updating procedure

First, the FE model is developed using the initially estimated values for the unknown model
parameters. FE modal analysis is then carried out to obtain the FE modal data. ANSYS [14] or
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any other advanced FE codes may be used for analytical FE modal analysis. For the forced or
ambient vibration test of the structure, the optimum points for the placement of sensors are
chosen and test data are recorded. The measured raw data are processed with the SignalCAD
software. In this process, FRFs are produced for experimental modal analysis and CPSs are
produced for operational modal analysis. The experimental and operational modal analyses
are then carried out using the OV, CE, and PTD methods to get the modal parameters via the
ModalCAD software. For model updating, the modal frequencies and modal vectors are
exported from ModalCAD to FemUP. The most common way to compare the analytical and
experimental mode shapes is the use of modal assurance criterion (MAC), and it is obtained
as follows:

( )( )

2T
aj ej

j T T
aj ej ej aj

MAC
Φ Φ

Φ Φ Φ Φ
= (1)

where Φaj is the analytical modal vector that has been paired with the jth experimental modal
vector Φej. The value of the MAC is bound between 0 and 1. Higher value indicates better
correlation between modal vectors. If the MAC value is zero, it is understood that there is not
any correlation between the modal vectors. If the MAC value is 1, the highest correlation is
obtained.

5.1. Development of computational FE model updating tool

The FemUP [15] program is developed for computational FE model updating automatically.
It uses MATLAB Optimization Toolbox [16] for the optimal FE model determination process.
A constrained optimization is performed using a sequential quadratic programming (SQP)
algorithm. The optimization algorithm is supplied with start values, bounds, constraints, and
optimization criterion. The optimization criterion chosen, which is to be minimized, is the sum
of the differences in natural frequency within each correlated mode pair. Constraints are used
on the correlation between analytical and experimental mode shapes using the diagonal values
of the MAC matrix.

The FemUP program can read ANSYS FE models and run this code in batch mode using
ANSYS Parametric Design Language. Because natural frequencies and mode shapes must be
calculated many times during the updating procedure, ANSYS and MATLAB interact with
each other. The objective and constraint functions, taking advantage of MATLAB’s ability of
reading and writing ASCII files, are used to transfer data between the two different software
packages. The main window of FemUP is presented in Figure 5. The objective function in
FemUP is defined as a sum of experimental and theoretical frequency differences. The
constraint function, which includes nonlinear inequality constraints in FemUP, exports a
vector that consists of the differences between MAC limit selected by the user and calculated
MAC values.
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Figure 5. FemUP program main window [15].

6. Interaction between developed tools

As indicated previously, all tools have an interaction with each other and the data developed
by a tool are used by others. The raw measured acceleration records are processed with
SignalCAD and spectra are produced. The FRFs are produced for input-output modal analysis
and the CPSs are produced for output-only modal analysis. These spectra are introduced to
ModalCAD and dynamics characteristics are extracted from these spectral functions. The
produced dynamic characteristics are input data of the FemUP program. The numerical model
produced with ANSYS is also introduced to FemUP and numerical and experimental models
are compared to each other. In the comparison process, the summation of natural frequency
differences forms the objective function and coherence between modal vectors forms the
constraint function. The MAC matrix is used to understand the agreement between experi‐
mental and numerical mode shapes. If there is a nontrivial difference between natural
frequencies, the system parameters are automatically updated under the defined limits. After
the automatic model updating process, the difference is checked again. The model updating
process is repeated until the minimal difference is obtained, while the MAC values are about
one. Finally, the updated model is presented. The interaction details between developed tools
are presented in Figure 6.

Applications from Engineering with MATLAB Concepts80



Figure 6. Interaction flow chart between MATLAB programs developed for signal processing, system identification,
and FE model updating of structures [15].
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7. Numerical application

A simple vibration test is carried out and the capabilities of developed tools are evaluated for
a complete vibration test process. The example contains forced and ambient vibration tests,
digital signal processing, modal parameter estimation, and automatic FE model updating of
a steel cantilever beam model.

7.1. Vibration test and modal analysis

The vibration tests of the steel cantilever beam model are carried out. The beam model and
test process are shown in Figure 7. The accelerometers are located on the surface of the model.
The channel numbers and directions are given in Figure 7.

Figure 7. Cantilever beam model, acceleration set-up, and excitation with a hummer.

Figure 8. Input force signal collected during the forced vibration test.

First, the forced vibration test is carried out. The excitation force (Figure 8) and response of
the model (Figure 9) are recorded simultaneously. These signals are processed with Signal‐
CAD and the FRFs are developed. These functions are introduced to ModalCAD, and the
complex mode identification function (CMIF) is obtained from the developed FRFs as shown
in Figure 10.
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Figure 9. Response accelerations obtained via the forced vibration test.
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Figure 10. CMIF of calculated FRFs.

Figure 11. (a) Signal response set from the ambient vibration test (R1–R4).
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Figure 11. (b) signal response set from the ambient vibration test (R5–R7).

Figure 12. CMIF of calculated CPSs.
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Second, the ambient vibration test is carried out and the response of the model is recorded.
The collected signals are acceleration series for each channel as shown in Figure 11. These
signals are processed with SignalCAD and the CPS series are developed. The CPS functions
for each channel are produced by applying SVD to the spectrum series. The produced single
functions are introduced to ModalCAD and the CMIF is obtained from the developed CPSs
as shown in Figure 12.

The modal characteristics are then extracted with ModalCAD for input-output and output-
only modal analyses. Same mode shapes are obtained from experimental and operational
modal analyses with all methods. The obtained modal vectors are given in Figure 13.

Figure 13. Experimental mode shapes of the cantilever beam model.
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The natural vibration frequencies and damping ratios obtained using OV, CE, and PTD
methods for input-output and output-only modal analyses are presented in Tables 1 and 2,
respectively.

Mode no. Input-output modal analysis (Hz) Output-only modal analysis (Hz)

OV CE PTD OV CE PTD

1 9.5 9.71 9.71 10 10 10.19

2 60.5 60.29 60.29 60 60.25 60.01

3 170.5 170.48 170.46 170 170.27 170.23

4 334 333.83 333.85 334 333.83 333.92

Table 1. Modal frequency values obtained from ModalCAD

Mode no.  Input-output modal analysis (%) Output-only modal analysis (%)

OV CE PTD OV CE PTD

1 16.3748 0.38409 0.37919 23.9592 0.35837 0.88837

2 2.8235 0.25131 0.2512 3.9965 0.21716 0.16947

3 0.53196 0.10881 0.11048 1.4897 0.12524 0.21411

4 0.38155 0.06087 0.05923 0.71889 0.06135 0.028594

Table 2. Modal damping values obtained from ModalCAD.

7.2. Analytical modal analysis and FE model updating

The analytical model of the cantilever beam is built in ANSYS. The natural frequencies and
mode shapes are solved by the Lanczos method. The obtained mode shapes are presented in
Figure 14. The analytical model is compared to the experimental model. As a reference data,
the experimental model results obtained using the PTD method for input-output modal
analysis are used because the experimental results are close to each other. The comparison of
dynamic characteristics between the initial analytical model and the experimental model
shows that the analytical natural frequencies are higher than the corresponding natural
frequencies obtained experimentally. The differences in modal frequencies are higher than
20% for all modes as shown in Table 3. These differences are based on physical parameters.
To achieve an analytical model that correlates better with the experimental results, the material
properties are updated. There is no need to add mass and update boundary conditions in this
model. The model is automatically updated by running the ANSYS model many times and
the iterations are terminated until the aim function reaches the minimum value. The material
properties of the beam model before and after the updating process are shown in Table 4. As
shown in Table 4, the modulus of elasticity has been changed by FemUP. This change primarily
affects the frequency values and modal vectors. The other parameters such as density and
poison ratio have not been changed. In the updating step, three parameters are included in the

MATLAB for All Steps of Dynamic Vibration Test of Structures
http://dx.doi.org/10.5772/63232

87



automated updating procedure. The correlation between mode shapes of the analytical and
experimental models is evaluated using the MAC matrix. After the model updating process is
completed, it can be said that the correlation is good. All differences in natural frequencies are
below 1%. The experimental modal vectors are just same with the analytical modal vectors.
This good harmony after the updating process may be observed from the MAC graphics given
in Figure 15. As a result of the optimization study, it can be said that the most effective physical
parameter of the model for model updating is the modulus of elasticity.

Figure 14. Numerical mode shapes of the cantilever beam model: (a) first mode shape, (b) second mode shape, (c) third
mode shape, and (d) fourth mode shape.

Figure 15. MAC matrices between the experimental model and the numerical model before and after the update proc‐
ess.
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Mode
no. 

Test frequency
(Hz)

Analytic
frequency before
the update (Hz)

Error before
the update
(%)

MAC before
the update

Analytic
frequency after
the update (Hz)

Error after
the update
(%)

MAC after
the update

1 9.7060 11.8415 −22.00 0.9950 9.7162 −0.11 1.0000

2 60.2896 74.2084 −23.09 0.9746 60.8814 −0.98 0.9995

3 170.4636 207.9209 −21.97 0.9217 170.4305 0.02 0.9963

4 333.8520 408.3915 −22.33 0.8741 333.8636 −0.00 0.9974

Table 3. Initial correlation analysis results between the experimental and analytical models.

Parameter Before the update After the update

Modulus of elasticity 2.75×1011N / m 2 1.85147×1011N / m 2

Density 7800 kg/m3 7800 kg/m3

Poisson ratio 0.3 0.3

Table 4. Model parameters before and after the update.

8. Conclusion

In this study, the importance of the computational part of vibration tests is highlighted and
the capabilities of MATLAB for the possible use of all steps of dynamic vibration test of
structures are explained. Three computer programs for these steps have been developed in
MATLAB platform. The general properties of these tools are introduced and some flow charts
for the general algorithms are also presented. The first tool is an interactive and comparative
digital signal processing software developed for vibration test of structures and named as
SignalCAD. The Signal Processing Toolbox functions are used for some of the operations. The
software provides the capability to simulate vibration tests and perform spectral analysis
including FRFs, CPSs, PSDs, coherence functions, transfer functions, and spectrograms. The
second tool is the system identification software named as ModalCAD. The System Identifi‐
cation Toolbox functions and new developed functions are used for modal identification
process. The software provides the capability to simulate vibration tests, perform experimental
and operational modal analyses including structural identification with OV, CE, and PTD
methods, and validate/visualize modal analysis results. The last tool is a computational FE
model updating software called as FemUP. The SQP algorithm in MATLAB Optimization
Toolbox is used to minimize the difference between analytical and experimental natural
frequencies. Constraints are used on the correlation between the analytical and experimental
mode shapes using the MAC matrix. The natural frequencies and mode shapes are solved by
ANSYS. A simple vibration test is carried out and the capabilities of developed tools are
evaluated for a complete vibration test process. The example contains forced and ambient
vibration tests, signal analyses, system identification, and automatic FE model updating
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process of a steel cantilever beam model. Beside this simple example, the applications of the
developed tools for more detailed civil engineering structures can be seen in [17, 18]. The
obtained results show that developed tools work well and can be used for the vibration test of
structures.
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Chapter 4

Forward and Inverse Dynamics and Quasi-Static Analysis
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Additional information is available at the end of the chapter
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Abstract

There are many potential advantages of direct and inverse dynamic and quasi-static
analysis of mechanisms, namely control the risk of slippage, improve stability, better
adaptation to the environment, obtaining smooth movements and optimizing energy
consumption. This chapter proposes new analysis methods and algorithms to bring new
solutions to the mechanics of the machines under consideration. The methodology has
been developed in modular programs thanks to the flexibility of MATLAB®.

In this  chapter,  a  methodology for  the  complete  kinematic  and dynamic study of
mechanisms is provided.

The programs have been designed so that all parameters can be modified. It was possible
to automate these calculations creating an algorithm implemented in a programming
language to easily find the solutions and the results of the analysis.

To test the interest of the methodology, in this chapter, this has been applied to the field
of robots, especially the design of the biped robot PASIBOT. The inverse and forward
dynamics, accounting for support foot slippage, are encoded in MATLAB®.

In addition, the methodology was applied to another machine, an unmanned ground
vehicle (UGV), obtaining navigation optimization results using a numerical program
based on a quasi-static half vehicle model.

Keywords: mechanism, dynamics, quasi-static, robot, vehicle

1. Introduction

Nowadays, walking robots, service robotics, and unmanned ground vehicles are considered
one of the main areas of research. The employment of robots for dangerous tasks makes its

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
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design a crucial point. The interest in the development of humanoid robotics (personal
assistance, social task, etc.) is rising, and it is being studied by a great number of research
groups. The main issue is current mobile robots are not adapted to be used in domestic
environments due to their lack of maneuverability but also to their large volume and/or weight.

These days humanoid biped have a high number of actuators that are used to control the high
degrees of freedom (DOF) they possess. Nonetheless, one of the biggest drawbacks in human‐
oids is that both the weight and the power consumption still make this technology not suitable
for many tasks and/or environments. In the majority of cases, around 30% of the total weight
is related to the actuators and wires, and more than 25% to the reduction systems. That is why
our work is focused on finding a new dynamics analysis to simplify the design of new
mechanisms and kinematic chains which, maintaining the robot functionality, does not require
such a high number of actuators. This would reduce the robot mass and hence its power
consumption and total cost [1–4].

In recent years, different research groups have developed robots based on passive walking
techniques. Biped locomotion has been studied from several perspectives. Much effort is
devoted to the design of optimal trajectories and stabilized walking cycles via control pro‐
grams. However, researchers have not focused enough their efforts in solving the slip problem,
which has been largely ignored [5, 6].

In this chapter, the kinematics and dynamics analysis of PASIBOT (a biped walking robot
designed and built by the Maqlab Groups of the Universidad Carlos III de Madrid, shown in
Figure 2) are presented. The methodology to do the completed study from a theoretical point
of view is explained. The study objective is to calculate all the forces and torques between links,
as well as the linear and angular position coordinates, velocities, and accelerations for all links,
for any time. The equations have been implemented in MATLAB® code, and the corresponding
results have been contrasted [7–12].

The program accepts the initial kinematic state and the motor torque (as a function of time) as
inputs and returns the bipedal movement, including the sliding of the supporting foot. The
sliding is taken into account by adding one degree of freedom. Thus, we focus on the kinematics
and dynamics of the sliding supporting foot [13].

In addition, there is no doubt about all advantages unmanned vehicles have. For this reason,
the kinematics and dynamics analysis is one of the principal research lines in robotics. The
Tallinn University of Technology is researching in the design and development of the unman‐
ned ground vehicle (UGV) shown in Figure 20. This UGV is an all-terrain vehicle equipped
with an engine for each of its wheels. The novel aspect of this vehicle is that each wheel is
attached to the body by a leg so that the angle between the latter and the body may vary thanks
to the use of an attached actuator [14–16].

In this chapter, a parametric quasi-static half vehicle model is implemented on MATLAB®

following the explained methodology. The program calculates the variation in configuration
angles that optimized desired criteria as the vehicle passes on a particular track profile. This
algorithm makes it possible to find the variation of configuration angles along the track profile
that keeps the applied torque constant and/or minimized and/or satisfying certain criterion.
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2. Methodology

The sketch of the methodology is shown in Figure 1.

The first step is to define the mechanism. It is basically naming variables and parameters (with
the correct nomenclature the implementation in MATLAB® code is made easier) and classify‐
ing the type of movement (degrees of freedom, class of joints, etc.)

Figure 1. Sketch of the methodology.

It is possible to solve the kinematics and dynamics through the inverse dynamics or the
forward dynamics algorithm depending on the type of mechanisms, the known input, and the
desired output. Also, if the dynamics are complicated, the quasi-static approach can be useful.
The biggest advantage of this approach is that it is easily optimized. This is a valuable tool to
improve design and control with mathematics software.

In this chapter, the methodology of inverse and forward dynamics is applied to the biped
walking robot PASIBOT and the quasi-static approach to an unmanned ground vehicle.
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Note that the input and output of each approach are different and the equations are also
different. However, the methodology can be simplified in the Figure 1 for both, and the
correctly chosen nomenclature helps to generate a MATLAB® code. The developed MAT‐
LAB® code is totally parametric, giving the possibility of changing the values, adding new
analysis and new degrees of freedom (like slippage), or looking for analysis of sensibility.

Another advantage of doing the whole analysis with MATLAB® code is that the result can be
used as an input for redesigning or as an optimizing function.

3. Kinematics of the biped robot PASIBOT

Nowadays, certain commercial software of mechanical simulation provides the dynamics of
a mechanism with a small error. But, in some cases, like a biped robot actuated by small number
of actuators, it is also possible to obtain the kinematics and apply this methodology and obtain
the dynamics with a low degree of error. In this chapter, the kinematics of the biped PASIBOT
is developed. In next chapters, the inverse and forward dynamics are addressed using the
relations obtained in the kinematics.

The biped PASIBOT is a one-degree-of-freedom mechanical system based on a combination
of classical mechanisms that emulates human walking. PASIBOT is shown in Figure 2.

Figure 2. PASIBOT.

The biped PASIBOT (see Figures 2–4) is a mechanism composed of three sub-mechanisms of
conventional type, each of which is designed to perform a different function:
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1. The mechanism “Chebyshev” is responsible for generating a quasi-straight line.

2. A pantograph handles extend the “Chebyshev” coupling curve.

3. The stability of the biped is achieved by parallel extensions.

In Figure 3, the sub-mechanisms Chebyshev and pantograph as well as the trajectories for the
most relevant points are shown.

The only engine of the biped conveys a full rotation to the crank of the Chebyshev mechanism,
so that the end of its connecting rod (point C in Figure 3) makes a cyclical movement, one of
its tracts being a quasi-straight line. This point is connected to one end of the pantograph, so
that its other end (point E in Figure 3) carries an inverted and amplified from the previous
path. The corresponding amplification ratio depends on the lengths of the links of the panto‐
graph. The amplification ratio is two for the design of PASIBOT presented here.

Figure 3. The sub-mechanisms Chebyshev and pantograph with the trajectories of their notable points.

Points A, B, and D in Figure 3 are attached to the hip, as can be seen in Figure 4. The stabilization
system consists of a series of articulated parallelograms which are based on the two longest
links of the pantograph. These parallelograms guarantee the parallelism between the foot in
contact with the floor and the stabilizing link, the end of which slides on a slot at the hip. Since
that slot is aligned with the linear segment of the Chebyshev trajectory, the supporting foot
remains parallel to the slot during the whole period of support. In order to provide the opposite
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leg with the appropriate movement, the corresponding crank is phased out π rad (see Figure
4) in the same motor axis. In fact, both cranks are part of the same rigid element.

Figure 4. Sub-mechanisms of PASIBOT; nomenclature and numeration for the supporting leg and angular positions
for the links.

As shown in Figure 4, any link belonging to the flying leg has the same name and number as
the corresponding link from the supporting leg, but with a prime to distinguish between them.
Each leg comprises 12 links, apart from the engine crank (link number 8), which is shared with
both legs (no link number 8’ exists), so the biped PASIBOT has a total of 24 links, including
the single hip (link number 13).

Listed below are the parameters and variables that describe the kinematics and dynamics of
the biped:

li: length of the link i (mm)

mi: mass of the link i (kg)

i: angle between the link i and the hip (rad)

ωi: rotational velocity of link i (rad/s)

αi: rotational acceleration of link i (rad/s2)

Ii: inertia moment for the link i (kg mm2)

rij: position vector of the ij joint from the link i center of mass (mm)

rijx: x projection of the position vector (mm)

Applications from Engineering with MATLAB Concepts98



rijy: y projection of the position vector (mm)

fij: force exerted by the link i on the link j (N)

fijx: x projection of the fij (N)

fijy: y projection of the fij (N)

In Figure 5, a sequence for one step of PASIBOT is presented, as simulated with a commercial
program. Note that one step corresponds to a half rotation (π rad) of the motor crank.

Figure 5. PASIBOT gait along one step (from 8= π to 3π/2 rad).

After defining the whole type of movement and the nomenclature, the kinematical study of
one PASIBOT step is presented here. The kinematics is developed for the phase of “simple
support,” in which the supporting foot is in contact with the horizontal ground, whereas the
other leg is flying. First, no sliding between the supporting foot and the ground is considered,
so it can be considered part of the ground. Hence, the biped PASIBOT is a one DOF planar
mechanism, and we can refer the angular positions of any link to the angular position of the
motor crank (ω8):

8 ,  ( ) 1,2, 1 ,2 ,i i iq q q ¢ ¢= = ¼ (1)

Then, the x,y coordinates for its center of mass can be easily expressed with respect to that
angle:

8 8 ; ,  1,2, 1( ) ,2 ,) (i i i ix x y y iq q ¢ ¢= = = ¼ (2)

The angular velocities, accelerations and the center of mass linear velocities and accelerations
are obtained by taking the first and second derivatives in Eqs. (1) and (2).

Actually, the biped kinematics is divided into three closed-loop kinematic chains:

1. Chebyshev chain (links number 7, 8, 9, and 13)
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The distance between motor crank and rocker fixed points (A and B in Figure 3, respectively)
in a Chebyshev mechanism is lAB = 2l8, the rocker arm length is l9 = 2.5l8, the connecting rod
length is l7 = 5l8, and the rocker arm and connecting rod are joined at the middle point of the
latter. The link lengths have been particularized for the designed biped, and normalized to the
crank length, l8 = 1. Taking into account these lengths, the Chebyshev closed-loop kinematic
chain provides (see Figure 6):

7 9 82.5 2.5 2j j je e eJ J J- - + (3)

Figure 6. Chebyshev chain (lengths in units of l8).

In Eqs. (3)–(5), both projections (vertical and horizontal) for each closed-loop equation are
written in a compact form following the Euler’s formula, where j is the imaginary unit.

2. Pantograph chain (links number 9, 7, 3, 6, and 13)

The tendons length is l4 = l6 = 6l8, whereas the distance between the connecting rod-femur and
upper tendon-femur joints (points C and F, respectively) is lCF = 3l8, and the distance between
rocker arm-hip and upper tendon-hip joints (points B and D, respectively) is lBD = 12l8, so the
pantograph closed-loop kinematic chain provides (see Figure 7):

( )6 3 7 96 3 2.5 12 0j j j je e e e jJ J J J+ + + - = (4)
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Figure 7. Pantograph chain (lengths in units of l8).

3. Stability chain (links number 8, 7, 10, and 13)

In our model, the stabilizing link length is l10 = 4.2l8. The vertical distance between the motor
crank joint and the slot at the hip is 4l8. The horizontal projection distance between the motor
crank joint and the end of the stabilizing link is called x. The stability closed-loop kinematic
chain is as follows (see Figure 8):

10 7 824. 5 4 0j j je e e x jJ J J- + - + = (5)

Figure 8. Stabilization chain (lengths in units of l8).
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As stated below, these equations determine the angles for all the links as functions of that for
the motor crank, ϑ8, which is also a function of time. Solving Eq. (3), the following expressions
for the connecting rod and rocker arm angles are found:

2 2
8 8 8 8 8

7
8

2 2
8 8 8 8 8

9
8

4 cos 13 cos 10 sin 16 cos 60 cos 100
cos

25 20 cos

4 cos 13 cos 10 sin 16 cos 60 cos 100
cos

25 20 cos
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a

J J J J J
J

J

J J J J J
J

J

ì é ù- × + × - + × - × - × +ï ê ú=
ï ê ú- ×
ï ë û
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é ùï - × + × - - × - × - × +ê úï =
ê ú- + ×ï ë ûî

(6)

From Eq. (4), the femur and tibia angles are found as functions of the previous ones:
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7 9 7 9
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(7)

where A=(2.5⋅ (cosϑ7 + cosϑ9))2 + (2.5⋅ (sinϑ7 + sinϑ9)−12)2

Finally, Eq. (5) gives the solution for the stabilizing angle:

7 8
10

5 sin sin 4asin
4.2

J JJ × - -æ ö= ç ÷
è ø

(8)

As can be seen in Figure 3, the rest of the angles involved are identical to one of the given ones
in Eqs. (6)–(8), in particular:

1 5 10

12 4 3

2 13 6

J J J
J J J
J J J

= =
= =
= =

(9)

For the links belonging to the opposite leg, we apply a phase out of π radians on ϑ8:

( ) ( )' 8 8iiJ J J J p= + (10)

In order to reference all values to the ground, this corresponding base change must be applied:
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ground
1,iiJ J J= - (11)

where ϑi
groundϑ is the angle related to the ground system, and ϑi is the corresponding one

related to the reference system fixed at link 14 (hip).

The positions of the center of mass for every link are obtained using trigonometric relations
(e.g. x2=L2cosϑ2/2, y2=L2sinϑ2/2; x3=L2cosϑ2+L3cosϑ3/2, y3=L2sinϑ2+L3sinϑ3/2; etc.). Then,
by time differentiating once and then twice, the angular velocity and acceleration as well as
linear velocity and acceleration, respectively, for any link are calculated.

Thanks to apply this equations on MATLAB program, the kinematics of the biped robot
PASIBOT can be solved for one step, considering a motor crank constant angular velocity,

( )8 : 8   8·t tw J w= (12)

The PASIBOT possessed a single DOF, so the positions of the center of mass of link i can be
referred to the angular position of the motor crank (ϑ8):

( ) ( )8 , 2,3 1’,2’, 8i i i iJ J J= = ¼ ¼ ¹ (13)

( )8 , 1i iX X iJ= ¹ (14)

( )8 , 1i iy y iJ= ¹ (15)

4. Slipping kinematics of the biped robot PASIBOT

If the supporting foot is allowed to slip, the PASIBOT becomes a 2-DOF mechanism (the biped
moves across a plane, and the supporting foot supposedly remains horizontal). Eqs. (13) and
(15) remain valid, while Eq. (14) increases by the value of the supporting foot slippage x1 as
follows:

( )1 8x x X ;i 1i i J= + ¹ (16)

The first and second time derivatives of Eq. (16) are as follows:
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where a prime denotes explicit derivative with respect to ϑ8, and dots denote time derivatives.

5. Non-slipping inverse dynamics of the biped robot PASIBOT

The inputs for the dynamical problem are the kinematic magnitudes (angular acceleration, αi,
and its center of mass acceleration, (aix, aiy)). The dynamical equations for the motion of every
link, using Newton action-reaction law, are exposed in Eq. (18):
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There are three equations for each link (there are 23 links, excluding the supporting foot), and
the system describing the dynamics of the whole mechanism consists of 69 linear equations.
The system (Eq. 18) is expressed in a matrix form (Eq. 19), and then solved with a MATLAB®

via matrix inversion:
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The code of the matrix that must be written in MATLAB® is shown in Figure 9.
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Figure 9. The matrix A (coefficient).

Using MATLAB® code the kinematical and dynamical equations have been implemented in
order to obtain solutions depending on a set of parameters (link dimensions, masses and
densities, motor angular velocity) entered by the user. In Figure 10, the MATLAB flow chart
of the kinematics and dynamics algorithm is shown.

Figure 10. MATLAB® flow chart for the PASIBOT kinematics and dynamics calculus code.
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The MATLAB® program first finds the corresponding value of ϑ8(t), and using Eqs. (6) to (11),
it obtains the corresponding values of the rest of the angles and the positions of the centers of
mass. Then, it calculates the kinematics. These data, which define the state of the biped at the
time t, form the inertia matrix, (I), in Eq (19). Finally the MATLAB® program inverts the
coefficient matrix, (A), by means of a matrix inversion subroutine and multiplies both matrices
to provide the forces and torques between links at this time step. These values are stored to be
plotted and the calculations are restarted for the next time step.

The results have been validated by comparison with others programs (working model and
ADAMS code). The main advantage of the program developed via MATLAB® is that it lets us
perform fast modifications, making the final robot design easier by changing parameters.

As the first result, the program implemented in MATLAB® has calculated the motor torque
required to perform the movement. Figure 11 shows the actuator torque in the crank (link
number 8) related to time, for different values of the motor angular velocity, ω8.

In Figure 11, the same shape for each case can be appreciated apart from the torque obtained
from the highest velocity value (ω8 = 5 rad/s). With this velocity, the dynamical effect of the
inertia forces becomes important. However, for low speeds (below 3 rad/s) torque graphs
hardly differ from one to another.

In Figure 12, the torque is represented again but for different loads (5, 10, and 15 kg) added to
the hip. It is an interesting result. It shows that the required motor torque depends slightly on
the added load. This is because the hip remains at almost the same level in a course of a step.

Figure 11. Torque for different crank velocities. T is the period for one step.
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Figure 12. Actuator torque for different hip extra loads.

6. Forward dynamics for biped robot PASIBOT

The dynamics of mechanical systems can be modeled in two ways: inverse dynamics, which
calculates the forces and torques that produce kinematics (movement), and forward dynamics,
which computes the movement from known applied forces and torques.

When addressing forward dynamics, the kinematics is unknown. However, the angular
position of the motor crank, ϑ8, defines the position of the remaining links by Eqs. (20)–(22).
These functions were defined in Eqs. (6)–(12). The corresponding angular velocities and
accelerations as well as the center of mass linear velocities and accelerations are obtained from
the corresponding first and second time derivatives:
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When the kinematics is unknown, Eq. (19) becomes a system of second-order differential
equations. To solve it numerically, in addition to time discretization, a motor crank angle ϑ8

discretization is proposed. In this way, the derivatives of the known functions, ϑi = ϑi(ϑ8), Xi =
Xi(ϑ8) and yi = yi(ϑ8), are computed with respect to ϑ8 as follows:
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In fact, to implement the forward dynamic problem, Eqs. (23)–(25) are inserted into Eqs. (20)–
(22) and then into Eq. (18). Thus, we obtain a system of equations in which the first and second
time derivatives of ϑ8 are unknowns, while the torque is now a known function of time, T8 =
T8(t). The resulting system of equations is as follows:
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Figure 13. Evolution of the motor crank angle for different motor torques, when the biped starts walking from rest,
according to the program described in this chapter (a) and according to Working Model 2D simulations (b).

To solve this system of differential equations, Eq. (26), a time discretization is used. For each
time step, a linear inhomogeneous system is calculated, where the forces between links, and
the angular acceleration of the motor crank, ϑ̈8, are unknowns, while the angular velocity of
the motor crank, ϑ̇8, is known. In fact, ϑ̇8 is assigned an initial input, ϑ̇8(t =0), which is updated
after solving Eq. (26) in the previous time step, regarding the determined angular acceleration
as constant during ∆t. Then the updated angular velocity is as follows:

[ ] ( )8 8 81n t n t tJ J JD = é - D ù + Dë û
& & && (27)

Thus, the coefficient matrix is obtained from Eq. (19) by eliminating the column corresponding
to the torque coefficients T8 (previously, it was unknown), and adding a column representing
the coefficients of the motor crank angular acceleration, ϑ̈8. The torque T8 must now be included
in the right-hand side (RHS) column vector. The forward dynamics system is obtained as
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Note that the torque T8 now appears in the RHS column vector (constants column). Now some
results from the developed forward dynamics model are presented.

As shown in Figure 13(a), the torque above which the biped can start walking is 0.84 Nm. The
initial value of ϑ8 is π/2 (both feet are on the floor).

These results were compared with those obtained with the software Working Model 2D.
Comparing Figure 13(a) and (b), we can say that the results are similar enough to each other
to validate the program described in this chapter.

The MATLAB® program allows changing the density. In Figure 14, the motor crank angle is
plotted for a constant torque, T8 = 1 Nm and varying total weight (obtained by varying the
density of all links).

Figure 14. Evolution of the motor crank angle, for a constant motor torque, T8 = 1 Nm, and for different total weights.
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7. Dynamics of the biped robot PASIBOT including slippage between the
ground and the supporting foot

7.1. Inverse dynamics with slippage

In the previous sections, we have applied inverse dynamics to parametrically calculate the
required torque at the sole motor for PASIBOT to walk at a steady state (constant speed) with
no sliding between the supporting foot and the floor. However, when sliding between the
supported foot and the floor is allowed the kinematics is unknown and other approaches must
be applied. In fact, three more equations regarding the supporting foot dynamics must be
considered, as well as the kinematics-statics friction condition.

The forces acting on the supporting foot are

x x x y01 12 112 1 1 12y 12y 112 1f -f -f =m x ;f -f -f =m g&& (29)

Figure 15. Forces acting on the supporting foot (link 1). Link 1 is connected to links 2 and 12. The floor is considered as
link 0.

Since r10x
and f 01 y

r  are both unknown, Eq. (30) is the non-linear torque equation for the
supporting foot (link 1; see Figure 15):

( ) ( )x y y x x y y x x y y x10 01 10 01 12 12 12 12 1,12 1,12 1,12 1,12r f -r f - r f -r f - r f -r f =0 (30)

Forward and Inverse Dynamics and Quasi-Static Analysis of Mechanizes with MATLAB®

http://dx.doi.org/10.5772/63372
111



Eq. (30) is non-linear. If Eq. (18) is solved without Eq. (30), the latter can be used to obtain the
instantaneous zero moment point (ZMP) relative to the center of mass, ZMPx = r10x

 r10x, which
determines whether the biped topples.

In summary, the “inverse dynamic static friction equation” is obtained as follows in a matrix
form:
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The forces and the motor torque in each time step are computed by solving Eq. (31) via matrix
inversion encoded in MATLAB®.

When the supporting foot is allowed to slide, x1 becomes an independent variable (in general,
x1≠0, ẋ1≠0, ẍ1≠0). To consider sliding between two bodies involves three possible scenarios:
(1) no sliding (static friction), (2) imminent sliding, and (3) actual sliding. To determine the
sliding status at each time step, conditional branching was incorporated into the code.

Initially, no sliding is assumed and the state is static friction (x1 =0; ẋ1 =0; ẍ1 =0). Thus, solving
Eq. (31), the values of friction force ( f 01x

) and normal force ( f 01 y
) are calculated. Then, the static

friction condition

01 s 01x y
f fm£ (32)

is evaluated for a specified static friction coefficient, μs. If Eq. (31) is satisfied, the time is in‐
cremented by Δt and Eq. (31) is recalculated using the updated values of rij, ẍ i, ÿ i, ϑ̈ i. This step
closes the “static friction” conditional loop.

If Eq. (32) is false, the PASIBOT enters the state of imminent slipping. This system has the
following conditions: First, since the acceleration of the supporting foot,ẍ1, is no longer zero
but unknown, it must appear in the column vector of unknowns. Second, the kinetic frictional
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relationship between normal and tangential components of the floor-foot force must be
considered:

01 k 01 ,
x y

f fm=
(33)

where μk is the kinetic friction coefficient.

The new matrix of coefficients is then obtained from its predecessor by adding the following:

• A column of mi elements in positions corresponding to the x components of Newton’s
equations, with zeros elsewhere.

• An additional row incorporating Eq. (34).

Therefore, the final matrix form of the “inverse dynamic sliding friction equation” is as follows:
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(34)

The sign of the friction force is depending on the sliding status in the previous calculation. The
friction force opposes the horizontal component of the other forces acting on the foot when the
previous state was imminent sliding. The friction force opposes the velocity of the supporting
foot when the previous state was actual sliding.

With Eq. (34), the MATLAB® program calculates the acceleration with which the supporting
foot has begun sliding, ẍ1. In the current time interval ((n −1)ΔT −nΔt), the supporting foot is
assumed to move with the calculated uniform acceleration. The velocity and position of the
supporting foot are then updated by Eq. (35):
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The MATLAB® program obtain the kinematics and dynamics data (torque and force data) for
all links, and then it increments the time by ∆t and re-solves Eq. (34). Note that the square
brackets show the dependence.

When the PASIBOT is having a slippage, the friction force is against the supporting foot
movement. This force is considered constant during this time interval, and it can stop the
sliding of the PASIBOT but not change the direction of the movement. This is obtained with
the stopping time, ts, and compares it with the time increment, ∆t, as shown in Eq. (36):

1
s

1

xt =-
x
&
&& (36)

If ts is positive and less than ∆t, then friction stop the PASIBOT sliding before the end of the
time interval. Else, if it becomes negative or exceeds ∆t, the PASIBOT continues sliding in the
time interval. After that, the MATLAB® program updates the results using ts instead of ∆t and
returns to the beginning to solve the case of static friction, as provided in Eq. (31).

Figure 16. MATLAB® program flowchart with slippage.
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In Figure 16, it is shown the MATLAB® program inverse dynamics flowchart with slippage.
The forces between links and torque (dynamical variables) are calculated during the “STOR‐
ING DATA” task. The position, velocity, and acceleration (kinematic unknowns) for the
supporting foot are updated according to Eq. (34).

7.2. Forward dynamics with slippage

In the previous sections, we have applied this methodology to design the MATLAB® program
of inverse dynamics with slippage. To obtain the forward dynamics program, the slippage is
treated as in 30, while the dynamics is formulated as in 34. The MATLAB® flowchart showed
in Figure 16 is mostly maintained, but the systems of equations are different:

– The equation system to be calculated in the state of “STATIC FRICTION” is the forward
dynamics system of Eq. (28): static system (ST).

– The equation system that describes the slippage of PASIBOT (Eq. 35) in the state of “SLIDING
FRICTION,” is added to Eq. (28). Also, the motor torque appears in the constants’ column and
the motor acceleration and the slippage acceleration become the penultimate and final
elements of the unknowns’ column. Using Eqs. (20)–(25), the first and second derivatives with
respect to ϑ8 of the position, velocity, and acceleration of every link are calculated, with a
sufficiently fine discretization of ϑ8. The resulting system of equations (36) is referred to as the
“sliding system (SL).”
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– In “STORING DATA” mode, the kinematics of the supporting foot is updated by Eq. (37).
The motor crank position and velocity is updated according to Eq. (35).

Some results are presented in the following figures, in which different friction coefficients and
motor crank velocities have been considered. Figure 17 plots the horizontal supporting foot
position as a function of time for a constant motor crank angular velocity, ϑ̇8 =3rad / s,  and
varying friction coefficient (here μs  =  μk ≡  μ). From this plot, we can deduce the time course
of the supporting foot sliding.
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Figure 17. Supporting foot versus time (in units of one period, T) for constant ϑ8 = 3 rad/s, for a set of different friction
coefficient.

In Figure 17, it is shown that the minimum friction coefficient that prevents the slippage is
0.08. Also, it can be observed that the slippage occurs during preferred phases. The sliding
starts at mid-step until when the swinging leg has reached its highest point. If two slippages
occur, one of them is again invoked at mid-step, while the other occurs at the first quarter step.
For μ = 0.03, slippage occurs repeatedly at various phases.

Figure 18 shows the sliding characteristics for constant friction coefficient μ = 0.1 but different
motor crank angular velocities.

Figure 18. Supporting foot versus time (in units of one period, T) for μ = 0.1, varying ϑ8.

Because the program is parametric it is easy to set different values for static and kinetic friction
coefficients (kinetic friction coefficient is smaller than static friction coefficient). Figure 19
shows the supporting foot of the PASIBOT with slippage for a static friction coefficient, μs =
0.2, and three different kinetic friction coefficient, μk = 0.2, 0.1, and 0.05.

Applications from Engineering with MATLAB Concepts116



Note that the bigger the kinetic friction coefficient, the smaller the sliding distance slippage
occurs. Also, if there is slippage, it occurs at the same point for all three cases.

Figure 19. Supporting foot versus time for constant ϑ8 = 5 rad/s, for the same static friction coefficient and for three
different kinetic friction coefficients.

8. Applied quasi-static approach methodology to UGV

The quasi-static methodology is applied in this chapter. The main advantage of this approach
is that it is easily optimized. It is applied to a vehicle in order to optimize the navigation
capabilities. This methodology is applied to an UGV shown in Figure 20, which was designed
and developed by the Tallinn University of Technology. This unmanned ground vehicle can
change the angle between the body and the legs to improve the capabilities of passing obstacles
or navigation. It changes the position of the center of mass (CoM) relative to the ground-wheel
contacts, as well as the distance between the ground and the body [14].

In order to explain how to apply the methodology to implement this analysis in MATLAB®

code, the nomenclature and geometry of the vehicle are presented. The position and/or
trajectories of centers of mass, joints, and ground-wheel contact points are defined. Then the
quasi-static model is developed and the equations to calculate the forces and torques involved
are implemented in MATLAB®. The algorithm with the quasi-static equations obtains the
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position along the track for any configuration angles, and then calculates the optimal values
of those angles that satisfy a given condition. If the vehicle slips or overturns at any point of
the track, it is also calculated by the program [15, 16].

Figure 20. The unmanned ground vehicle (UGV) of Tallinn University of Technology.

The nomenclature is shown in the following list:

Flw: force on the rear wheel exerted by the rear leg

Fwl: force on the front leg exerted by the front wheel

Fr: friction force exerted by the ground on the rear wheel

Ff: friction force exerted by the ground on the front wheel

Nr: normal force exerted by the ground on the rear wheel

Nf: normal force exerted by the ground on the front wheel

M: torque on the wheels (supposedly the same on front and rear wheels)

D: ground-front wheel contact point; T: ground-back wheel contact point

L = 0.83 m: body length; l = 0.35m: leg length; C: Center of mass

φr: angle between rear leg and body; φf: angle between front leg and body

βr,βf: rear wheel contact angle, front wheel contact angle

f(x): function defining the track profile

g(x): function defining the trajectory for the centers of the wheels

mw = 50 kg: wheel mass; mb = 300 kg: body mass; ml = 20 kg: leg mass

First, the problem of positions is resolved. For a given ground function, with the front wheel
position, xf and the configuration angles, φr and φf, the back wheel can be located. The slope
of the ground at x is obtained as: βx = tan-1[f'(x)]. After the locus of the centers of the wheels,
g(s) are calculated as follows (see Figure 21):

Applications from Engineering with MATLAB Concepts118



(38)

Figure 21. Position problem.

The front wheel center position (sf,g(sf)) is obtained from Eq. (38) and the wheelbase is solved
as following:

( ) ( )2 22
r f r fcoscos coscos sinsin sin sinR L l l lj j j j= - - + - (39)

The intersection between the function g(s) and the circumference of radius R centered on the
front wheel (xf− rsinsinβf, f (xf) + rcoscosβf) locates the back wheel center (see Figure 22).

Figure 22. Scheme for locating the back wheel center.

Once the position of the vehicle is established, the locations of the CoMs are solved. The quasi-
static approach can be calculated with three subsystems: (see Figure 23): (1) back wheel, (2)
back wheel, both legs and body, and (3) the whole vehicle.
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Figure 23. Vehicle subsystems.

For each subsystem, equilibrium requires two force equations and one moment equation:
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where the unknowns are: Fr, Nr, Ff, Nf, Flwx
 Flwx, Flwy Flwy, Flwx

 Fwlx, Flwy Fwly and M. The

torque is the same on front and back wheels. This system of nine equations can be simplified

Applications from Engineering with MATLAB Concepts120



into a new system of five equations, where the unknowns are the torque, normal forces, and
friction forces. And in a matrix form: A⋅F = C ⇒ F = A-1 C, where

( ) ( )

r

r w l b

f

f 2 b

0
(2 2 )g

 0
C E g

0
x

F
N m m m

F CF
N m
M

é ù é ù
ê ú ê ú+ +ê ú ê ú
ê ú ê ú= =
ê ú ê ú
ê ú ê ú
ê ú ê úë û ë û

(43)

MATLAB® code is used to solve the system of five equations. The program calculate for a set
of discretized values of the front wheel position, the needed torque for any combination of a
set of discretized values of the angles ϕr and ϕd. Thus, different criterions can be applied:
minimize the energy to be supplied to the wheels, minimize the instantaneous torque or
maximization the grip, the ground-wheel normal force, etc.

Some results are presented for a soft bump: square exponential profile, f (x)=0.1e −(x−4)2 (in
meters). Figure 24 shows the torque function that must be applied for any static configurations
angles passing the soft bump.

Figure 24. Torque needed passing a soft bump for different static configuration angles.

Figure 25(a) shows configuration angles variation needed to pass over the soft bump, with the
minimum variation of torque and the corresponding torque function. Figure 25(b) shows the
sequence of the UGV passing through the soft bump.
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Figure 25. (a) Configuration angles and torque and (b) sequence of the UGV.

9. Conclusions

The methodology provided in this chapter can be applied to mechanisms, vehicles, or robots
for the complete mechanical study. The kinematics and dynamics are solved using Newton-
Euler equations, from the movement of the actuator to iterating during the time of initial
condition as well as external forces, and with the quasi-static approach.

The programs have been designed so that all parameters can be modified. It was possible to
automate these calculations creating an algorithm implemented in a programming language
to simply find the solutions and the results of the analysis.

The methodology has been applied to design the biped robot PASIBOT. The kinematics and
dynamics (both forward and inverse) of the biped robot “PASIBOT,” taking into account for
support foot slippage are encoded in MATLAB® code.

The great advantage of creating a parametric MATLAB® code following this methodology is
that the algorithm can be modify to obtain the results in a parametric way or even changing
the conditions easily. For example, it can calculate the motion of the biped from the torque
function given by the biped’s sole motor or the torques required for starting and braking as
well as defining the conditions that prevent or control slippage.

Because the program remains parametric the lengths, densities and masses, motor velocities
and torque, friction coefficients and other parameters can be modified by the user.

The methodology was also applied to another machine, a UGV vehicle, obtaining navigation
optimization results. A numerical program based on a quasi-static half vehicle model is
presented. For a given profile that could be read by sensors the program calculates how the
angles between the body and the legs must vary, in order to fulfill the criteria like maintain as
constant as possible the torque for example. The program created with this methodology in
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MATLAB® code also can calculate the values of normal and friction forces, checking if the UGV
rolls over or slip at any point.

In conclusion, this methodology can help to generate MATLAB® programs that will be valuable
tools to optimize some navigation capabilities, dynamics analysis, quasi-static analysis, and
slippage control among other.

Following this link the reader can find some examples of MATLAB codes done with the
methodology of the chapter: http://www.mathworks.com/matlabcentral/profile/authors/
7854464-eduardo-corral

The code that calculates the inverse dynamic of the biped PASIBOT with slippage (using the
methodology that we explain in the chapter) and the code that calculates the torque of the UGV
and that optimized the best route are in the previous links.

Author details

E. Corral*, J. Meneses and J.C. García-Prada

*Address all correspondence to: eduardocorralabad@gmail.com

MAQLAB group, Universidad Carlos III de Madrid, Spain

References

[1] Corral, E., Meneses, J., Castejón, C., García-Prada, J.C. Forward and inverse dynamics
of the biped PASIBOT. Int J Adv Robot Syst, 2014, 11:109. doi: 10.5772/58537

[2] Meneses, J., Castejón, C., Corral, E., Rubio, H., García-Prada, J.C. Kinematics and
dynamics of the quasi-passive biped “PASIBOT”. Strojniški vestnik J Mech Eng, 2011,
57, 12:879–887.

[3] Corral, E., Meneses, J., Rubio, H., Castejón, C., García-Prada, J.C. A configuration
optimization algorithm based on quasi-static approach for a UGV. 17th International
conference on climbing and walking robots, CLAWARS 2014, University of Technol‐
ogy, Poznan, Poland, 2014.

[4] Corral, E., Meneses, J., Garcia-Prada, J.C. Inverse and forward dynamics of the biped
PASIBOT. International Symposium on Multibody Systems and Mechatronics,
MUSME 2011, Valencia, España, 2011.

[5] Fujimoto, Y. Minimum Energy Trajectory Planning for Biped Robots, Humanoid
Robots: New Developments, Armando Carlos de Pina Filho (Ed.), InTech, Rijeka,
Croatia, 2007, ISBN: 978-3-902613-00-4, Available from: http://www.intechopen.com/

Forward and Inverse Dynamics and Quasi-Static Analysis of Mechanizes with MATLAB®

http://dx.doi.org/10.5772/63372
123



books/humanoid_robots_new_developments/minimum_energy_trajectory_plan‐
ning_for_biped_robots

[6] Kappaganthu, L., Nataraj, C. Optimal Biped Design Using a Moving Torso: Theory and
Experiments, Biped Robots, Prof. Armando Carlos Pina Filho (Ed.), InTech, 2011, ISBN:
978-953-307-216-6, Available from: http://www.intechopen.com/books/biped-robots/
optimal-biped-design-using-a-moving-torsotheory-and-experiments

[7] Garcia de Jalon, J., Bayo, E. Kinematic and Dynamic Simulation of Multibody Systems
– The Real-Time Challenge,“ Springer-Verlag, New York, 1993.

[8] Shabana, A.A., Computational Dynamics, Wiley, New York, United States, 2001.

[9] Shabana, A.A., Dynamics of Multibody Systems, 2nd ed., Cambridge University Press,
New York, United States, 1998.

[10] Castejón, C., Carbone, G., García-Prada, J.C., Cecarelli, M. A methodology to design
robotic arms for service tasks since early design stage, Int J Mech Control, 13, 02:73–83,
2012. ISSN: 1590-8844

[11] Castejón, C., Carbone, G., García-Prada, J.C., Ceccarelli, M. A multi-objective optimi‐
zation of a robotic arm for service tasks. Strojniški vestnik – J Mech Eng, 2010, 56, 5:316–
329.

[12] Gómez, M.J., Castejón, C., García-Prada. J.C., (2010). Evaluación de la adaptabilidad
mecánica de los robots en entornos humanos (Evaluation of Mechanical Adaptability of
Robots in Human Environments), in language spanish. Anales de Ingeniería Mecánica.
Vol 01, Pages 187. ISSN: 0212-5072.

[13] Tokiwadai, Hodogayaku, Yokohama. Maintaining floor-foot contact of a biped robot
by force constraint position control. Proceedings of the 2011 IEEE International
Conference on Mechatronics, 2011.

[14] Universal Ground Vehicle , Research Project L523. Tallinn University of Technology ,
Department of Mechatronics , 2005–2008.

[15] Corral, E., Meneses, J., Aryassov, G. A quasi-static approach to optimize the motion of
a UGV depending of the track profile. 9th International Conference, MSM, Vilnius,
Lithuania, 2013.

[16] Corral, E., Aryassov, G., Meneses, J. A quasi-static approach to optimize the motion of
an UGV depending on the track profile. Solid State Phenomena, 2015, 220–221:774–780.
doi:10.4028/www.scientific.net/SSP.220-221.774

Applications from Engineering with MATLAB Concepts124



Chapter 5
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Abstract

In this chapter, we present the design, simulation, and control of a hexapod robot using
tools available in MATLAB software. In addition, we design and implement a dynamic
model (using the Simscape Multibody™ toolbox) as well as a three-dimensional model
of the robot, using Virtual Reality Modeling Language (VRML), that help to visualize
the robot’s walking sequence. This three-dimensional model is interconnected with the
Simscape Multibody™ blocks using MATLAB’s virtual reality blocks. Apart from this,
and  following  specific  requirements,  we  design  and  implement  a  Proportional–
Integral–Derivative controller in order to obtain a pre-established displacement for the
robot that, thanks to the developed computer simulations, proved to be satisfactory.
Special emphasis is put in obtaining a modular representation of the dynamic model of
the  studied  robot  because  it  will  permit  to  design  more  sophisticated  nonlinear
controllers in future works, allowing a good dynamic behavior of the robot in front of
environmental  perturbations,  an issue that  will  become evident through computer
simulations of its displacement.

Keywords: Mobile Hexapod Robot, Robot control, Modeling, Simscape Multibody,
Virtual reality

1. Introduction

Research on multi-legged walking robots, which are created to mimic the structure of limbs and
movement control in insects and arthropods, has been carried out for decades. Among many
multi-legged robots, the hexapod robot is one of the most employed robots for a wide range of
tasks [1, 2].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Hexapod robots have many advantages over other kinds of multi-legged walking robots: they
can easily get and keep their equilibrium while moving (they are statically stable); they have
the ability to adapt to irregular surfaces of different nature; they have redundancy of legs (it
allow them to continue their task even if they lose a limb); they are omnidirectional and are
less affected by environmental conditions than robots with wheels [3, 4].

Their advantages make them suitable for tasks requiring some degree of autonomy and high
levels of reliability. Among the possible fields of application for hexapod robots, we have
volcanic exploration, rescue procedures, detection of antipersonal landmines, undersea
operations (marine floor), as well as sample collection, search for life, recognition missions in
extraterrestrial exploration. The most of those tasks are hazardous and are usually accompa‐
nied by harsh environments, not compatible with human operation [5–7].

2. Hexapod robot

Success in designing a hexapod robot lies fundamentally in the structure of chosen legs. The
main aspects of a hexapod robot’s displacement are ruled by physical limitations of their legs.
It is of paramount importance to choose a leg whose design provides the maximum possible
range of movements and that does not pose unnecessary constraints that can affect the
movement of the robot [5, 6].

2.1. Direct kinematics of a hexapod robot

In order to obtain the kinematics of the studied robot, it is necessary to use the Denavit-
Hartenberg algorithm, applying it to a leg of the hexapod robot. This robot is formed by a
symmetrical structure composed of six identical legs, having three degrees of freedom (DOF)

Figure 1. Model of the hexapod robot leg.
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of rotational type in each leg. Thanks to its symmetry, this analysis can be done in one single
leg [4, 7], as shown in Figure 1.

According to Figure 1, joint 1 is the point where the leg unites with the body of the robot (which
is called "thorax"), link 1 is called "coxa," link 2 is called "femur," and link 3 is "tibia." Parameters
obtained through the application of the Denavit-Hartenberg method are displayed in
Table 1. Those parameters were obtained from the study of Olaru [7].

Link ai αi di θi

1 L1 90° d1 θ1

2 L2 0° 0 θ2

3 L3 180° 0 θ3

Table 1. Denavit-Hartenberg parameters.

Those parameters originate the homogeneous transformation matrices that relate link i-1 with
link i. It is possible to find the homogeneous transformation matrix for each link by means of
equation (1), the which is presented in the study of Pullteap [4] and Olaru [7].

1
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The matrix that relates the first link with the reference system defined in Figure 1 is shown in
equation (2); the matrix that relates the second link with the first one is shown in equation (3);
and finally, the matrix that relates the second link with the base of the robot’s leg is given by
equation (4).
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The total transformation is obtained by multiplying expressions (2)–(4), as pointed in equation
(5), and the resulting expression represents the relationship between the system of coordinates
of the robot’s base with the base of the leg (6)–(9) [4, 7].

0 0 1 2
3 1 2 3A A A A= × × (5)

( )( )1 1 2 2 3 2 3cos cos cosx L L Lq q q q= × + × + × - (6)

( )( )1 1 2 2 3 2 3cos cosy sen L L Lq q q q= × + × + × - (7)

( )1 2 2 3 2 3z d L sen L senq q q= + × + × - (8)

2.2. Inverse kinematics

Inverse kinematics is the process of determination of the angles in terms of the coordinates for
the leg’s desired position in the Cartesian system. Unlike the problem posed by direct
kinematics, the procedure for getting the equations is strongly dependent on the robot's
configuration, making it a complex procedure because it is very difficult to obtain systemati‐
cally those equations, even plainly impossible. Inverse kinematics, in this case, is obtained
through geometrical considerations based on the leg’s shape. Considering Figure 2, the
obtained equations are shown in (8)–(11):
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Figure 2. Model of the leg for the hexapod robot.

3. Dynamics of the hexapod robot

The problem of obtaining a robot’s dynamic model is one of the more complex aspects in the
field of robotics, and it is necessary for achieving the following objectives: design and evalu‐
ation of robot’s dynamic control, sizing of actuators, evaluation of the robot’s mechanical
structure, and motion simulation of the robot design [4].

The dynamic model of the studied hexapod robot can be obtained through the application of
Lagrange-Euler or Newton-Euler algorithms. Even if the Newton-Euler method is more
efficient from the point of view of computer processing, we can also employ Lagrange-Euler
method, because this robot has few DOF per leg. The obtained equations are shown in (12)–
(14), and they also include masses of actuators—in this case, servo motors of mass M. Besides,
the analysis is simplified by assuming that the masses of the first and the last link are identical
[7].

( ) ( )( )' '' 2 2 2 2
1 1 1 1 1 3 2 2 3I I M l R m r rt q= × + + × + + × +&& (12)

( ) ( )' " 2 2 2 2
2 2 2 2 2 3 4 3 2 3 1 2 2 1

3cos 3 cos 2
2 2
m mI I Ml m r g l M m l M mt q q q qæ öæ ö æ ö= + + + - + + + + + +ç ÷ç ÷ ç ÷
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3cos 3
2
mI I g l M mt q q q æ ö= × + - × × + × + +ç ÷

è ø
&& (14)

where:

I1
', I2

', I3
': moment of inertia associated to servo motors 1, 2, and 3, respectively.

I1
'', I2

'', I3
'': moment of inertia associated to links 1, 2, and 3, respectively.

r2, r3, r4: radius of rotation of the mass center associated to links 1, 2, and 3, respectively.

R3: radius of the rotation circle of servo motor 3.

4. Hexapod robot model and simulations

4.1. Hexapod robot model

In order to carry out a modeling and further simulation of a hexapod robot, it is necessary to
take into account the robot’s physical characteristics (mass, dimensions of thorax, measures of
links, and the inertia matrix). In this case, we will employ the model developed in Ref. [9],
which details the robot’s size, as well as the other parameters. However, some parameter
modifications will be made, trying to get as close as possible to real conditions. Basically, we
will employ the robot geometry shown in Figure 3 and 4.

Figure 3. Top view of the hexapod robot.
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Figure 4. Front view of the hexapod robot.

To obtain the three-dimensional (3D) model of the hexapod robot, we will employ the VRML
language, developing a robot model using simple geometrical figures [8]. This language allows
to obtain a complex model, simply using a group of basic 3D bodies (cubes, spheres, cones,
etc.). There are many alternatives to develop a 3D model using VRML language: one of them
consists in programming it directly using its commands or employing a graphical editor that
eases the design. In this last case, a script is developed containing the instructions that model
the robot (Figure 5).

Figure 5. Perspective view of the three-dimensional model of the hexapod robot.
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To obtain mass (m) of each robot’s link, we take into account the geometrical considerations
of the link and the kind of material that would be employed in the construction of this type of
robot; for example, we consider (for simplicity’s sake) that the robot legs are composed of two
cylinders with different radius (R) and height (H); the thorax (the central body of the hexapod
robot) has a length (l), height (h), and width (w), and it is supposed that the robot is built in
transparent acrylic, whose density (p) is 1190 kg/m3. We calculate the cylinder’s volume by
means of equation (15), the robot’s thorax volume by means of equation (16), and the mass by
means of formula (17). The robot’s inertia matrix is obtained using the expression (18) for the
cylinder and equation (19) for the body.
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It is important to calculate those parameters, because they will be employed in the simulation
section. In Simscape Multibody™, this information must be entered in each corresponding
block. We must notice that the calculation of masses does not includes additional loads which,
in real terms, represent the robot’s electronics, sensors, batteries, actuators, and cables,
therefore simplifying the number of variables to be considered. The calculation of volumes
and masses is shown in Table 2, and the corresponding inertia matrices for each link are
obtained by means of expressions (20)–(22).
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Parameter Description Value

HM Thigh length 10 (cm)

HP Leg length 20 (cm)

RM Thigh radius 2.5 (cm)

RP Leg radius 0.75 (cm)

h Thorax height 5 (cm)

w Thorax width 25 (cm)

l Thorax length 50 (cm)

VT Thorax volume 6250 (cm3)

VM Thigh volume 196.35 (cm3)

VP Leg volume 35.34 (cm3)

MT Thorax mass 7437.5 (g)

MM Thigh mass 233.66 (g)

MP Leg mass 42.06 (g)

Table 2. Hexapod robot parameters.
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The center of mass for each link can be obtained making a simple analysis on each link. We
can observe that they are symmetrical bodies, and their mass is homogeneous all over their
structure, so the center of mass coincides with the geometric center of each element.

4.2. Simulations

When observing the complexity of obtained expressions, it becomes evident that the greater
the number of DOF a robot has, the more difficult is to find the equations, more computer

Design, Simulation, and Control of a Hexapod Robot in Simscape Multibody
http://dx.doi.org/10.5772/63388

133



resources are consumed, and longer time and greater effort are spent trying to obtain them.
As previously mentioned, an expression for the individual dynamics of a single leg of the
hexapod robot is relatively easy to obtain, nevertheless the hexapod robot has six legs, that is
a total of 18 DOF, therefore making the simulation more complex. That is why we employed
a MATLAB tool called Simscape Multibody™, which has the advantage to perform simula‐
tions using blocks that represent links and joints (rotational or prismatic), as if the robot was
being assembled. The advantage of this is that we do not need to obtain previously the dynamic
model, because those blocks simulate it by configuring parameters on each block separately.
Those parameters are inertia matrix, masses, center of mass, and geometry of the robot. In
order to do that, we proceed as follows: we start by implementing a leg, and next, we convert
it into a block, easing handling and replication for the robot’s simulation. Each leg has three
associated PID control blocks, provided by MATLAB. Figure 6 shows the blocks composing
the hexapod: the blocks representing the legs, the block of virtual reality, and the block for
robot trajectory.

Figure 6. Model of the hexapod robot.

Despite the fact that the hexapod robot is clearly modeled through a nonlinear system, a PID
control was implemented in each DOF of the robot. We started by tuning one leg (it has three
PID controllers) and then replicated those parameters in the rest of the legs. This procedure
was possible because in this work we did not intend to design a controller that able to perform
a precise control for this robot but rather a controller that responded in a quick and acceptable
manner to input references. In order to implement the controller, we used the PID block
available in Simulink, which eases the process of designing and tuning the controller.

Trajectory planning is made through sinusoidal functions, according to the robot’s sequence
for straight-line displacement, and the work space. We developed a block containing the
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positions that the hexapod robot must follow in time (see Figure 7). For displacements, we
considered the joint that unites femur and tibia is fixed at 0° (it is not necessary that this link
moves in rectilinear displacements), also considered that the joint uniting coxa and thorax will
cover between −50° and 50°, and finally, that the joint uniting coxa and femur will vary from
−30° to 30°. The displacement speed can be modified by manipulating the angular frequency
(fixed at 1 (rad/s) in this case). The displacement sequence is detailed in Figure 8.

Figure 7. Trajectory planning block for each joint.

For tuning the PID controllers, we do not use a conventional method, but we do this process
by varying parameters in the following way (trial and error): we vary the proportional gain
without intervening the rest of the gains, and when reaching an adequate value, we continue
varying the integrative gain until the stationary state error becomes zero (or near to zero), and
finally we modify the derivative gain until it reaches a proper value. The proportional action
delivers power enough to arrive with speed to the setpoint, the integral action eliminates the
stationary state error, and the derivative action responds to the error’s change speed and
produces a significant correction before the magnitude of the error becomes too great. Due to
the nonlinearity of the hexapod robot, the PID control is not suitable.

Figure 8. Simulation of the hexapod's walking sequence.

Design, Simulation, and Control of a Hexapod Robot in Simscape Multibody
http://dx.doi.org/10.5772/63388

135



The main file that contains the folders with the programming codes of the computational
simulations presented in this chapter can be downloaded directly from: http://www.math‐
works.com/matlabcentral/fileexchange/56184-hexapod-robot

5. Conclusions and future development

Obtaining a dynamic model for a hexapod robot can be a laborious and complex task (espe‐
cially when the robot has several DOF), which makes Simscape Multibody™ a powerful and
easy-to-use tool for this purpose. We do not need to obtain an explicit dynamic model when
using Simscape Multibody™ because such model is elaborated by means of blocks that
represent links and joints, therefore consuming little time in the implementation of computer
simulations. The development of a model in three dimensions and its further simulation help
to visualize the design and possible problems that a real robot could confront (if the robot
already exists or if it is going to be built).

PID controllers are not the most suitable devices to perform position control for this kind of
robots; however, it is necessary to remark that the aim of our work was not to design a controller
that could allow precise control, but getting the robot to respond in a quick and acceptable
manner to input references. Special emphasis has been put in obtaining a modular represen‐
tation of the dynamic model of the studied robot because it will permit to design more
sophisticated nonlinear controllers in future works, allowing a good dynamic behavior of the
robot in front of environmental perturbations, an issue that will become evident through
computer simulations of its displacement.

In the near future, a robot of this kind will be designed and built, which will permit to
implement algorithms for intelligent control, such as neural nets, fuzzy logic, and/or adaptive
control. Additionally, not only the locomotion of the hexapod robot will be developed but also
its artificial vision systems.
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Abstract

This chapter illustrates the versatility of MATLAB for building interactive end-user
software applications to support the pedagogy of a multiscale modeling approach to
computational materials engineering. The case studies presented here demonstrate how
preexisting codes that model complex material behavior, even if written in compiled
computer languages such as Fortran or C++, may be utilized as computational libraries
for model calibration software tools built  with MATLAB. Intended for students in
computational engineering (mechanics and materials), these tools execute on personal
computers without MATLAB if the MATLAB Runtime shared libraries are installed.
Publications coauthored by students using these tools to calibrate material models and
to investigate the performance of engineering materials indicate that the tools enable
advances in engineering design from a computational engineering perspective.

Keywords: multiscale modeling, interactive model calibration, parallel optimization,
mixed-language programming, MATLAB

1. Introduction

The book “Integrated Computational Materials Engineering (ICME) for metals: using multi‐
scale modeling to invigorate engineering design with science” by Mark F. Horstemeyer [1] aims
to educate the next generation of practitioners of a simulation-based approach for the under‐
standing,  design,  development,  and  manufacturing  of  load-bearing  structural  products.
Intended as a textbook for senior undergraduate and graduate students of computational
materials engineering, the book contains lecture notes, questions and solutions manual, and
tutorials on the model codes at each length scale. The book has a companion website [2] with a
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section each dedicated to the classes of materials (metals, ceramics, polymers, biomaterials, etc.)
and to material models at the different length scales. Many of the model codes discussed in the
book have been incorporated into compiled MATLAB [3] applications for students to run on
personal computers and research workstations with or without MATLAB installed. The design
of these MATLAB applications and examples of their use as computational tools to investi‐
gate materials for engineering products is the subject of this chapter.

Section 2 provides an overview of the multiscale modeling approach to the study material
behavior. Section 3 describes the general design considerations and requirements for model
calibration tools built on top of the preexisting model codes for multiscale modeling. The first
MATLAB application built by the authors based on these requirements is DMGfit [4] for
calibrating the internal state variable (ISV) damage and plasticity model [5, 6] written as a
Fortran subroutine. Section 4 describes DMGfit in some detail as its support for user interac‐
tivity and its exploitation of multiprocessing capability in hardware heavily influenced the
development of subsequent applications built by the authors. Section 5 describes TPgui [7], a
graphical user interface (GUI) and calibration tool for a thermoplastic model of polymers [8].
TPgui was developed at about the same time as the underlying model; hence, flexibility was
built into the interface to accommodate model revisions. Section 6 focuses on VPSCgui [9], a
GUI to the viscoplastic self-consistent (VPSC) model of polycrystalline aggregates [10]. VPSC
is a self-contained Fortran program, raising the issue of information exchange with the
interface. Section 7 provides screenshots and summaries of the calibration tool for the multi‐
stage fatigue (MSF) model of crystal plasticity [11] and the modified embedded atom method
(MEAM) parameter calibration (MPC) tool [12] that embeds LAMMPS-MEAM (large-scale
atomic/molecular massively parallel simulator with the MEAM package for many-body
potentials) [13–15]. Section 8 summarizes some lessons learned in building MATLAB appli‐
cations for pedagogy and research in the multiscale modeling of materials.

2. Multiscale modeling of materials

Consider an engineering metallic product that is a component of a larger system. Of particular
interest is a reliable prediction for the failure of the component. The simulation-based design
of the component to satisfy specified engineering objectives would use information provided
by material models at all involved length scales. See Figure 1 for an illustration.

The larger system is the vehicle, with the automotive control arm as the component of interest.
Pertinent questions regarding the component may include the following: As designed, where
will failure occur, and what is the expected lifetime of the component? Can the component
design be optimized and/or can the component be built using a different material such that
the component will cost less, weigh less, and last longer? These questions may be investigated
using a hierarchical multiscale model. Based on the illustration in Figure 1, the length scales
and some of the computational models that have been used at each scale are listed in Table 1.
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Length scale Computational model

L1: Electrons (Å) M1: Electronics principles (DFT)

L2: Atoms (nm) M2: Atomistic (EAM, MEAM, MD, MS)

L3: Dislocations (100 nm) M3: Dislocation dynamics

L4a: Grains (1 μm) M4a: Crystal plasticity (1 μm ISV+FEA)

L4b: Grains (10–100 μm) M4b: Crystal plasticity (10–100 μm ISV+FEA

L4c: Grains (100–500 μm) M4c: Crystal plasticity (100–500 μm ISV+FEA)

L5: Macroscale continuum M5: Macroscale ISV

L6: Component M6: ISV

L7: Whole system M7: ISV

FEA, finite element analysis; MD, molecular dynamics; MS, molecular statics.

Table 1. Multiscale modeling length scales and computational models.

Figure 1. Multiscale modeling example of an automobile component made from metal (from [1], p. 11).
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The computational material codes typically solve complicated physics-based formulas for
material behavior and are written in procedural computer languages, such as Fortran, C, or
C++, or may even be mixed-language programs. These material model codes usually require
an input file containing values of the model parameters and computational settings. Output
files  generated by these model  codes are  typically  postprocessed or  visualized by other
software.

Computational simulations at lower-length scales generate information that will be used by
material models at the higher-length scales (upscaling). Alternatively, models at higher-length
scales may specify information that imposes boundary conditions on simulations at the lower-
length scales (downscaling). The upscaling and downscaling calculations form “bridges”
between material models and simulations. Table 2 lists the model-bridging calculations based
on the illustration in Figure 1.

Model #1 Model #2 Bridging calculation Model #1 Model #2 Bridging calculation

M1 M2 Bridge 1=Interfacial energy; elasticity M1 M5 Bridge 6=Elastic moduli

M2 M3 Bridge 2=Mobility M2 M5 Bridge 7=High rate mechanisms

M3 M4a Bridge 3=Hardening rules M3 M5 Bridge 8=Dislocation motion

M4a M4b Bridge 4=Particle interaction M4a M5 Bridge 9=Void/crack nucleation

M4b M4c Bridge 5=Particle-void interactions M4b M5 Bridge 10=Void/crack growth

M4c M5 Bridge 11=Void-crack interactions M5 M6 Bridge 12=FEA

M6 M7 Bridge 13=FEA

Table 2. Model-bridging calculations in multiscale modeling.

3. Design considerations for model calibration tools

The applications described here are intended to support pedagogy and research in a multiscale
modeling approach to computational materials engineering. Because students who are
learning complex models of material behavior will use the applications, interactivity is an
important consideration. In addition, automation is also important so that the applications can
save time for busy researchers who are already familiar with the models and just need to
calculate a few sets of model parameters. Students may be using personal computers running
Microsoft Windows or Mac OS or research workstations running Linux. Whatever is the
operating system, most modern laptops and workstations already have built-in multiprocess‐
ing capabilities that may be harnessed to speed up intensive computations. In addition, the
model codes may undergo revisions as research progresses. Finally, the application may need
to be shared with collaborators for exchange of ideas. Thus, many issues pertaining to students,
research collaborators, computing platforms, and the certainty of incremental model revisions
need to be addressed in the design of applications for both pedagogy and research in multiscale
modeling.
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At the core of the multiscale modeling approach are mathematical constitutive models
representing material behavior at various length scales. These models are typically expressed
as complex mathematical functions with several parameters. For a specific material, some of
these model parameters may be known from the scientific literature or from the material data
sheet prepared by the manufacturer, whereas other parameters are to be determined from
material characterization experiments or from results of other computational simulations. The
process of determining model parameters from experimental or simulation data is referred to
here as model calibration.

Figure 2 depicts an interactive model calibration process. The model parameters produced as
outputs of the process may be used in the model-bridging calculations in Table 2 or by models
in the higher-length scales. The model calibration tools described here were initially developed
for students of computational engineering. A student may use a tool to complete an assign‐
ment, to model experimental data that are collected during a research project, or to learn about
and revise its underlying material model.

Interactivity in a model calibration tool is a requirement so that end-users are able to imme‐
diately visualize the effect of changing a model parameter. This is important, as an incremental
and heuristic strategy to calibration is sometimes necessary, owing to the complexity of a

Figure 2. Interactive model calibration to determine model parameters from experimental data. The user specifies the
experimental data, initial model parameters, and solution settings (the inputs) through the User interface. The Plot
Module invokes the Model Evaluation module (the model code) to calculate a model curve from the model parameters
currently on display. The model points are plotted alongside the experimental data. Individual parameters may be
manually edited on the User interface to change the shape of model curve. The Optimization Module attempts to auto‐
matically find values for a set of parameters (the output) that will generate model curves that are “close” to the experi‐
mental data.
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material model. Another requirement is that a calibration tool must run on stand-alone
personal computers commonly used by students (usually Microsoft Windows or Mac OS) and
on research workstations (typically Linux). Further, because modern personal computers and
workstations typically have built-in multiprocessing capabilities, another design requirement
is that the tool must be able to exploit parallelism available in the runtime system for the faster
execution of applicable steps in the interactive model calibration process.

The scientific theory underlying a material model is always a work in progress. Revisions to
theory translate into changes in the constitutive model code, such as the addition of model
parameters or extended formulas to better capture material behavior. Therefore, another
design requirement for the tool is that code changes to accommodate additional model
parameters or updates to model formulas should be confined to the Model Evaluation module.
This will enable students who are doing research on improving the underlying material model
to concentrate on the model code with very minimal changes in the Model Evaluation module
and the User Interface.

Research collaborations typically involve the transmission of software for evaluation or trial
use by interested parties. In many cases, constitutive model codes written as part of sponsored
research have disclosure restrictions. To facilitate the exchange of novel ideas embedded in
material models without disclosing source codes, the binary executable for a model calibration
tool will have to be transmitted. Thus, the programming environment for the tool must be
capable of building a binary executable that is royalty free when redistributed.

MATLAB was selected as the programming environment for building the model calibration
tools because of the following features:

1. Availability of numerical libraries, graphical functions, parallel code development, and
GUI-building tools in a single environment;

2. Constitutive model codes written in other languages (Fortran, C/C++) can be integrated
without rewrite with MATLAB code;

3. The same MATLAB application source code runs on multiple operating systems
(Windows, Linux, and Mac OS); and

4. The MATLAB application can be compiled into an executable that is freely redistributable.

The succeeding sections describe some of the model calibration tools built using MATLAB by
the authors primarily for graduate research assistants in the Center for Advanced Vehicular
Systems (CAVS), Mississippi State University. These tools are interactive and at the same time
support a semiautomated process of model calibration. The tools run on personal laptops and
desktop workstations with or without MATLAB and can exploit multiprocessing capabilities
provided by hardware. For some model codes that are subroutines written in Fortran only or
in C/C++ with Fortran, MATLAB gateway functions (mexfunctions) were written to facilitate
the invocation of the subroutines as library calls from the Plot and Optimization modules of
the tool. For other single-program model codes that read input decks and write output to text
files, MATLAB functions were written to generate the input decks from entries in the User
Interface and to extract relevant values from the program outputs. MATLAB-generated binary
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executables of the tools have been used by collaborators and other interested researchers. Each
tool also has a website that provides usage instructions and links to download the executable
or the sources if made publicly available.

4. DMGfit—damage and plasticity model-fitting tool

DMGfit is an interactive calibration tool for the ISV damage and plasticity model [5, 6]. The
model is written in Fortran as an ABAQUS User Material subroutine (UMAT or VUMAT) [16].
DMGfit executes the UMAT/VUMAT as a library routine, not as a separate external process.
DMGfit inputs comprise experimental stress-strain data to determine ”material properties”
that are subsequently used along with the UMAT/VUMAT by an ABAQUS simulation in
length scale L6. Figure 3 depicts the component modules of DMGfit, its interface to the model
code UMAT/VUMAT, and how a finite element simulation consumes the DMGfit output. The
source codes of DMGfit are online [17].

The damage and plasticity model is specified by 55 parameters (material properties) at the
time of this writing. Some properties, such as bulk modulus, shear modulus, and melting
temperature, are fixed constants for a given material and may be obtained from the literature.
Other properties, such as average radius of voids, average size of particles, and average grain

Figure 3. DMGfit screenshot, component modules (blue boxes, in MATLAB), damage and plasticity model subroutine
(yellow, in Fortran), and model driver (orange, in Fortran). Experimental data inputs to DMGfit are stress-strain
curves. The Material properties output by DMGfit and the model subroutine are inputs to a finite element simulation
in ABAQUS. The bridge between MATLAB and Fortran is a mexfunction in the Model Evaluation Wrapper.
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size, are measured from characterization experiments on samples of the material. DMGfit
calibrates the remaining properties using stress-strain data collected from tension, compres‐
sion, and shear experiments on the samples at various combinations of strain rates and
temperatures.

The interactive calibration of the damage and plasticity model using DMGfit typically proceeds
as follows:

1. Load all experimental data sets. For each data set, establish the experiment settings (initial
temperature, strain rate, stress units, etc.), loading parameters, and fixed constants.

2. Start by fitting the experimental data set with the lowest temperature and lowest rate.
Temporarily exclude the rest of the data sets. If there are different tests, fit the compression
data sets first followed by tension data sets and then torsion data sets.

3. For the first data set, adjust the parameters as follows: yield C3; kinematic hardening C9
and dynamic recovery C7; isotropic hardening C15 and dynamic recovery C13.

4. Restore second data set. If it has a different temperature than the first, adjust the param‐
eters as follows: {C3, C4} if yield is temperature dependent, then {C10, C8, C16, C14}. If
the data set has a different strain rate, adjust C1 and C5 if yield is strain rate dependent,
then {C9, C7, C11} and {C15, C13, C17}.

5. Repeat step 4 for the rest of the data sets. If adjusting the temperature dependence
parameters (even Cs) does not produce good models for high temperature data, adjust
C19 and C20. Adjust torsion, compression, and tension differentiation parameters, if
adding stress state-dependent experimental data.

6. Adjust damage parameters. Readjust parameters in other boxes as necessary.

7. Create a ”restart” file to record calibration session for resumption later. Merge the material
constants with an existing ABAQUS input deck if one has been prepared previously or
write results to text files for postprocessing by other applications such as Microsoft Excel.

The user may specify the number of plots to be displayed on the interface. There are three
plotting strategies: a single plot for all data sets, which may result in an overcrowded plot area;
one data set per plot, which may produce many small plots; and, as a compromise, one plot
per data set type (i.e., one plot for tension data sets, another plot for compression data sets,
etc.). After a data set is loaded into the application, it may be included or excluded from plots
and from participating in the calibration process. See [4] for details about all features of DMGfit.
Figure 4 depicts a sample screenshot of DMGfit when used to calibrate the material properties
for a 7075-T651 aluminum plate [18].

DMGfit provides three methods of adjusting the model parameters. First, a user can manually
adjust model parameters by directly editing their values and clicking the “Apply changes”
button to regenerate the model curves. Second, a user can activate the “Parameter study” slider
by a right click on a parameter. A click or drag on the slider will vary the parameter and
regenerate the model curves. The third method allows two or more parameters to be adjusted
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simultaneously using optimization. The optimization objective is to minimize the distance
between the model curve and the experimental stress-strain data. The optimization variables
are the unchecked parameters. Clicking the “Optimize” button runs the optimization using
the displayed values of the unchecked parameters as the starting solution. The optimization
methods available in DMGfit are the MATLAB functions fminsearch (simplex search),
lsqnonlin (nonlinear least squares) fmincon (constrained minimization), patternsearch
(pattern search optimization), and ga (genetic algorithm).

DMGfit uses multiple computational cores depending on the settings of the menu item
“Optimization|Enable parallelism” and pop-up menu beside the Optimize button. This pop-
up determines the number of starting solutions when the Optimize button is clicked. If one
starting solution is specified (i.e., “Optimize 1”) and the optimization method is fmincon or
patternsearch or ga, then DMGfit will use the multiple cores. These optimization methods
have parallel implementations in MATLAB; hence, the optimization process will benefit from
the multiple cores. The methods fminsearch and lsqnonlin do not have parallel implemen‐
tations (in MATLAB R2012a), so optimization with these methods will not benefit from
multiple cores with “Optimize 1”; however, fminsearch and lsqnonlin will still find final
solutions. If “Optimize N” is specified for a small value of N, then DMGfit will automatically
generate a number of starting solutions as follows. Let K be the number of parameters that are
unchecked in the DMGfit user interface. The “global” search space for the optimization is the
K-dimensional hyperrectangular region R:

[ ] [ ] [ ]R min_1, max_1 * min_ 2, max_ 2 * * min_ K, max_ K ,= ¼

Figure 4. DMGfit screenshot showing the material properties for an aluminum 7075-T651 plate [18]. The damage and
plasticity model parameters calibrated by DMGfit predict the strength, failure, and other mechanical characteristics of
the plate.
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where [min_i, max_i] is the range for the ith optimization variable. DMGfit will divide each
range into N subintervals so that there will be N^K (N to the power K) hyperrectangular
subregions. DMGfit will generate a random starting solution within each subregion and run
an optimization from the random starting point. The optimization variables will be bounded
by the limits of the subregion (except if the method is fminsearch). The “spmd…end” (single
program, multiple data) MATLAB statement will be used to execute the N^K optimization
runs in parallel. Because one run might take several seconds or a few minutes, the parallel run
may still require a significant wait. DMGfit will collect a number of “locally good” results along
with the limits of the subregions returning such results. When all N^K searches are complete,
the results can be browsed manually to decide which are “really good”. Not all subregions
will produce “good” results; hence, much less than N^K results will be returned.

5. TPgui—a flexible GUI and fitting tool for a thermoplastic polymer
model

Many engineering products include components made from polymers. A modern automotive
vehicle, for example, has polymer parts such as plastics, rubbers, fibers, foams, and adhesives.
Thus, it is important to predict the mechanical responses of polymer components, as these may
be subjected to high strain rates during crash scenarios. In general, there are three groups of
polymers: thermosets, which are rigid materials that do not flow under the action of heat;
thermoplastics, which become fluid when heat is applied; and, elastomers, which can be easily
deformed but will return to the original size when the loading is released. This section briefly
describes TPgui, a GUI and calibration tool for an ISV model for thermoplastics. Figure 5
provides a TPgui screenshot. The model equations are described in [8], and a TPgui tutorial
may be downloaded from [19].

Figure 5. TPgui screenshot showing the material properties for a polycarbonate.
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The TPgui user interface code is derived from DMGfit; hence, TPgui inherits all the interactive
and parallel-enabled features of DMGfit. Unlike the model code of DMGfit that is a Fortran
subroutine, the ISV thermoplastic model code is written as a MATLAB function; therefore, a
mexfunction is not necessary in TPgui. A theoretician was developing the thermoplastic model
code at the same time the authors were building the user interface. Therefore, to accommodate
additional model parameters, experimental data, and computational settings, the TPgui
interface was designed with placeholders for items that were yet to be specified by the
theoretician. These placeholders are the gray (disabled) textboxes in Figure 5 under the “DATA
SET” label for experimental data, under the “SOLUTION SETTINGS” label for computational
settings, and on the lower portion of the user interface for model parameters. The interface
allows up to 60 model parameters arranged in a 6×10 grid. More placeholders for model
parameter may be added if necessary by copy-pasting the bottom row in MATLAB’s GUIDE
(GUI Design Environment). To activate, for example, the placeholder in grid positions (4,1)
and (4,2) (below C3 and C4, respectively) for new model parameters “C3a” and “C4a”, the
initialization routine only have to be edited like the highlighted lines in following code
fragment:

Similar edits may be used to activate placeholders for experimental data and computational
settings. Column labels for related model parameters are also customizable. To use the new
parameters “C3a” and “C4a” in the thermoplastic model, the initializations in model code only
have to be edited like in the following fragment:
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TPgui demonstrates the versatility of MATLAB in facilitating the development of dual-
purpose model calibration tools. The TPgui code is a result of a strategy for building a flexible
user interface that supports interactive calibration of model parameters by student researchers
and at the same time serves as a test environment for theoreticians investigating alternate
formulations of the underlying model. Just like an end-user being able to immediately visualize
the effect of changing the value of a model parameter on the model curve, a theoretician can
revise a model formula and immediately visualize its effect on the model curve.

6. VPSCgui—VPSC model calibration interface

VPSC is a Fortran 77 program that simulates the plastic deformation of polycrystalline
aggregates subjected to external strains and stresses. VPSC stands for viscoplastic self-
consistent and refers to the particular mechanical regime addressed (VP) and to the approach
used (SC). VPSC accounts for the following material behavior: full anisotropy in properties
and response of the single crystals; the hardening, reorientation, and shape change of indi‐
vidual grains; and grain interaction effects. In addition to providing the macroscopic stress-
strain response, VPSC predicts the evolution of hardening and texture associated with plastic
forming. The simulation procedure can be applied to deformation of metals, intermetallics,
and geologic aggregates [10].

As of version 7b, the VPSC code is text-based and is executed from a command line. One or
more of four input files have to be manually edited before a computational deformation
experiment can be started. The program produces up to 10 output files; the files containing
results of interest have to be postprocessed and transformed as inputs for other applications
for visualization. In addition, manual calibration of the model parameters to produce a stress-
strain curve that will match an experimental stress-strain data set is a very tedious, mechanical,
and error-prone undertaking. Such was the experience of graduate students when they first
used the VPSC to model deformation of magnesium and thus motivated the development of
a user-friendly GUI to VPSC that incorporates a model-fitting functionality.

VPSCgui, a GUI to the VPSC executable, was built by the authors with the following require‐
ments: it must be “point and click”; it must incorporate an interactive model calibration
functionality; and revisions to the VPSC source code must be minimal, with no changes to the
program logic. The source code, sample input, and documentation for VPSCgui are online [9],
excluding the VPSC sources. The only changes to the VPSC code to make it work with the
interface involved the renumbering some of the I/O units, and the addition of write statements

Applications from Engineering with MATLAB Concepts150



at several places in the code so that VPSC will write ”STOPPED” to standard output just before
it ends as a completion signal to the interface. Figure 6 is a screenshot of VPSCgui in modeling
the behavior of magnesium AM30 undergoing channel die compression [20].

Figure 6. VPSCgui screenshot: experimental data controls (top left), deformation simulation settings (middle left),
model parameters (bottom), experimental stress-strain data plots (discrete points), and VPSC model plots (solid lines).

VPSCgui implements the interactive model calibration process outlined by Figure 2. Unlike
DMGfit and TPgui that execute their underlying models via library calls, VPSCgui invokes the
VPSC program as a separate external process, and the two processes communicate through
the relevant input and output files of VPSC. The input files are initially loaded into VPSCgui
where a user can edit the model parameters and specify the settings for a deformation
simulation. When the user clicks the “Evaluate” button, the input files are updated with the
changes made on the interface, and the VPSC executable is invoked to run the deformation
simulation. When the VPSC simulation completes, the interface retrieves and displays the
model curves from the output files. The “Optimize” button follows the same sequence, where
the optimization algorithm automatically adjusts user-selected model parameters.

VPSCgui demonstrates how MATLAB can be used to build a model calibration interface for
preexisting model code (VPSC) that is a self-contained program. In this case, a mexfunction is
not applicable, as VPSC has to execute as a process that is separate from VPSCgui. Data must
be exchanged through the input and output files of VPSC; therefore, VPSCgui includes
routines to read/write the input files of VPSC and to read the relevant output files for the model
curves. Developing these routines for VPSCgui required much effort, as the Fortran subrou‐
tines in VPSC to read the input files were practically translated into MATLAB.

VPSCgui also exploits multiprocessing capability provided by hardware. Because one
deformation simulation is required to model a single data set, parallelism occurs when there
are several data sets being modeled. The VPSC program is inherently serial; however, several
VPSC instances can run in parallel, one instance per data set. VPSCgui invokes the VPSC
instances in separate directories to avoid collisions when writing the output files, as the file
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unit numbers will be the same across instances. After parallel invocation, VPSCgui periodically
checks the files that are piped from the standard output of each VPSC instance for the ”STOP‐
PED” signal.

7. Other model calibration tools

Experience gained in building the model calibration tools described in the previous sections
guided the development of more tools for other length scales. This section briefly describes
the calibration tools for the MSF model and the MEAM.

Figure 7 shows a screenshot of the MSF model calibration tool [11]. The MSF model predicts
the amount of fatigue cycling required for the appearance of a measurable crack, the crack size
as a function of and loading cycles. The model incorporates microstructural features that affect
the fatigue life predictions for incubation, microstructurally small crack growth, and long crack
growth stages in both high-cycle and low-cycle regimes [21].

Figure 7. Screenshot of the MSF model calibration tool with model parameters to predict the fatigue life for aluminum
7075-T651 [18].

The MSF model code is an ABAQUS VUMAT written in Fortran, similar to the damage and
plasticity model used by DMGfit. The MSF interface implements the same interactive and
parallel features of DMGfit.

Applications from Engineering with MATLAB Concepts152



Figure 8. Screenshot of MPC tool.

Figure 8 shows a screenshot of MPC tool [12] for the interactive editing of MEAM library and
parameter files and for the semiautomated calibration of MEAM parameters. The calibration
targets may be density functional theory (DFT) simulation data and/or experimental data.
Similar to VPSCgui, MPC reads and writes the LAMMPS input files; however, unlike VPSCgui,
MPC does not execute the model code as a separate external process. Instead, MPC executes
LAMMPS-MEAM, the large-scale atomic/molecular massively parallel simulator (in C++/C)
with the MEAM package for many-body potentials (in Fortran) [15] as a library call such as in
DMGfit.

A prior version of MPC [22,23] invokes a Python script that in turn executes LAMMPS-MEAM
as a separate external program. The Python script also retrieves the relevant information to be
returned to MPC from the LAMMPS-generated log file. This strategy of using Python as an
intermediary between MPC and LAMMPS incurs significant file I/O overhead. Further, it was
cumbersome to revise the Python scripts to set up additional LAMMPS calculations. As a
consequence, the current MPC version is designed to use mexfunctions for invoking LAMMPS-
MEAM as a library call, eliminating the need to run the Python interpreter and significantly
reducing file I/O overhead.
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8. Concluding remarks

Several issues need to be addressed when building a model calibration tool for a preexisting
material model code. A potential end-user of the tool may be a student learning about the
model, a researcher who needs the tool to model experimental data for some new material, or
a theoretician seeking to improve the underlying model formulas so that it better captures
material behavior. In each case, interactivity is a very important feature of the tool. A user may
have a choice between a Microsoft Windows and a Mac OS personal machine to run the tool,
or only a Linux workstation may be available. The model code may be written as a Fortran
subroutine, a MATLAB script, or as a complete stand-alone mixed-language program.

The following MATLAB features were found to be sufficient in addressing all of the afore‐
mentioned issues. MATLAB GUIDE enables the creation of interfaces that support an inter‐
active and semiautomated model calibration process. MATLAB Optimization Toolbox
provides a variety of optimization techniques for automatically adjusting selected model
parameters to fit experimental data. MATLAB Parallel Computing Toolbox enables the writing
of parallel code that exploits multiprocessing features of modern personal computers to
accelerate the model calibration process. MATLAB MEX files enable model codes written as
Fortran subroutines or C/C++ functions to be invoked directly by MATLAB. In addition, model
codes that are stand-alone programs can be executed as external processes through the
MATLAB system() command. The model calibration tools described in this chapter demon‐
strate the versatility of MATLAB as a programming environment for building such tools.
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Abstract

In this chapter, the implementation of a “Virtual Instrument” developed in MATLAB/
Simulink® that allows the analysis of the measurement of mechanical vibrations in rotating
machines is presented. To accomplish this, we identified the main rotating machines used
in industry, the parameters that can be relevant when an analysis of vibration is made,
the typical vibration frequency spectra of certain electrical and mechanical failures, the
most common regulations employed by the industry with respect to vibration levels in
rotating machinery, the tools that are used for vibration analysis, and tools for develop‐
ing MATLAB software that includes features for storing and managing data from a
database, also allowing an analysis and diagnosis of vibration in rotating machines.

The development cost for this virtual instrument is very low compared with the tens of
thousands of dollars of their equivalents now available in the market.

Keywords: virtual instrument, rotating machines, predictive maintenance, vibration
analysis, vibration diagnostic

1. Introduction

Machine maintenance is one of the most important issues in any industry, since good main‐
tenance procedures avoid catastrophic failures that threaten the productive process, and most
important of all, the life of the workers involved [1].

Due to catastrophic failures, industrial maintenance has been evolved to prevent machines
from failures, which looks for symptoms in machines that allow determining the most
appropriate time for doing maintenance, and even more important, determining the exact
failure occurring in a machine [2, 3].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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This new form of industrial maintenance development, called “predictive maintenance,”
requires new methodologies and expert analysis, which can act as “machine physicians,” able
to determine a machine’s health condition based on those symptoms [4].

One of the most accurate predictive methods is vibration analysis [5–7], which implies the
study of machine vibration signals as a symptom allowing to determine eventual failures in
an incipient state [8], thus avoiding a possible catastrophic failure. A significant problem
associated with this study has to do with cost, currently ranging from US$ 12,000 to US$ 40,000
[5]. On the other hand, MATLAB is a very powerful calculation tool that, among many other
remarkable features, can be used to create matrix-type databases, perform complex calcula‐
tions, and generates graphs, allowing the creation of graphical interfaces, etc., so undoubtedly
we can use it to develop a software for storing vibration analysis data in a database and tools
that permit the analysis of data stored in the same software, this being a first step toward the
creation of a low-cost “virtual instrument” [9]. This software is limited, in this first develop‐
ment stage, to data acquisition from an Excel spreadsheet, along with the recording and
analysis of the acquired data, leaving aside for the time being the capture of the machine’s
vibrations stage through a transducer, the conditioning of the captured vibrations, as well as
the subsequent data acquisition [10, 11].

2. Software development for vibration analysis

In this chapter, we present the development of a virtual analyzer of mechanical vibrations to
be used in industry. This software was developed on MATLAB/Simulink due to that software’s
calculation capacity and because it has a visual programming tool called GUIDE, which allows
an easy development of a graphical interface for vibration analysis [12].

The database is called “basedatos,” and it is created as a variable in MATLAB’s Workspace
and stored in the same place. To access it, we must load the database through the command
“Load” at the time of starting the program.

The database is a structure where we include operation conditions and measurement data,
such as date, observations, etc., and inside this structure, one of the fields is an arrangement
called “signal,” where we include width, frequency, phase, and harmonics attenuation
coefficient of the vibrational signal.

Another important feature of MATLAB is a compiler that creates an “.exe” file that allows the
execution of the program without the need to have it previously installed, therefore allowing
to run the vibration analyzer on any PC.

Several screens are created for the different “analyzer features” and for the “implementable
tools” that can be accessed through buttons arranged on a main screen called “Main” for the
program root, and “Vibration analysis” for the developed tools, as shown in Figure 1.

Those screens or graphical interfaces have many components, such as buttons, selection boxes,
dialog boxes, etc., that must be named first. In order to do that, inside the option “property”
of the “tag” section of the interface elements, the names that those components will have are
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entered by the user. The names should be easy to remember, so we commonly use
abbreviations referring to names of the corresponding functions or components. The
importance of naming the components is that, at the time of creating the program’s code, those
components are called through the “Callbacks” function, for editing or capturing their values
through the “set” and “get” functions, respectively.

Figure 1. Vibration analysis software structure.

2.1. Analyzer features

2.1.1. Data acquisition from Excel

This function allows importing vibration data from an Excel spreadsheet, in this way filling
the database more quickly than entering the data one by one.
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2.1.2. Manual data entry

Manual entry allows entering specified data step by step with respect to the machine, the
measurement point, sensor arrangement, the values of the measurement’s representative
peaks, etc.

2.1.3. Editing data from the database

With this function, we can look for the already existing data inside the database and modify
them, allowing the correction of possible errors.

2.1.4. Data comparison

Two measurements can be compared in parallel, to see their frequency spectra and the
operation conditions at the time the measurement was made.

2.1.5. Vibration simulations

This function makes it possible to see how entering another vibration with a different phase
and/or damping coefficient will affect the frequency spectrum of a given signal, as well as to
simply see the frequency spectrum of a designed signal.

2.1.6. Vibration analysis

This is the software’s main function, where we can access different kinds of vibration analysis
that can be carried out with discrete data, as is the case of these data.

The machines that can be analyzed with this software are as follows: DC motors, AC motors,
rotodynamic pumps, hydraulic generators, steam generators, and SAG mills.

3. Implementable tools

This software’s basic tools allow capturing data from an Excel spreadsheet, store the data
manually in the database, edit the data, compare fast Fourier transform (FFT) graphics, and
simulate vibrations, looking at how they affect the data previously stored in the database. All
those tools are part of the main features of the analyzer.

The fact that this software works with data entered in a discrete way limits the kind of vibration
analysis tools that can be adapted to MATLAB. The tools that could be adapted to MATLAB
are the following:

3.1. Frequency analysis

With this analysis, we can see the frequency spectrum of a vibration signal stored in the
database, by varying the sampling frequency, and we can also see the spectrum in the form of
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a bar graph with a frequency error of 10−3, which allows a very good resolution and shows the
peaks clearly. This technique uses the Fast Fourier Transform (FFT) [9, 13].

The “frequency analysis” screen has a signal finder, a sector where the values of operational
conditions are printed once the “Load” button is pressed, and a sector where the kind of graph
is chosen and the sampling frequency in the case of choosing an FFT graph is determined.

3.2. Order spectral analysis

To carry out this kind of analysis, we must take a reference value that will be 1X, and, from
this reference, the other frequencies will be expressed as multiples of it, where this value is
usually the machine speed [13].

To do this, we will take a reference value in (KCPM) by which every frequency of the spectrum
to be analyzed will be divided.

This screen is very similar to that of the “frequency analysis,” but instead of entering the
sampling frequency, we can choose a reference frequency to generate the orders, and those
frequencies can be the speed or the net frequency stored for that datum in the database, or any
other that can be written and selected.

3.3. Histogram analysis

With this function, we can see the evolution over time of a given frequency value in a specific
machine, at a specific measurement point, and with a specific sensor arrangement.

Because of this, it is necessary to determine which are the machine, the point, and the arrange‐
ment from which we want to extract a given frequency to see its evolution in time. Hence, on
this screen, there is a sector for determining each of those parameters, and another sector for
determining the central frequency in (KCPM) that we are searching, along with a tolerance
value in this same unit allowing a search range around the central frequency. There is also
another sector for determining whether we want to look for frequencies from all the existing
measurements in the database, or if we only want to graph the last “X” data from the database,
with respect to date and time from the last measurement to the first stored measurement.

On this screen, we can search for data stored in the database and determine the RMS value of
the vibration rate and the crest factor (CF), a value allowing to see the influence of the complete
vibration signal over the signal’s highest peak [14].

3.4. Time-frequency transform

Through this analysis, we can see the evolution in time of the complete vibration signal [13],
and it is similar to the histogram analysis, but considering all the frequencies of the signals.

In order to do that we arrange data in the same way as on the “histogram analysis” screen,
only varying the way the chart is created, since we must capture all the frequency-width pairs
of all the data or of the last “X” data, which can be selected at will, and graph them next to one
another to form a three-dimensional (3D) surface.
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For this analysis, we considered two kinds of charts, a two-dimensional (2D) one that permits
a simpler analysis of vibration evolution, and a 3D one that allows the signal peaks to be seen,
but making the determination of the coordinates of the points more complex. The 2D chart is
generated after pressing the “CONTOUR GRAPH” button and the 3D chart by pressing the
“3D TFT CHART.”

3.5. Comparison with rules and standards

On this screen, we can make comparisons with ISO2372, ISO2373, and ISO10816 standards,
which require RMS values of the vibration rate. These standards were chosen because they are
widely used in industry [15, 16].

4. Software operation

In order to see the operation of this analyzer based on real measurements, we invented a series
of measurements to test the performance of the analysis tools in order to see the evolution in
time of the measurements.

The data exported from Excel have a structure that facilitates their storage in the software’s
database. This structure is shown in Figure 2.

Figure 2. Worksheet for data exportation to the analysis software.
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From the “Main” screen, we access, pressing the corresponding button, the “Vibration
Analysis” screen, as shown in Figure 3.

Figure 3. “Vibration Analysis” screen.

By means of the “Frequency Analysis” tool, we can get an FFT graph of a specific datum, or a
representation of this FFT on a bar graph, as shown in Figures 4 and 5.

Figure 4. FFT chart of data to be analyzed.
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Figure 5. Bar chart of frequency analysis.

The tool “Spectral Analysis in Orders” allows the generation of a chart in orders taking as base
frequency the machine’s recorded speed, the net frequency, or any desired value, and the graph
obtained is an FFT chart or a representation of the FFT on a bar graph, as shown in Figure 6.

Figure 6. Bar graph of orders taking as base frequency the machine’s recorded speed.
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The “Histogram Analysis” tool allows seeing the evolution of a given frequency of the
vibration spectrum. Here, we choose the machine, the point and the sensor arrangement, when
the measurement was made, selecting the frequency we want to survey, along with a tolerance
range in case the exact desired value is not found. Figure 7 shows this screen, where we are
looking for the 12 KCPM with a frequency tolerance of 0.5 KCPM.

Figure 7. “Histogram Analysis” screen. Searching 12 KCPM frequency.

The exact frequency obtained and the dates of the measurement are shown above the histo‐
gram bars.

With the “RMS and CF value” tool, we can calculate the RMS value and the CF, displaying the
signal’s FFT or the signal as a function of time, so we can see the location of those values inside
the vibration spectrum, as shown in Figure 8.
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Figure 8. “RMS Value and CF” screen.

The “Time-Frequency Transform (TFT)” tool allows getting two kinds of graphs that represent
the frequency, width, and time variables of the measured vibration spectra. One of the graphs
is a 3D presentation of those variables (see Figure 9), and the other is a 2D contour line
presentation of the 3D image, allowing a better analysis (see Figure 10).

Figure 9. 3D and 2D TFT graphs.
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Figure 10. 2D TFT graphs.

With the tool “Comparison with Rules and Standards,” we can, after calculating the rms value,
get a vibration severity evaluation, according to ISO 2372, ISO 2373, and ISO10816 standards.
In this function, we select the rule with which we want the data to be compared, selecting the
machine’s classification in accordance with the chosen rule, and then pressing the “Compare”
button. This gives an evaluation of the vibration severity of the machine, according to the
selected standard. This is shown in Figure 11.

Figure 11. Screen “Comparison with Rules and Standards.”
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5. Conclusions and future development

A powerful software for vibration analysis was developed, with a very low cost compared
with the tens of thousand dollars that a system for acquisition and analysis of mechanical
vibrations can effectively cost.

This software, developed in MATLAB, has powerful tools like the creation of FFT graphs or
bar graphs allowing to see more clearly the FFT peaks, order charts, histograms of some
frequencies in a given time period, calculation of the RMS value and CF of a given frequency
spectrum, creation of TFT graphs in 3D and 2D, and comparison of frequency spectra with ISO
2372, ISO 2373, and ISO 10816 standards.

This is a first stage in the development of this kind of “virtual instrument,” since many parts
still remain unsolved, like direct data acquisition from the machine, capturing and condition‐
ing vibration signals for further storage in the database of the designed software, and this is
an actual challenge to be faced in the short term.

Another interesting point for further development is the creation of an intelligent system
(expert system, neural net, artificial intelligence, etc.) able to determine which is the possible
failure appearing with vibration as a symptom.

The main file that contains the folders with the programming codes of the computational
simulator (virtual instrument) presented in this chapter can be downloaded directly from the
following website: http://www.mathworks.com/matlabcentral/fileexchange/56693-virtual-
instrument-for-the-analysis-of-vibrations-in-rotary-machines
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Abstract

Biological  data  analysis  has  dramatically  changed  since  the  introduction  of  high-
throughput -omics technologies, such as microarrays and next-generation sequencing.
The key advantage of obtaining thousands of measurements from a single sample soon
became a bottleneck limiting transformation of generated data into knowledge. It has
become apparent that traditional statistical approaches are not suited to solve problems
in the new reality of “big biological data.” From the other side, traditional computing
languages such as C/C++ and Java, are not flexible enough to allow for quick develop‐
ment and testing of new algorithms, while MATLAB provides a powerful computing
environment and a variety of sophisticated toolboxes for performing complex bioinfor‐
matics calculations.

We have used MATLAB to develop the pathway signal flow (PSF) algorithm for assessment
of pathway activity changes based on high-throughput gene expression and pathway
topologies. Additionally, we have created a KEGGParser tool for parsing, editing, and
visualizing Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway maps. We have
used these tools to obtain a collection of KEGG pathways and evaluate their activity
changes in different clinical forms of pulmonary sarcoidosis (PS). The application of PSF
provided an extended systems view on pathway deregulation states and implicated
several new pathways in sarcoidosis that had not been identified using other analysis
approaches.

Keywords: biological data mining/visualization, -omics data analysis, pathway visual‐
ization, pathway flow analysis, KEGG pathway database

1. Introduction

Biology and biomedicine have always been quantitative scientific disciplines and data
collection has been an important part of biological knowledge inference. Biological data types
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are very diverse and their nature has dramatically changed since introduction of new meas‐
urement technologies starting from the mid-twentieth century. DNA/RNA/protein sequencing
[1, 2], X-ray crystallography [3], antibody-based assays [4, 5], and various modifications of
polymerase chain reaction (PCR) [6, 7], allowed for collection of data about various aspects of
cell function in normal and diseased conditions. A few of the most common biodata types
include but are not limited to:

• Sequences—the one-dimensional orderings of monomers (DNA/RNA/proteins).

• Graphs—representation of a set of objects and pairwise interactions between them (pathway
maps, protein–protein interaction nets).

• High-dimensional data—each sample is defined by hundreds or thousands of measure‐
ments, usually concurrently obtained (e.g., high-throughput gene expression data; see
below).

• Geometric information—information about 3D structure of proteins, lipids, and nucleic
acids.

• Patterns—regularities that characterize biological entities (transcription factor binding sites,
network motifs, etc.).

• Models—mathematical or visual representations of dynamic or static behavior of biological
entities.

• Literature—biological literature itself can be regarded as data to be exploited via data/text
mining for revealing findings that would otherwise go undiscovered.

Traditionally, statistics has played significant role in biological data analysis [8]. It is used in
biomarker identification [9–11], testing new drugs [12], analysis of genetic associations [13,
14], understanding associations between the levels of different biomolecules, experiment
planning, etc. This has been made possible due to several key factors brought together. First
of all, introduction of the “data analysis” concept was made by Tukey [15], implying that there
is no need to be a statistician to be able to analyze and interpret the data. Next, the active
penetration of computers into various research fields, as well as development of computer
software and data analysis packages that can be used by “non-statisticians,” has greatly
enforced the progress in biomedical data analysis.

A new era of biomedical research has started in the twenty-first century with the advent of
massively parallel measurement technologies. Traditional data collection approaches (low-
throughput) are mainly focused on measurement of a few carefully selected parameters from
a large number of samples, while high-throughput methods, such as microarrays, next-
generation sequencing, and proteomics approaches, allow for acquiring dozens or hundred
thousand observations from a single sample. Low-throughput techniques still remain an
important tool in biomedical research; however, only high-throughput approaches provide
global outlook on complex biological processes occurring at cellular, tissue, or even organismal
level [16, 17]. This breakthrough has also changed the main paradigm in biological data
representation, shifting from datasets containing large number of observations with few
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variables (i.e., attributes or entries in the data vector) to datasets containing more variables
than observations (high-dimension, low-sample size data (HDLSS)). HDLSS data is generated
via various technologies measuring protein activity/abundance levels, gene expression levels
(the amount of transcripts generated from each gene), ribonucleic acids (RNA) abundances,
etc. For example, a typical high-throughput measurement of gene expression is performed for
about 20,000 genes per subject, while the number of subjects rarely exceeds 10–20.

With this new data type, classical statistical approaches frequently fail to produce meaningful
results because they are not designed to cope with this growth of dimensionality in datasets
[18–20]. Thus, a demand for new algorithms and software for data analysis and visualization
has emerged. From the other side, traditional computing languages, such as C/C++ and Java,
are not flexible enough to allow for quick development and testing of new algorithms. This is
because in contrast to scripting languages they require compilation of the whole code before
execution, definition of variable types, etc. The limitations of compiled languages pose the
challenge of having professional software engineers (or dedicated persons with programming
skills) for writing software. In contrast, scripting languages allow for execution of separate
lines of the script, without caring for variable type definitions and memory allocation before‐
hand. They are commonly at higher language level and additionally are supported by a wide
range of packages for specific scientific purposes.

In this sense, MATLAB provides a powerful computing environment and a variety of sophis‐
ticated toolboxes for performing complex bioinformatics calculations. In this chapter, we
discuss the examples of MATLAB application for high-throughput gene expression data
analysis and visualization based on the algorithms and software developed by our research
group.

2. Analysis of gene expression data

Gene expression is the realization of the information stored in genes through synthesis of
ribonucleic acids (RNA) and proteins that perform functional and structural activities in a
cell and an organism [21]. Genes are DNA fragments that code for products such as proteins
and functional RNA, including ribosomal RNA (rRNA), transfer RNA (tRNA), or small nu‐
clear RNA (snRNA). According to the central dogma of molecular biology, protein coding
genes are expressed in a two-stage process involving synthesis of a messenger RNA
(mRNA) (transcription) and synthesis of a protein on the mRNA template (translation) (Fig‐
ure 1) [21]. However, in biomedical research the term “gene expression” is often used to re‐
fer only to the transcription stage, and the gene expression value usually indicates the
amount of mRNA produced from each gene.
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Figure 1. The synthesis of proteins from protein coding genes, according to the central dogma of molecular biology.

High-throughput analysis of gene expression is one of the cornerstones of systems biology [16].
The study of gene expression signatures has largely contributed to better understanding of
molecular pathology of lung diseases [22, 23] and to identification of new disease subclasses/
entities [24]. It has also provided new approaches to diagnostics [25] and helped to suggest
novel therapeutic compounds [26].

There are two main techniques that allow for massively parallel measurement of gene
expression in cells and tissues: microarrays and next-generation RNA sequencing (RNA-seq).
The technology details of these approaches are summarized in Figure 2 and are described in
a number of publications elsewhere [2, 27–29]. The raw gene expression data for microarray
and RNA-seq gene experiments are usually presented in a form of expression matrix. Each
column represents all the gene expression levels for a single sample, and each row represents
the expression of a gene across all the samples. This matrix serves as the source for subsequent
analysis steps.
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Figure 2. A general summary of two main techniques for gene expression assessment. Microarray-based techniques (at
the top) are based on hybridization of complementary DNAs, obtained from RNA extracted from the cells, to specially
designed oligonucleotide arrays and subsequent capturing of fluorescent signals coming from hybridized probes. The
more the signal, the more RNA was produced from the gene corresponding to the respective oligonucleotide. RNA
sequencing (at the bottom) utilizes next-generation sequencing technologies to obtain short sequencing reads from
RNA extracted from the cells. These short reads are then aligned to the reference genome to determine the correspond‐
ing genes and to compute RNA abundance for each gene.

There are many different algorithms, also implemented in MATLAB, that are aimed at anal‐
ysis of global gene expression [30–32]. MATLAB Bioinformatics toolbox demos are excellent
start points to become acquainted with microarray and RNA-seq gene expression analysis.
Most of these algorithms exploit a common gene-centered analysis pipeline, which identifies
genes differentially expressed between studied conditions, and further annotates the gene
lists by assessment of their relative abundance in predefined functional categories available

Application of MATLAB in -Omics and Systems Biology
http://dx.doi.org/10.5772/62847

175



in biological databases [33], such as Gene Ontology (GO) [34], Kyoto Encyclopedia of Genes
and Genomes (KEGG) [35], and others. A shortcoming of these approaches is that they over‐
look the interactions that exist between gene products in a cell. These interactions define the
actual behavior of biological systems, along with expression values of the interacting agents.
The information on interactions occurring between gene products is depicted in topologies
of biological pathways, and thus, gene expression analysis that also accounts for topology
information would be more informative about the state of pathways and activities of associ‐
ated biological processes. Biological pathways are directed and spatially defined sequences
of biomolecular physical and regulatory interactions that represent molecular signal propa‐
gations leading to functional realizations of biological processes. The behavior of a given
pathway highly depends on both gene expression and its topology [36]. It is known that a
significant portion of genes may be involved in more than one pathway, while perturbation
of a single pathway may be conditioned by differential expression of multiple member
genes. Moreover, a single disease may be characterized by orchestrated deregulation of sev‐
eral pathways. Finally, profiles of pathway deregulations may be common for different dis‐
eases. Thus, based on gene expression and pathway topology data, it is possible to identify
common and specific pathways among diseases.

3. KEGGParser

KEGGParser is a MATLAB graph-based graphical user interface tool for parsing, editing,
visualization, and analysis of biological pathway maps from Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway database. It is based solely on functions contained in MATLAB,
MATLAB Bioinformatics toolbox version 3.x, and Image Processing Toolbox 2.x. KEGGParser
is freely available at http://www.mathworks.com/matlabcentral/fileexchange/37561.

KEGG pathways are stored in a collection of manually curated pathway maps. Each pathway
is represented by an image and accompanying xml (KGML) file, which stores an xml tree
structure containing information about nodes and edges. The KGML files are created from the
map images with “KegSketch” program.

KEGG pathways can be accessed from MATLAB using KEGG REST interface implemented in
MATLAB Bioinformatics toolbox. However, KEGG REST functions are very limited and
intended for very basic operations, such as retrieval of pathway images, node information,
and mapping of gene expression data via coloring of nodes on top of the map images, and are
not suited for much wider range of pathway analysis needed. In contrast, KEGGParser uses
information stored in pathway KGML files to convert them directly to MATLAB biograph
objects (a graph representation of the pathways), which then allows for performing advanced
pathway analysis. Biograph is a MATLAB data structure for implementation of directed
graphs. Graph nodes can represent diverse biological agents, such as genes and proteins, and
edges depict directed interactions between the agents, which can represent physical, regula‐
tory interactions, dependencies, etc. The biograph object also stores graphical properties, such
as color, labels, and sizes, used for 2D visualization.
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Although the biograph object is ideally suited for storing and manipulating biological
pathways, its severe limitation is the absence of generic methods for adding or deleting edges
on already created graphs. This can seriously impede downstream analyses, because KGML
files do not contain all the information depicted in the pathway map (Figures 3 and 4).

Figure 3. The RIG-I-like signaling pathway map image obtained from KEGG pathway database.

Figure 4. The RIG-I-like pathway map obtained by parsing the pathway KGML file.
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Figure 5. Manipulation of a sample biograph object with graph manipulation tools. The process of node and edge ad‐
dition and deletion is depicted. See the main text for the respective example code.

Moreover, it is known that pathways can change their topology (i.e., interactions between
nodes in a pathway) due to mutations, regulation of gene expression, , etc. In order to overcome
these limitations, we have developed several functions that allow for graph manipulations on
pre-calculated graphs. They are accessible from the link http://www.mathworks.com/matlab‐
central/fileexchange/37475. The following example and Figure 5 demonstrate the biograph
object editing process using graph manipulation tools.
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Figure 6. The RIG-I-like pathway map obtained by KGML file parsing and further corrections and recovery of missing
information using KEGGParser.

The graph manipulation tools are used by KEGGParser for parsing KGML files, creating and
editing biograph objects that represent KEGG pathway graphs. Along with creation of
pathway graphs, KEGGParser automatically handles and respectively edits part of inconsis‐
tencies between KGML files and map images. The overall KEGGParser workflow and usage
examples are described in detail in the original publication [37]. In this chapter we present two
different use cases for this software.

The first example refers to retrieval, editing, and visualization of KEGG pathways using
KEGGParser. As an example we have chosen RIG-I (retinoic acid-inducible gene 1) - like
receptor signaling pathway. RIG-I-like receptors and downstream signaling are key elements
in sensing viral pathogens and generating innate immune responses [38, 39]. Activation of this
pathway is essential for production of various cytokines, mediators of inflammation, and
proliferation of immune system cells. Deregulation of RIG-I-like pathway activity is implicated
in many autoimmune disorders, such as systemic lupus erythematosus and Aicardi–Goutières
syndrome [40]. In order to access the basic characteristics of the pathway topology, we used
KEGGParser for retrieving and editing the corresponding KGML file. The pathway map from
KEGG pathway database, as well as the native graph object parsed using KEGGParser, is
presented in Figures 3 and 4 (static image and parsed without automatic corrections). As can
be noticed, the parsed graph in MATLAB has many missing edges and unconnected nodes,
making subsequent analysis improper. This is because KGML file contains information only
about protein–protein interactions and the information about other types of interactions
present in the map images is lost after KGML parsing. Using KEGGParser, we manually edited
the pathway graph object and restored missing edges (Figure 6).

In order to perform graph theory-based analyses, we stored unedited and edited pathway
graphs in rig_like.mat and rig_corr.mat files, respectively (available at [41]). Using graph
theory functions implemented in MATLAB Bioinformatics toolbox, we performed some basic
comparisons of unedited and manually edited pathway graphs. First we compared connec‐
tivities of nodes in the graphs:
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Analysis of node degree histograms in the unedited graph shows significant skew toward 0-
degree nodes, compared to the edited graph (Figure 7A and B).

The results showed that there are five strongly connected multi-node components (with four
nodes on average) in the unedited pathway graph, while the edited graph identifies six
components containing on average seven nodes (Figure 7C and D). These components
correspond to nodes that form separate pathway branches and lead to different functional
outcomes associated with pathway activation.

Finally, the distributions of all lengths of shortest paths between pairs in the unedited and
edited graphs were significantly different, showing longer average path in the edited graph
consistent with the static pathway map image (Figure 7E and F). Thus, KEGGParser can
facilitate the better representation of biological pathways in MATLAB and contribute to the
adequate analyses of pathway topologies. Manual/automatic editing options help to restore
correct topologies of the pathways. Using KEGGParser, we have created a collection of
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signaling biological pathways that were further used for analysis of pathway activity pertur‐
bations in various diseases (see pathway signal flow (PSF) section).

Figure 7. Graph characteristics of RIG-I-like signaling pathway after initial KGML parsing (unedited graph) and fur‐
ther editing to correct for missing nodes and edges (edited graph). (A and B) Node degree distributions; (C and D ) the
distributions of sizes of strongly connected components; and (E and F) the distribution of shortest path lengths.

4. Pathway signal flow

The PSF algorithm can be used to assess the changes in activity of a given biological pathway
depending on the pathway topology and relative gene expression [42]. In contrast to the
traditional gene-centered approaches for expression data analysis, PSF also takes into account
the interactions between gene products (i.e., proteins, RNA, etc.) and other biological entities
and, thus, provides richer outlook on actual molecular events associated with pathways.

This algorithm calculates how the activating signal is propagated from pathway input nodes,
through interactions between intermediate node pairs, to the output nodes, leading to
functional realization of associated biological processes. The amount of signal approaching
the output nodes is called PSF. The extent of changes in the pathway flow is indicative of the
likeliness of the given pathway to be involved in the biological processes underlying the
phenotypic differences between the studied conditions. The detailed description of PSF is
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given in a number of publications [42, 43]. Here we will bring an example of PSF usage for
analysis of pathway flow perturbations in pulmonary sarcoidosis (PS) and its different clinical
forms.

PS is a systemic granulomatous disease with unknown cause [44]. It is characterized by massive
influx of activated T-lymphocytes and macrophages into the lungs, formation of granulomas,
and lung function failure. The immune disturbances and and granulomatous deposits resolve
spontaneously in 60–70% of PS patients; the rest follow a chronic course [44]. Though signifi‐
cant advances have been made in understanding of immunological features of this disease,
the central pathomechanisms of its development are yet unknown. In this study, we aimed at
identification of differentially deregulated pathways in sarcoidosis, as well as in different
clinical forms of the disease, compared with healthy lung. We have used two microarray gene
expression datasets from Gene Expression Omnibus public repository (dataset IDs: GDS3580
and GDS3705). The gene expression data and PSF scripts are available for download from [41].

The results of PSF analysis indicate that inflammation-related pathways are significantly
upregulated in sarcoidosis compared to healthy lung, while pathways interfering with cell
proliferation and fibrosis are downregulated (Table 1). Moreover, compared to self-limiting
PS, the progressive form of the disease is characterized by more prominent deregulation of
pathways associated with proinflammatory response and fibrotic conversion of the tissue
(Table 2).

Pathway PSF p value

PPAR (Peroxisome proliferator-activated receptor) signaling pathway 0.98 0.0000

Chemokine signaling pathway 33.05 0.0000

NF-kappa B signaling pathway 1.62 0.0000

Apoptosis 0.98 0.0000

Table 1. Pathway activity deregulation in pulmonary sarcoidosis compared to healthy lung.

Pathway PSF p value

Fc gamma R-mediated phagocytosis 13.72 0.0000

Chemokine signaling pathway 12.65 0.0000

Fc epsilon RI signaling pathway 7.27 0.0000

Ras signaling pathway 6.55 0.0000

PI3K (Phosphoinositide 3-kinase)-Akt signaling pathway 2.98 0.0000

HIF-1 (Hypoxia-inducible factor 1) signaling pathway 2.62 0.0000

B-cell receptor signaling pathway 2.18 0.0000

NF-kappa B signaling pathway 2.17 0.0000

NOD (Nucleotide-binding oligomerization domain)-like receptor signaling pathway 1.81 0.0339
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Pathway PSF p value

VEGF (Vascular-endothelial growth factor ) signaling pathway 1.71 0.0000

MAPK (mitogen-activated protein kinases) signaling pathway 1.69 0.0000

p53 signaling pathway 1.33 0.0000

Apoptosis 1.26 0.0000

Table 2. Pathway activity deregulation in progressive versus self-limiting sarcoidosis.

These findings are in compliance with the existing knowledge on sarcoidosis pathogenesis.
Numerous experimental studies, including our own, have implicated immune/inflammatory
pathways, such as Toll-like receptor signaling, phagocytosis, and chemokine signaling in
sarcoidosis [45–47]. However, application of PSF provided an extended systems view on
pathway deregulation states. Moreover, PSF implicated several new pathways that were not
detected using gene-centered analysis approaches in the original publications [48, 49].

5. Conclusions

This chapter demonstrates the advantages of MATLAB for performing bioinformatics
research. The powerful scripting language combined with various toolboxes makes it a
valuable tool for creation of complete pipelines for -omics data analysis and visualization. We
have contributed to MATLAB Bioinformatics toolbox with the PSF algorithm for assessment
of pathway activity changes, and KEGGParser for fine-tuned pathway editing and visualiza‐
tion. MATLAB GUI support allows for visualization of the results, making it easy to use for
the general scientific audience. Combining our tools with the rest of the MATLAB Bioinfor‐
matics toolbox has the power of having various complete pipelines for high-throughput data
analyses.

Finally, MATLAB scripting language allows for easy development and testing of various
algorithms that can later be translated into other scripting and programming languages. It
should be noted that KEGGParser and PSF, originally developed in MATLAB, were then
ported to various programming and scripting environments, such as Java and R [43, 50].
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Abstract

Rapid  developments  in  tandem  liquid  chromatography-mass  spectrometry  (LC-
MS/MS) have created wide interest in applications for the analysis of small molecule
mixtures. MS/MS spectra can contain rich structural information, but because of the
structural diversity of small molecules and different data acquisition methods, analysis
algorithms  and  workflows  frequently  need  to  be  tailored  to  individual  research
questions.  This  chapter  shows  how  MATLAB  can  be  used  for  LC-MS/MS-based
structural characterization of small molecules. Starting with the import of raw data,
ways for visualization and the creation of graphical user interfaces (GUIs) for individ‐
ual applications are demonstrated. A selection of frequently used algorithms for pre-
processing and data analysis is reviewed in context of their MATLAB implementation.
The approaches are then tailored and applied to the analysis of iron-binding peptides
(peptidic siderophores) by high-resolution LC-MS/MS. The method uses a database
with siderophore structures to exploit prior knowledge about siderophore structural
diversity for the interpretation of MS/MS spectra from known and new siderophores.

Keywords: small molecules, metabolomics, fragmentation spectra, LC-MS/MS, liquid
chromatography tandem mass spectrometry, neutral-loss, fragment-ion, auto-convo‐
lution spectra, molecular networks, secondary metabolites, siderophores, iron, nonri‐
bosomal peptides, MATLAB

1. Introduction

Liquid chromatography-mass spectrometry (LC-MS) enables the analysis of complex mix‐
tures of small molecules and is applied widely in diverse research areas, such as metabolo‐
mics analysis in biology [1] and medicine [2, 3] and molecular characterization of samples in
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environmental chemistry [4] and combinatorial chemistry [5], among many other applica‐
tions. Recent advances in LC-MS instrumentation with respect to speed and sensitivity, coupled
with improved computational methods to extract information from complex datasets, have
translated into falling costs of analyses and have created wide interest in LC-MS applications.
As instruments have become able to explore samples at very high sensitivity and resolution
(e.g., nano-flow LC coupled to high-resolution MS detectors, such as Orbitraps or Q-TOFs), the
computational analysis of the generated raw data has become more challenging. In untarget‐
ed, ‘discovery type’ LC-MS experiments, the analysis of the raw data may include the follow‐
ing steps [6–8]:

1. Extraction of features from a raw LC-MS dataset. LC-MS features are defined by unique,
characteristic combinations of retention time and mass-to-charge ratio. Associated with
the chromatographic peak of a feature is a peak intensity or area, which serves as a relative
measure of the abundance of the compound producing the feature. These parameters
represent a fingerprint of compounds in a given sample.

2. Comparison of corresponding features in different sample sets and evaluation of signifi‐
cant differences.

3. Compound identification and structural characterization of unknown compounds of
interest.

Soft ionization methods in LC-MS, most commonly electrospray ionization (ESI), generate
mass spectra with minimal compound fragmentation and facilitate the extraction of LC-MS
features associated with the intact molecular ion. Nevertheless, extraction of features for
subsequent statistical analysis is non-trivial when complex mixtures of small molecules are
analyzed [6]. Fortunately, open-source (e.g., mzMine2 [9], XCMS2 [10]) and commercial (e.g.,
Agilent MassHunter, Waters ProGenesis QI, ABSciex XCMSPlus, ThermoFisher Scientific
SIEVE) software tools for this task have been developed and have become increasingly
powerful and user-friendly.

With the extraction of features from LC-MS data becoming more readily achievable, the
identification or structural characterization of small molecules has become a major bottleneck
[11, 12]. Insight into chemical sum formulas and chemical interaction with the LC stationary
phase (e.g., hydrophobicity in reversed phase chromatography) may be gained from LC-MS
data because it contains information about molecular masses, isotope patterns, and retention
times. However, even at ultra-high mass accuracies (<1 ppm), it is usually not possible to assign
unique sum formulas to chromatographic features from MS1 data [13]. In addition, for any
given sum formula, there are typically many theoretically possible isobaric compounds with
different structures. Therefore, structural assignment of a compound is generally not possible
based on MS1 data alone. Direct structural information can be obtained by measurement of
fragmentation spectra (MS/MS, tandem MS, MS2, or for multiple rounds of fragmentation
MSN). LC-MS/MS datasets are composed of time series of individual full scan MS1 spectra,
interspersed by one or more MS/MS spectra derived from the fragmentation of one or more
species present in the MS1 (Figure 1).
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Figure 1. LC-MS/MS data is composed of time series of individual full scan MS1 spectra, interspersed by one or more
MS/MS spectra. Shown are high-resolution LC-MS data for a bacterial culture supernatant collected with an Orbitrap
XL mass analyser: (A) Total ion chromatogram (TIC, sum of MS1 intensities over time), (B) full scan MS1 spectra at
three different retention times, and (C) fragment-ion spectra (MS2, MS/MS) for the two major peaks in the third MS1
spectrum.

Because of the vast diversity of small molecule structures, MS/MS-based structural character‐
ization of compounds represents a great challenge [11, 12]. Identification by direct comparison
of an experimental MS/MS spectrum to a library of MS/MS spectra is often limited by unavail‐
able authentic standards. Even if MS/MS spectra for a compound (or a structurally closely
related analogue) exist in a library, algorithms may not return the best match in the database,
particularly if spectra are noisy or incomplete (e.g., contain contaminant ions, few fragments,
minor fragments below detection limit, etc.) [14]. Complementary to these MS/MS spectral
library-based approaches, de novo methods use known structures to calculate in-silico
fragmentation spectra (random or rule based). Observed fragments are matched to possible
substructures to reconstruct the observed MS/MS spectrum. The success of these methods
depends on the chosen fragmentation rules and database search space [11]. Thus, the final
success of attempts for structural characterization usually depends on a combination of prior
knowledge about the compounds in the sample, adequate computational tools, and manual
inspection of the raw data.

In addition to the identification of individual compounds, MS/MS structural information may
be used at different stages in the interrogation of the samples. For example, at an early stage,
it is possible to obtain an overview of structural diversity in a sample by clustering the MS/MS
spectra into similarity networks [15], while at a later stage, once specific unknown features of
interest have emerged, a more detailed interpretation of individual MS/MS spectra for
compound characterization can be undertaken. MS/MS spectra can also be used to direct
further targeted LC-MS/MS approaches aimed at deeper exploration of species possessing
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common fragments or fragmentation patterns of interest. This approach is commonly em‐
ployed to specifically characterize molecules with certain functional groups or chemical
modifications that produce characteristic patterns in their MS/MS spectra [14].

To make the best use of the rich structural information contained in LC-MS/MS datasets, there
is a large need for MS/MS analysis algorithms that are tailored to many different individual
research applications [11, 16]. As we demonstrate in this chapter, MATLAB provides an
accessible and convenient platform for the interactive analysis and visualization of LC-MS/MS
data and the implementation of customized algorithms and workflows. Tools are introduced
for basic tasks, such as neutral-loss searches, as well as for more complex workflows, such as
for the generation of MS/MS similarity networks or for the application of auto-convolution
spectra to the structural characterization of peptides. We then apply these tools in the context
of a specific basic research application: the discovery and structural characterization of peptidic
siderophores. Siderophores are a class of secondary metabolites that are released by many
bacteria and fungi to bind and take up iron (Fe), an essential and often growth-limiting micro-
nutrient [17]. Using a siderophore structural database to exploit considerable prior knowledge
about siderophore structural diversity, an effective workflow is shown for the LC-MS/MS-
based analysis of known and new siderophores.

2. Importing raw data into MATLAB

The LC-MS raw data generated by the MS instrumentation is stored in vendor-specific binary
file formats. For access by non-vendor software, the raw data file first needs to be converted
to an open file format, such as the common mzXML format [7]. The program msconvert, which
is part of the open-source proteomics package ProteoWizard (http://proteowizard.source‐
forge.net/tools.shtml), can be used to convert from most raw data formats to mzXML [18]. At
this point, LC-MS data recorded in profile mode can also be centroided by vendor supported
algorithms built into msconvert. During centroiding, the centroid is determined for each mass
spectral peak, which consists of multiple m/z—intensity measurements across the profile of
the detected ion at any given time, and the peak is replaced by a single m/z and intensity pair
at its center [18]. Centroiding reduces the data file size and is required for the subsequent
analysis steps in this chapter.

MATLAB’s bioinformatics toolbox provides several functions applicable to the processing of
LC-MS data. For this study, we will use the functions mzxmlread and mzxml2peaks. The
function mzxmlread can be used to import LC-MS data from mzXML files into a MATLAB
structure array: mzXMLstruct = mzxmlread(mzXMLFilename). The returned structure
contains the LC-MS/MS data and relevant metadata from the mzXML file, such as scan number,
MS level, ionization mode, MS/MS collision energy, and MS/MS precursor information (Figure
2).
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Figure 2. A selection of fields in the MATLAB structure array returned after the import of an mzXML file with LC-
MS/MS data.

The function mzxml2peaks can be employed to extract the mass spectra (m/z values and
intensities), together with their corresponding retention times, for a selected MS level (MS1,
MS2, etc.) from mzXMLstruct: [Spectra, Times] = mzxml2peaks(mzXMLstruct, MSLevel,
LevelValue), where Spectra is a cell array in which each element contains a two-column matrix
of m/z—intensity pairs corresponding to one mass spectrum collected at a specific retention
time, and Times is a vector with the corresponding retention time for each mass spectrum. To
analyze MS/MS spectra, it is usually necessary to retrieve additional information from
mzXMLstruct. Information about MS/MS precursor ions (precursor m/z, intensity, and charge)
can be accessed in mzXMLstruct.scan.precursorMz :

If mass spectra are collected in positive and negative ionization modes during the same run,
it may be useful to process positive and negative modes separately. To extract one ionization
mode only, a filter can be applied to the data in mzXMLstruct:
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These loops through scan metadata in mzXMLstruct can be added to the mzxml2peaks
function together with optional output and input arguments. In the following, we will use an
optional output matrix called Precursors which contains precursor information for each
MS/MS scan in three columns: m/z, intensity, and z.

3. Visualization and graphical-user-interface implementation

When analyzing LC-MS/MS data, it is helpful to be able to visualize spectra and chromato‐
grams in order to display significant features, evaluate spectral noise, consider potential
interferences, or evaluate fragmentation patterns, and so on. The two common projections of
the three-dimensional LC-MS data (retention time, m/z, intensity) into two-dimensional space
are chromatograms (intensity vs. retention time) and mass spectra (intensity vs. m/z). Note that
a chromatogram with intensities of a selected range of m/z values is called an extracted ion
chromatogram (EIC), whereas a chromatogram that shows the sum of all ions is known as a
total ion chromatogram (TIC). The m/z tolerance ∆m/z is often given in ppm of the m/z value
or as an absolute error in amu.

To plot an MS/MS spectrum for a given precursor m/z, the matrix Precursors can be used to
find precursor m/z values within a specified error tolerance. The corresponding elements in
Spectra represent the MS/MS spectra recorded for this m/z value:

Graphical-user-interfaces (GUIs) can aid in efficiently browsing and evaluating the LC-
MS/MS data and can serve as a platform for data manipulation and analysis. GUIs are also
particularly helpful for users who are not familiar with MATLAB and can be shared as stand-
alone applications. MATLAB facilitates the creation and programming of GUIs with the tool
GUIDE (graphical user interface design environment). GUIDE provides an interface for
designing the layout, while creating the code for the GUI, including the implementation of
callbacks for a number of standard User Interface (UI) controls, such as ‘pushbuttons’, ‘popup
menus’, and ‘listboxes’. The callback functions can then be filled with user-defined code to
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provide the intended functionality. A GUI for LC-MS/MS data analysis created with MATLAB
is shown in Figure 3.

Figure 3. Graphical User Interface (GUI) for visualization, pre-processing, and analysis of LC-MS/MS data. The main
window allows the user to select or search MS/MS precursor m/z values. When a precursor m/z value is selected, a
corresponding EIC is generated with the MS1 data and the MS/MS spectrum is shown in this figure. The retention time
corresponding to the MS/MS spectrum is indicated by a red line in the EIC figure. A table to the right shows the pre‐
cursor information and a table of the MS/MS peaks. A menu bar provides functionality to import LC-MS data from
mzXML files, open or save files, enter m/z error tolerances and other parameters, and select from a range of pre-proc‐
essing and analysis tools.

4. Pre-processing of MS/MS spectra

Before analysis of LC-MS/MS data, pre-processing can be employed to increase signal-to-noise
ratios, remove contaminant peaks, and reduce the data for the following analysis steps. Pre-
processing and analysis algorithms are often tailored to individual data acquisition methods,
data quality, and analytical goals.
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4.1. Noise removal

The ratio of maximum-to-median peak intensities in MS/MS spectra has been used as an
estimate of signal-to-noise ratios [14]. In order to remove noise and reduce the amount of data
in MS/MS spectra, filters have been applied to retain only the most intense peaks within a given
mass spectral bracket (e.g., five most intense peaks in a 50 Da window) [19, 20]. If several
fragment-ion spectra are available for the same precursor, noise can be removed by retaining
only those fragments that are present in a majority of the MS/MS spectra [21] or the spectra
can be summed or averaged, which may minimize the noise contribution if it is random (see
Section 4.3). For high-resolution MS/MS spectra, exact masses can also be used to determine
possible fragment-ion sum formulas in order to remove noise or satellite peaks that possess
m/z values leading to possible compositions that are completely incongruent with the precur‐
sor [21]. Similarly, MS/MS peaks with masses larger than the precursor mass can be removed.

Interfering signals are not only due to random noise but frequently a consequence of relatively
wide precursor ion isolation windows (usually > 1 Da) utilized by the instruments’ ion optics
during ion selection prior to MS/MS. For this reason, the selection of minor features that may
be well resolved in MS1 can result in the co-isolation of significant quantities of unrelated
species, which, in turn, produce significant contaminant peaks in the corresponding MS/MS
spectra. Spectral deconvolution algorithms to remove possible contaminant peaks or to
determine multiple precursors from unintentional or intentional wide-window ion isolation
(such as that achieved in recently developed data-independent acquisition methods) have been
published [22, 23].

4.2. Removal of 13C-isotopologue peaks

Another consequence of wide precursor isolation windows is that fragment ions may be
accompanied to some degree by their 13C-isotopologues. To de-isotope a high-resolution MS/
MS spectrum, an algorithm can proceed from the lowest to the highest intensity fragment ion.
For each ion peak, it is evaluated whether it may represent a 13C isotopologue of a more
abundant peak, by searching for another peak with the exact mass difference of a 13C isotope
(∆m/z = -1.0034 Da for z = 1), within the defined error tolerance (e.g., ±0.0035 Da). If this mass
difference is detected, the 13C isotopologue peak is removed from the spectrum. This process
is repeated for all relevant charge states, for example, all charge states up to the precursor
charge. At the same time, if 13C isotopologue peaks are detected, this procedure can be used
to assign charge states to individual fragment ions.

4.3. Consensus spectra

If several MS/MS spectra of the same precursor have been acquired, the construction of
consensus spectra can increase signal-to-noise ratios and significantly speed up the down‐
stream analysis. To select which MS/MS spectra are to contribute to one consensus spectrum,
the Spectra cell array can be filtered by identifying the elements with the same precursor m/z
(within the specified m/z error tolerance) and charge state z in the Precursor matrix. In many
situations, a number of different possible precursor structures can exist for the same m/z value
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(isobaric compounds) or indistinguishable m/z values within specified m/z tolerances. In such
cases, the retention time can be used as an additional filter, that is, only those MS/MS spectra
are clustered that are recorded during elution of the corresponding parent ion in MS1. It is also
possible to combine only those MS/MS spectra in a consensus spectrum that show high
pairwise similarity [20, 21]. The calculation of MS/MS spectral similarity is described in detail
in Section 5.2.

To calculate a consensus spectrum for each cluster of MS/MS spectra, all m/z-intensity pairs of
the individual contributing MS/MS spectra are combined in a common matrix [21]. All peaks
within the defined m/z tolerance around the most intense peak are determined and an intensity-
weighed mean m/z, and an intensity value can be calculated and then refined iteratively, as
follows. If any additional peaks are within the bin around the intensity-weighed average m/z,
a new intensity-weighed average is calculated until no further peaks fall within the bin. The
peaks within the bin are then replaced by the intensity-weighed average m/z and intensity
value and the process is repeated with all peaks in order of decreasing peak intensity.

5. Analysis of fragmentation spectra

In this section, three relevant LC-MS/MS analysis approaches are reviewed that can be applied
for a wide range of analytical questions. In Section 6, we illustrate an example application for
each approach (Sections 6.2–6.4) that is specifically tailored to the discovery and structural
characterization of siderophores.

5.1. Fragment-ion and neutral-loss search

Fragment-ion or neutral-loss searches can be utilized to mine LC-MS/MS data for molecules
with characteristic substructures or fragmentation behavior, such as certain lipid headgroups
[24] or metabolite conjugates (e.g., GSH or phosphate) [25]. In targeted analysis, a defined
fragment-ion or neutral-loss can be exploited to increase specificity for detection of the target
compound.

Simple algorithms can loop through the MS/MS cell array (Spectra) to search for fragment-ion
peaks within the defined m/z tolerance. To detect defined neutral-losses, ‘neutral-loss peaks’
can be computed as differences between the m/z values of the precursor ion and the fragment-
ions (precursor neutral-loss search) or all pairwise differences between the measured ions
(including the precursor and all fragment-ions). The algorithm can be refined by taking into
account the charge state of the precursor ion and the fragment-ions to calculate fragment-ion
and neutral-loss masses instead of m/z values (see Section 4.2 for fragment-ion charge state
determination).

5.2. Pairwise similarity of MS/MS spectra

Given the task to find a best match for an experimental MS/MS spectrum among members of
a spectral library, the experimental spectrum needs to be compared to each spectrum in the
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database and a pairwise similarity score needs to be computed. A common approach is to
calculate a normalized dot product (cosine similarity) between pairs of MS/MS spectra SA and
SB [14]:
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A and B are two vectors that contain the peak intensities from the MS/MS spectra SA or SB. The
intensities of two peaks that occur at the same m/z in SA and SB (within the defined m/z tolerance)
are corresponding elements Ai and Bi. To match fragment-ions in SA and SB, the algorithm can
proceed from high to low intensities and identify corresponding peaks within a defined
absolute or relative m/z tolerance in the corresponding other spectrum [20, 21]. If a peak is
present in only one of the two spectra, its intensity is added to the respective vector A or B
while the corresponding element in the other vector is set to 0. A similarity score of 1 indicates
identical spectra, whereas a value of 0 indicates that no fragments with a common m/z are
present. An implementation of this approach in MATLAB is as follows:

If a matching structure is not present in the database, the information may nevertheless be
used for the identification of potential common substructures of a structurally related com‐
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pound. For such applications, the matching of fragments in A and B can be modified to include
not only common fragment-ions in both spectra but also common neutral-losses, that is, pairs
of peaks in SA and SB that have m/z values which differ by a common m/z value. In a simple
implementation this difference can be the mass difference of the parent ions of SA and SB (see
Figure 4 for an example) [25, 26].

Another useful application of similarity calculations is found in the generation of MS/MS
similarity networks as described previously [15]. Calculating all pairwise similarities between
consensus LC-MS/MS spectra yields a table that can be visualized in a molecular network using
freeware tools such as Cytoscape (www.cytoscape.org). In the MS/MS network, each node
represents one consensus spectrum (precursor information) and each edge between two nodes
illustrates the relatedness. Cytoscape provides functionality to create edge-weighed force-
directed layouts to cluster closely related nodes in order to obtain an overview of structural
diversity in a sample.

Figure 4. MS/MS spectra of the siderophore protochelin A and its related analogue protochelin B. Protochelin A and B
have the same structures except for an exchange of a 1,4- diaminobutane linker group in protochelin A with 1,3-diami‐
nopropane in protochelin B (red circles). Accordingly, parent ion m/z ratios differ by a CH2 group and fragment peaks
that include the modification are shifted by the m/z of CH2 (∆m/z = 14.0157). To calculate similarities between such
structurally related compounds, the shifted peaks can be matched in addition to the peaks that both spectra have in
common. Figure modified from [27].

5.3. MS/MS convolution and auto-convolution

De-novo sequencing of peptides is most widely performed by the analysis of fragmentation
spectra that are acquired by positive-mode collision-induced dissociation (CID) [28]. With
positive-mode CID, major MS/MS peaks result from dissociation of the molecule at the peptide
bonds, yielding b- and y- type ions (Figure 5) [29, 30]. In addition, the spectra regularly include
other related fragments. For example a-ions have a mass difference corresponding to a CO
group relative to b-ions (∆m = 27.9949) and, if present, can be used to distinguish b-ions from
y-ions. In addition, neutral-losses of H2O or NH3 are often observed.
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As illustrated in Figure 5, the mass differences between fragments include the mass of
individual peptide monomers (amino acid residues). Spectral convolution between two
spectra SA and SB calculates the m/z difference between each peak in SA and each peak in SB.
The multiplicity of each observed m/z difference, within the given m/z tolerance, is then
counted to yield the convolution spectrum with the multiplicity for each m/z versus the
observed m/z differences. The convolution spectrum between unrelated spectra SA and SB is
close to 0 or 1 for most m/z values, whereas the convolution spectrum for structurally related
peptides (i.e., peptides with shared sequences) will show significant peaks for some m/z values
[26]. The following MATLAB code shows a basic implementation of spectral convolution.

Figure 5. Theoretical LC-MS spectrum for a peptide with the sequence Ser-Phe-Ala-Glu. The spectrum shows the posi‐
tion of expected b- and y-ions together with neutral-losses of H2O or NH3.
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Auto-convolution spectra are generated by calculating the m/z differences between all peaks
within one single spectrum. These have been used for the identification of possible peptide
monomers in cyclic nonribosomal peptides (NRPs) [19]. NRPs are secondary metabolite
peptides synthesized by nonribosomal peptide synthetases (NRPS), and include antibiotics,
toxins, and siderophores. The structures of NRPs contain unusual non-proteinogenic amino
acids, which increase the number of possible monomers from the canonical 20 found in most
proteins to several hundred. Possible peptide monomer species in cyclic NRPs are revealed by
matching peaks in the auto-convolution spectrum to masses in a database of possible peptide
monomers [19]. The NORINE database with NRPs and corresponding peptide monomers can
be used for this purpose and is freely accessible at http://bioinfo.lifl.fr/norine/ [31].

6. Application to siderophore analysis

In this section, the LC-MS/MS analysis methods discussed above are applied to the discovery
and structural characterization of peptidic siderophores. Siderophores are secondary metab‐
olites that are released by many bacteria and fungi to bind and take up iron (Fe), an essential
and often growth-limiting micro-nutrient [17]. Using a siderophore structural database to
exploit considerable prior knowledge about siderophore structural diversity, an effective
workflow is presented for the LC-MS/MS-based analysis of known and new siderophores.

6.1. Workflow

6.1.1. Overview

Previously, we described an algorithm for the discovery of siderophores in high-resolution
LC-MS1 data by screening for the natural stable isotope pattern of iron (54Fe and 56Fe) bound
to siderophores and by searching for related iron-free siderophores [32]. Here, we complement
this method by analysis of high-resolution LC-MS/MS data for discovery and structural
characterization of siderophores (Figure 6).

To obtain a list of siderophore candidates, Fe can be added to the sample extract before injection
onto the LC-MS system, which facilitates the generation of Fe-ligand complexes and the
recognition of the Fe isotope patterns associated with Fe-bound siderophores (Figure 6-1a).
Independent of isotope patterns, fragmentation spectra can be mined for siderophore-
characteristic substructures by fragment-ion and neutral-loss searches (Figure 6-1b, Section
6.2). Both approaches yield a table with m/z ratios of candidate siderophore Fe complexes and
associated free siderophores. The tables are combined to create a parent-ion-list for a replicate
run with data-dependent LC-MS/MS acquisition.

For the replicate run, no Fe is added to the sample extract, maximizing the signal for the free
siderophore species, which are preferentially selected for structural characterization in
subsequent analytical steps (at the same time, differences in peak abundances between the
extracts with and without added Fe can give further confidence to the assignment of sidero‐

Small Molecule LC-MS/MS Fragmentation Data Analysis and Application to Siderophore Identification
http://dx.doi.org/10.5772/63018

201



phores). MS/MS spectra of unbound siderophore candidates are selected to generate an
MS/MS molecular network which provides an overview of structurally distinct groups of
siderophores (Figure 6-2a, Section 6.3). Representative species in the network are selected for
structural characterization by calculation of auto-convolution spectra (Figure 6-2b, Section
6.4). By matching peaks in the auto-convolution spectra to masses in a database of siderophore
peptide monomers, possible siderophore substructures are assigned. Combinations of
peptide-monomers are then used as a signature to find possible related known structures in
the database, aiding in the reconstruction of the original MS/MS spectrum (Figure 6-2c).
Iterations with structurally related compounds in the MS/MS network can refine the structure
suggestions and be used to efficiently evaluate structures of derivatives. Depending on the

Figure 6. Schematic workflow for discovery (6–1) and structural characterization (6–2) of siderophores by high-resolu‐
tion LC-MS/MS. Two complementary approaches may be used for siderophore discovery: mining for characteristic
iron-isotopic patterns of iron siderophore complexes as well as for peaks corresponding to unbound siderophore spe‐
cies (6–1a), and searches for fragment-ions or neutral-losses associated with characteristic siderophore substructures
(6–1b). To characterize siderophore structures, MS/MS similarity networks (6–2a) can be used to identify groups of
structurally distinct siderophores. MS/MS auto-convolution in combination with a siderophore database may reveal
sub-structures and ‘siderophore class’ (6–2b) to aid in the reconstruction of the original MS/MS spectrum (6–2c). The
analysis results may then inform iterations with structurally related siderophores in the MS/MS network.
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analysis outcomes, the putative structures can be confirmed with authentic standards or by
isolation of the compound for characterization by orthogonal means (e.g., by nuclear magnetic
resonance spectroscopy, etc.).

6.1.2. Experimental methods and data pre-processing

The samples for this study include the siderophore standards desferrioxamine B (DFOB,
Aldrich), enterobactin (EMC Biochemicals), amphibactins (kindly provided by A. Butler, UC
Santa Barbara), and extracts of iron-limited Azotobacter vinelandii culture supernatants. A.
vinelandii culture conditions and sample preparation were described previously [27].

LC-MS analyses were performed on a high-performance liquid chromatography (HPLC)-MS
platform, using a C18 column coupled to an LTQ-Orbitrap XL hybrid mass spectrometer
(ThermoFisher). Samples were separated under a gradient of solutions A and B (solution A
consisted of water, 0.1% FA, and 0.1% acetic acid; solution B consisted of acetonitrile, 0.1% FA,
and 0.1% acetic acid; gradient, 0 to 100% B; flow rate, 50 μl/min). Full-scan mass spectra were
acquired in positive-ion mode with a resolving power (R) of 60,000 (m/z = 400). MS/MS spectra
were simultaneously acquired using collision-induced dissociation (CID; 35 V collision
voltage) in the Orbitrap, a parent ion intensity threshold of 10,000, and targeting the three most
abundant species in the full-scan spectrum or targeting selectively only predefined species on
a parent ion list.

LC-MS/MS raw data are converted to mzXML, centroided, and imported into MATLAB as
described in Section 2. Spectra in which the maximum-to-median intensity ratio is below 3 are
removed. Spectra are de-isotoped with an m/z tolerance for 13C isotopes of Δm/z = 0.0035, and
only the top five most intense peaks in a 50 Da window are retained. The user-defined m/z
tolerance for neutral-loss and parent-ion searches is set to Δm/z = 0.0050. For the generation of
MS/MS molecular networks and auto-convolution spectra, consensus spectra are calculated
using an m/z bin width of 0.01 Da (Δm/z = 0.0050). A siderophore database with >300 known
siderophore structures was assembled in ChemBioFinderTM to determine siderophore-
characteristic substructures, and to aid in the structural characterization of known and new
siderophores.

6.2. Fragment-ion and neutral-loss searches

Utilizing a database with >300 known siderophore structures, the most frequently occurring
iron binding substructures in siderophores are identified (Table 1, Figure 7). The specificity
of these structures for siderophore discovery by fragment-ion or neutral-loss searches is
evaluated by searching the NORINE database of nonribosomal peptides (NRPs) with >1,100
NRP structures (http://bioinfo.lifl.fr/norine/). With the exception of N-hydroxyornithine and
N-cyclo-hydroxyornithine, the peptide monomers have unique masses in NORINE (±0.005 Da,
Table 1). In addition, the iron binding substructures are not observed in non-siderophore
structures in the database, with the exception of two putative NRPS products that are predicted
to include compounds 10 and 11. Corresponding neutral-loss searches in the METLIN library
with >70,000 small molecule CID MS/MS spectra reveal 39–232 false positive neutral-loss hits
(i.e., matching neutral-loss mass within ±0.005 Da despite siderophore-unrelated structures),
representing less than 1% of the MS/MS spectra in the database.
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#   Monomer
name

Monoisotope
mass

Neutral
loss mass

Unrelated
isobaric
structures
in NORINE(*)

Occurrence
in non-siderophore
structures
in NORINE (**)

False-positive
neutral-loss
hits
in METLIN (***)

1 N-acetyl-
hydroxy-
ornithine (Ac-
OH-Orn)

190.0954 172.0848 0 0 122

2 N-formyl-
hydroxy-
ornithine (Fo-
OH-Orn)

176.0797 158.0691 0 0 107

3 N-hydroxy-
ornithine
(OH-Orn)

148.0848 130.0742, 148.0848 2 0 93, 159

4 N-hydroxy-
cyclo-ornithine
(OH-cOrn)

130.0742 130.0742 2 0 93

5 N-hydroxy-
lysine (OH-Lys)

162.1004 144.0898, 162.1004 0 not in NORINE 114, 232

6 5-Amino-N-
hydroxypentan-
1-amine (5AHA)

118.1106 118.1106 0 Not in NORINE 93

7 4-Amino-N-
hydroxybutan-
1-amine (4AHA)

104.095 104.095 0 Not in NORINE 48

8 3-Amino-N-
hydroxypropan-
1-amine (3AHA)

90.0793 90.0793 0 Not in NORINE 69

9 Citric acid (Cit) 192.0270 174.0164 0 Not in NORINE 44

10 Hydroxy-
aspartic acid
(OH-Asp)

149.0324 131.0218 0 45

11 2,3-Dihydroxy-
benzoic acid
(di-OH-Bz)

154.0266 136.0160 0 39

12 Pyoverdine
chromophore
(ChrP)

277.1063 259.0957 0 52

(*) NORINE database with >1,100 nonribosomal peptides (NRPs): http://bioinfo.lifl.fr/norine/.
(**) putative NRPS products.
(***) METLIN MS/MS database with >70,000 high-resolution MS/MS spectra: https://metlin.scripps.edu.

Table 1 Common iron-binding peptide monomers in known siderophores. Corresponding neutral-loss and fragment-
ion searches can be used to mine LC-MS/MS datasets for siderophores. The mass for fragment ion searches can be
obtained by adding a proton to the given neutral loss masses (+1.00783). Database searches in NORINE and METLIN
were performed using a mass tolerance of ±0.005 Da. Corresponding compound structures are shown in Figure 7.
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Application of neutral-loss and fragment-ion searches with the standards DFOB (containing
5AHA, compound 6), enterobactin (containing di-OH-Bz, compound 11), and amphibactin
(containing Ac-OH-Orn, compound 1) readily reveal the parent ion m/z values of the standards.
Application with a supernatant sample from the bacterium A. vinelandii yield a large number
of siderophores related to its known catechol siderophores aminochelin, azotochelin, and
protochelin as well as vibrioferrin, in agreement with previously reported results that were
based on Fe stable isotope pattern screening of LC-MS data [27]. However, the A. vinelandii
extract also contains a number of neutral-losses corresponding to siderophore substructures
in Table 1, which upon further structural characterization are identified as false positives,
originating from noise in the spectra. This further demonstrates that neutral-loss or fragment-
ion searches alone are not sufficient for identification of siderophores. Nevertheless, they can
provide a shortlist of candidate siderophore m/z values for structural characterization. If
siderophore structures in a sample are known or expected (e.g., from genomic analyses),
structure-specific fragments or neutral-losses can also be used to find related analogues. For
example, the amphiphilic amphibactin siderophores yield fragmentation spectra with a
common headgroup fragment: m/z = 450.219 [33]. This m/z may be used to screen suspect
samples for the presence of amphibactin-related siderophore species.

Figure 7. Common iron-binding substructures in siderophores, including hydroxamic acids (1, 5, 6), α-hydroxycarbox‐
ylic acids (9, 10), and catechols and related structures (11, 12).

6.3. Siderophore MS/MS similarity networks

Bacteria are known to often produce suits of structurally closely related siderophores [17]. MS/
MS similarity networks can give an overview of which precursors in a list of candidate
siderophores are structurally independent, potentially originating from separate siderophore
gene clusters, and which are likely to be structural analogues. An MS/MS similarity network
for A. vinelandii distinguishes the three main independent siderophore structures that this
bacterium produces: dihydroxybenzoic acid containing siderophores, vibrioferrin-type citrate
containing siderophores, and azotobactin related siderophores as reported previously [27]
(Figure 8). The MS/MS network facilitates efficient structural assignments and structural
refinement (see below).
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Figure 8. Siderophore MS/MS molecular network from the supernatant of A. vinelandii cultures, modified from [27].
Each node represents an individual siderophore and a corresponding consensus MS/MS spectrum; edge thicknesses
represent the cosine similarity. An edge weighted-force directed layout in Cytoscape was used to cluster closely relat‐
ed nodes.

6.4. Application of MS/MS auto-convolution to siderophore analysis

The success of de novo structural analysis of nonribosomal peptides (NRPs) using spectral
auto-convolution depends on the identification of most or all amino acids involved in the
structure, thus requiring a database that contains all involved peptide monomers as well as a
good coverage of fragments in the MS/MS [19, 34]. To use auto-convolution for siderophore
analysis, a database with >300 siderophore structures was compiled along with a database of
the peptide-monomers occurring in these structures (160 different structures with 51 different
Fe binding monomers), most of which are not present in the NORINE database of nonriboso‐
mal peptides (http://bioinfo.lifl.fr/norine/). Auto-convolution spectra were previously applied
to cyclic NRPs (see Section 5.3), in which an MS/MS experiment leads to ring opening, and
MS3 creates additional fragmentation [19]. Because ring opening may occur at any peptide
bond, the theoretical MS3 spectra are a superposition of spectra derived from all possible linear
peptides (circular permutations).

A modified auto-convolution approach is used here for analysis of peptidic siderophores and
applied to siderophore structures that can also be linear, branched, or partly cyclic. Before
auto-convolution, the algorithm adds the parent ion as a peak to the MS/MS spectrum and its
intensity is set equal to the most intense peak in the spectrum. This ensures that the all
precursor neutral loss m/z values occur in the auto-convolution spectrum, even if the precursor
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ion is not present as a peak in the MS/MS spectrum. In addition to the auto-convolution
spectrum, the algorithm calculates the sum of the relative intensities of all fragment-ions
associated with each m/z in the auto-convolution spectrum. The m/z values in the auto-
convolution spectrum are then matched to masses in the siderophore database, taking into
account possible neutral-losses of one or two H2O or NH3. Finally, neutral-charge masses of
fragment-ions in the original MS/MS spectrum are calculated and also matched to the database
of siderophore peptide monomers.

The relevance of database hits is judged by the multiplicity in the auto-convolution spectrum
and the corresponding relative intensities of the MS/MS peaks involved. Illustrative results
from the analysis of the siderophore amphibactin B are shown in Figure 9. The auto-convolu‐
tion peaks with the highest multiplicity and highest relative intensities reveal all structural
features of the molecule: the iron binding N-acetyl-hydroxyornithines, a serine, and the fatty
acid tail. Combinations of monomers are then used as a fingerprint to search for possible
related structures in the siderophore database. Four families of siderophores in the database
contain the three possible substructures: amphibactins, aquachelins, marinobactins, and
loihichelins. With this information, the amphibactin can be readily identified by reconstruction
of the original MS/MS spectrum. A number of m/z differences shown in Figure 9 have database
matches with low multiplicity and relative intensity and do not relate to peptide monomers
in the structure. One cause of false identifications of monomers can be spectral noise and
contaminant peaks. To eliminate noise in the auto-convolution spectra, the analysis can be
repeated with other related compounds in the siderophore MS/MS network and only those
monomers prominent in a majority of spectra may be considered for structure proposals.

The approach was also successfully applied to the other siderophore standards used in this
study: DFOB showed the iron-binding monomer 5AHA (Table 1) together with the succinic
acid linker among the three substructures with the highest intensity and multiplicity. One
potential peptide monomer (N1,N1-dimethyl-N5-acetyl-N5-hydroxy-ornithine, m = 200.1161)
was a false match as it has the same sum formula as the sum of 5AHA (m = 118.1106) and
succinic acid (m = 82.0055 for succinic acid-2H2O). Searching the siderophore database for these
monomers revealed ferrioxamines as most likely related structure. The cyclic enterobactin
showed a prominent fragment with a mass corresponding to the iron binding dihydroxyben‐
zoic acid groups in the structure as well as high multiplicity and intensity for the serines in the
structure. The A. vinelandii supernatant contains three groups of structurally unrelated
siderophores (Figure 8). Vibrioferrins were associated with a strong auto-convolution peak
for the iron-binding citric acid monomer in the molecule among a number of unrelated peptide
monomers that were also matched. Protochelin, azotochelin, and related structures produced
by A. vinelandii showed the characteristic dihydroxybenzoic acid together with the lysine or
putrescine linkers contained in the structures. In contrast, azotobactin-related compounds in
the supernatant did not show a clear siderophore signature, due to poor peptide fragmentation
around the iron binding groups in the molecule.

When analyzing an unknown siderophore, the described auto-convolution approach can give
confidence in the siderophore assignment: siderophores often contain three characteristic iron
chelating peptide monomers for hexadentate iron coordination, which cause high multiplici‐
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ties and relative intensities. A combination of peptide monomers in the structure can be used
as a fingerprint to search the siderophore database for possible related structures, giving
insight into the possible ‘siderophore class’ and aiding in the reconstruction of the original MS/
MS spectrum to make a structure suggestion.

Figure 9. (A) MS/MS spectrum of the siderophore amphibactin B. (B) Results after application of a modified auto-con‐
volution approach. Only auto-convolution m/z values are shown in the table that correspond to masses in a sidero‐
phore peptide monomer database. The m/z values with highest multiplicity and relative intensity reveal the structural
features of this siderophore: the iron-binding N-acetyl-hydroxyornithines (orange), a serine (green), and a fatty acid
tail (blue). A number of m/z values have database matches with low multiplicity and relative intensity and do not re‐
late to peptide monomers in the structure (white).

7. Conclusions

The basic tools and considerations introduced in this chapter provide insight into the system‐
atic analysis of LC-MS/MS fragmentation data for the structural characterization of small
molecules and demonstrate how this can be performed within MATLAB. Since many re‐
searchers are familiar with MATLAB, this environment provides a low-barrier entry point and
facilitates the creation of new strategies and tools to exploit the full power of modern high-
resolution LC-MS/MS for structural interrogation. MATLAB facilitates data handling, manip‐
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ulation, and the implementation of graphical user interfaces to serve as a platform for the
visualization, pre-processing, and analysis of LC-MS/MS data.

The discussed methods were applied in a new workflow for the discovery and structural
characterization of siderophores by high-resolution LC-MS/MS. Using a database with
siderophore structures, characteristic neutral-loss and fragment-ion masses were identified to
mine LC-MS/MS data for potential siderophores. MS/MS siderophore networks in combina‐
tion with a modified MS/MS auto-convolution approach revealed siderophore peptide
monomers and corresponding siderophore families. This information was key tostructure
assignments by reconstruction of the original MS/MS spectrum. The tools and approaches
outlined here may also be adapted to explorations of other classes of complex small molecules.
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Chapter 10

Intelligent Sliding Surface Design Methods Applied to
an IBVS System for Robot Manipulators
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Abstract

The controller of an image‐based visual servoing (IBVS) system is based on the design
of the kinematic velocity controller which guarantees exponentially decreasing feature
errors. In fact, this controller is using the sliding surface approach of classical Sliding
Mode Control (SMC). In SMC, the system dynamics are taken into consideration and
the  sliding  surface  is  designed  according  to  the  physical  limitations  and  desired
convergence  time.  Different  design  methods  are  proposed  in  the  literature  using
adaptive gain, time variations, nonlinear functions, and intelligent methods like fuzzy
logic (FL) and genetic algorithms (GA). In this study, five different sliding surface
designs with analytical and intelligent methods are modified and applied to an IBVS
system to expand these designs to visually guided robot manipulators. The design
methods are selected by their convenience and applicability to these types of manipu‐
lator systems. To show the performance of the design methods, an IBVS system with
six‐DOF manipulator is simulated using MATLAB Simulink, Robotics Toolbox, Machine
Vision Toolbox, and Fuzzy Logic Toolbox. A comparison of these design methods according
to convergence time, error cost function, defined parameters, and motion characteris‐
tics is given.

Keywords: Sliding surface, visual servoing, robot manipulators, fuzzy logic, Simulink

1. Introduction

Visual servoing (VS) uses the camera image to control the motion of a robot, and it needs points
or important pixels named as features in an image. In VS, image plane is used to define these k
feature points and the coordinates of these features in image plane form, the vector s. Error
signal vector is derived from the difference between the desired vector  and s, and these signals
are used to obtain velocity control law. By using these definitions, VS methods are mentioned
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in two main titles. Image‐based visual servoing (IBVS) uses s vector obtained from the image
directly but  position‐based visual  servoing (PBVS) needs s  obtained from 3D parameter
estimations of image and robot pose [1]. This advantage and robustness against depth estima‐
tion errors make IBVS more attractive and applicable in VS. Here, it must be noted that featureless
visual servoing approaches like kernel‐based or luminance‐based methods are becoming more
popular [2, 3], but feature‐based methods will continue their royalty. Besides these features, the
configuration of the camera and the end effector should be taken into consideration in VS. Eye‐
in‐hand configuration, as the most popular configuration in VS, is chosen for this study. This
configuration is also a step of VS for unmanned air vehicles (UAV).

Studies on IBVS mostly focus on different feature extraction methods [4], different camera
geometries and types [5], hybrid VS methods [6] or other problems of VS like singularity
avoidance or field of view (FOV) keeping [7] but the controller design doesn't draw too much
attention because the linear velocity controller design approach of VS is assumed as the
sufficient controller as the errors are decreasing exponentially. Besides this common sense,
other performance parameters like convergence time, velocity limits, and error magnitudes
are actually real‐time metrics. For robot applications in a production line, these parameters
become dominant to speed up process to increase accuracy and repeatability. Some other
control approaches like visual predictive control [8] fusing predictive control with VS are
promising but the controller should be applicable in real‐time.

To design a new IBVS controller, the velocity controller design approach of IBVS should be
examined. As explained in details in the following section, the linear controller of IBVS is using
sliding surface design of sliding mode control (SMC). In SMC, two design steps are defined.
The first one is designing a sliding surface that represent desired stable states of the system,
and the second one is designing a control law that guarantee states reaching to the sliding
surface and sliding on this surface [9]. A sliding slope is defined in SMC and this slope is named
as gain in IBVS. The rule of thumb of an appropriate slope in SMC is choosing a slope small
enough in order not to exceed control limits and conversely, choosing a slope big enough to
reach the sliding slope faster and slide on this surface faster. This is interpreted by IBVS as
choosing gain small enough in order not to exceed velocity limits and choosing gain big enough
to converge faster.

From initial conditions to convergence, there are two modes of state trajectories in SMC. In
reaching mode, the states are not on the sliding surface and they try to reach this surface. In
sliding mode, they are on the sliding surface and they try to converge to zero. IBVS and SMC
uses fixed gain‐sliding slope but alternatively, in the literature, there are many different sliding
surface designs which are important from the practical point of view and for high performance.
Two main approaches are mentioned in the literature of sliding surface design: linear and
nonlinear [10]. Although there are numerous designs for linear surfaces, it is very hard to obtain
a nonlinear surface using linear surfaces for high performance, and it is hard to define the
parameters of these designs. There are not too many options and the parameters are easily
defined for nonlinear designs, but the magnitude of control signals should be observed to
avoid saturation [10, 11]. The titles of the most common linear designs are linear constant
surface [9], integral sliding surface [12], linear varying (rotating and shifting) sliding surface

Applications from Engineering with MATLAB Concepts214



[13], and linear time‐varying sliding surface [14] designs. Nonlinear designs are more popular
and titled as constant nonlinear sliding surface [15], higher order sliding surface [16], fractional
sliding surface [17], terminal sliding surface [18], nonlinear sliding surface with nonlinear
functions [19], and nonlinear moving sliding and terminal sliding surface designs [14].
Furthermore, intelligent methods like fuzzy logic (FL) and genetic algorithms (GA) are also
deployed for parameter assignment of linear and nonlinear surface designs [20]. Detailed
reviews on sliding surface designs can be found in [11, 14, 20].

Most studies on VS focus on image processing‐feature extraction part of vision, but control
part is still open to old and new approaches. In this study, five different sliding surface designs
with analytical and intelligent methods are modified and applied to an IBVS system to expand
these designs to visually guided robot manipulators. The design methods are selected
according to their relevance and applicability to these manipulator systems. In the first design,
linear varying sliding surface with FL is assumed. Error and error derivative are used as inputs
of FL and to define linguistic rules of FL, the effects of gain on IBVS and experience on IBVS
are used. In the second design, integral sliding mode is assumed and the sliding parameter of
integral term is tuned using FL. In the third design, time‐optimal varying sliding surface design
with constant acceleration is assumed. A time interval is defined for this design and linear
sliding mode is modified according to this time interval. In the fourth design, a nonlinear
tangent hyperbolic function with a width parameter function is used to define a sliding surface.
In the fifth design, nonlinear time‐varying sliding surface is assumed. The surface is obtained
by the product of initial error‐error derivatives and an exponential time‐varying term. To show
the performance of these designs, an error cost function is defined as in [19]. An IBVS system
with six‐DOF manipulator is simulated and the designs are tested on this system. A compar‐
ison of these design methods according to convergence time, error cost function, defined
parameters, and motion characteristics is given.

The paper is organized as follows. In the following section, IBVS and used sliding surface
designs with modifications and adaptations to IBVS are explained briefly. In Section 3,
simulation results for classical IBVS and IBVS with five sliding surface designs are shown. In
the last section, an overall comparison of these designs is given and conclusions of the study
and future goals are discussed.

2. A review on IBVS and sliding surface designs

In this section, a review on IBVS and sliding surface designs used in the study is given. The
main objective of IBVS, as all VS approaches, is to minimize errors derived from k  feature point
vector s (1)

( )e t s s*= - (1)

where e(t)∈ℝk  is the error vector and  is the desired features for fixed‐motionless feature
points with zero derivatives. Changes in s depend only on camera motion. Furthermore, IBVS
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assumes that the camera is attached to the end effector of a six DOF arm as eye‐in‐hand
configuration and k ≥6.

In the classical IBVS, a point P = (X, Y, Z) in 3D camera frame is defined in image plane with
a point p using perspective projection and the velocity of P relative to camera frame is given
in terms of linear velocity V and angular velocity Ω

P P VW= - ´ -& (2)

This velocity is used to obtain transformation between the velocity of the coordinates of
perspective projection point (u, v) with a focal length λf and the linear and angular velocities
of point P. This transformation is defined as below:
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where vc (νc, wc) is the vector of camera's linear and angular velocities in reference coordinate

frame. The transformation matrix,  is known as the interaction matrix or commonly
called image or feature Jacobian matrix. Z is the depth of P and it is hard to obtain the actual
value of this term in practice. In most approaches, the estimation value for Z is used and the

interaction matrix becomes an estimated interaction matrix .

By using (1) and (3), relation between error and velocity is obtained as ṡ∗ is zero

s ce L .u=& (4)

IBVS tries to decrease the error exponentially by using the differential equation

0e .el+ =& (5)

From another aspect, this differential equation is the main equation used by classical SMC to
define a sliding surface. Classical SMC defines a surface in terms of error and error derivatives
according to the system degree and tries to hold the system states in this surface by equalizing
this surface to zero. This definition strongly connects SMC and IBVS. IBVS proposes a
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kinematic velocity controller and the velocity signals are the control signals. Again, by using
(4) and (5), velocity signals is defined as

0 s c

c s

ˆe .e e .e L .
ˆ.e .L .e

l l u
l u l +

+ = ® = - ®

= - ® = -

& &
(6)

where,  is the pseudo‐inverse matrix of estimated interaction matrix in cases of non‐square
matrix and λ is the gain value. Here, it must be noted that this gain value can be in matrix form
to define different gain values for each velocity term. This velocity controller is a proportional
controller and detailed stability analysis of this controller for IBVS can be found in [1].

2.1. Linear varying sliding surface with fuzzy logic

Varying sliding slope is a common approach in sliding surface designs to achieve desired
performance without exceeding velocity limits. The only design parameter in (5) and (6) is the
sliding slope, and an on‐line parameter tuning algorithm can be proposed by using varying
sliding slope approach. Instead of an analytical approach which proposes different parameters
to tune a parameter, and which has to be tuned carefully to allow soft parameter variation, FL
can be a good candidate not only to avoid tuning twice but also to include linguistic definitions
and user experience in the design [21]. IBVS velocity controller in (6) can be modified as in (7)
and the block diagram of IBVS with linear varying sliding surface design using fuzzy logic is
shown in Figure 1.

( )c sFL
ˆe,e .L .eu l += - & (7)

Figure 1. IBVS with linear varying sliding surface design using fuzzy logic.

In Figure 1, it must be noted that limiters should be placed before FL block to restrict λFL.
Membership functions and FL type should be chosen wisely according to desired varying λFL

surface, which is a function of error and error derivative. Furthermore, the rulebase should
represent the behavior of classical IBVS under varying gain. An example rule from FL rulebase
is defined as follows:
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IF  is HIGH and  is HIGH, THEN  is LOWFLe e l& (8)

2.2. Integral sliding surface with fuzzy logic

The classical linear sliding surface design in (5) is a PD‐type sliding surface and an integral
term can be added to this design to increase tracking performance [12, 22]. This term can be
active for all error trajectories or only when the errors are in predefined bounds. Integral sliding
surface is given below:

0p I D.e . e.dt .el l l+ + =ò & (9)

Finding appropriate gain values (λP , λI , λD) for this surface design is the main problem. Again,
FL can be applied to this design as in [23]. In this study, only gain value for integral term (λI )
is assigned using FL as a function ofe. (9) is reformulated for IBVS in (10) and the block diagram
of IBVS with integral surface design using fuzzy logic is shown in Figure 2.

( ) ( )( )c s p I FLL̂ . .e e . e.dtu l l+= - + ò (10)

Figure 2. IBVS with integral surface design using fuzzy logic.

2.3. Time‐varying sliding surface design with constant acceleration

As mentioned in [14], trade‐off between short sliding slope reaching phase and slower
responses in sliding surfaces can be bested by time‐varying sliding slopes. A time‐varying
sliding slope term, which is defined as a function of time is added to classical sliding surface
design and this term is only active until a predefined time instant. In his study, Bartoszewicz
designed two different time‐varying sliding surfaces, constant‐acceleration, and constant‐
velocity, according to time dependence [14]. Constant‐acceleration time‐varying sliding
surface offers a faster convergence speed to classical sliding surface and this design is chosen
in this study. Constant‐acceleration time‐varying sliding surface design is given in (11) and
definitions for the design parameters are given in (12), respectively
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where β is fixed initial error constant and T is time instant for constant acceleration.

The velocity controller and the block diagram of IBVS with time‐varying sliding surface design
is shown in (13) and Figure 3 with sample/hold (S/H) units, respectively

2 for 
0                    for c s
A.t B.t C t T

L̂ . .e
t T

u l+ æ öì ü+ + £ï ï= - +ç ÷í ýç ÷>ï ïî þè ø
(13)

Figure 3. IBVS with time‐varying sliding surface design with constant acceleration.

2.4. Nonlinear sliding surface design with tangent hyperbolic function

Sliding surfaces in the first three designs are linear, which means that error and error derivative
will pursue a constant sliding slope. In fact, linear varying or time‐varying sliding surfaces
reveals piecewise linear surfaces. Instead of using these linear methods, a nonlinear function
can be assigned as a sliding surface function [15]. Tangent hyperbolic function can be a good
candidate as a nonlinear function [11] and it is preferred in this study. The definition of
nonlinear sliding surface design with tangent hyperbolic function is given in (14)
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( )1 0+ =& pe w .tanh c .e (14)

where wp is the sliding magnitude parameter which represents convergence speed and c1 is
the sliding slope of the nonlinear surface. These parameters can be assigned constant but to
reach sliding surface faster, wp is chosen as a function of error. The velocity output and block
diagram of IBVS with nonlinear sliding surface design using tangent hyperbolic function are
shown in (15) and Figure 4, respectively.

( ) ( )1

+= -c s pL̂ .w e .tanh c .eu (15)

Figure 4. IBVS with nonlinear sliding surface design using tangent hyperbolic function.

2.5. Nonlinear time‐varying sliding surface

As an alternative to nonlinear constant functions, nonlinear time‐varying surfaces can be
designed to shorten reaching phase. Exponential time‐varying functions [14, 19, 24, 25] are
proposed in the literature as nonlinear time‐varying sliding surface functions. In this study,
exponential nonlinear time‐varying sliding surface design in (19) is chosen and it is given in
(16)

( ) ( )[ ]0 0 0k .te .e e .e .el l -+ - + =& & (16)

where λ and k  are design parameters of sliding slope and time constant of convergence. This
function also includes initial values of error and error derivative and this provides zero initial
velocity signals for IBVS. The velocity output and block diagram of IBVS with nonlinear time‐
varying sliding surface are shown in (17) and Figure 5, respectively.

( ) ( )( )0 0 k .t
c sL̂ .e e .e .eu l l+ -= - - é + ùë û& (17)
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Figure 5. IBVS with nonlinear time‐varying sliding surface design.

3. Simulation results

In this study, an IBVS system with intelligent sliding surfaces is simulated using MATLAB
Simulink, Robotics Toolbox, Machine Vision Toolbox and Fuzzy Logic Toolbox [26]. As the robot
manipulator platform, a six DOF Puma560 arm kinematic model is used in the simulations
[27]. Here, it must be noted that inner loop robot manipulator dynamics and control can be
fused with IBVS control as in [28], but this study neglects dynamics of the manipulator systems
and assumes the IBVS controller as a kinematic velocity controller.

Some assumptions in the study should be given before simulation results:

Assumption 1: It is assumed that there is no transformation between the end effector and the
camera mounted on the end effector with eye‐in‐hand configuration.

Assumption 2: All feature points are collinear.

The camera parameters are defined as follows: the resolution of the camera is 1024×1024, the
principal point is (512, 512), and the focal length is 8 mm. The feature points in Cartesian
coordinates are defined as P∗ using four fixed corner points of a square with 0.5 m side length
and ∈ℝ2×4. The center of these points should collide with the principal point as . P∗ and

 in matrix form for feature points are given below:
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The estimated depth value for  is assumed as 2 m and this value can be considered as a good
depth estimation. In the following subsections, details and parameters of classical IBVS and
five IBVS sliding surface designs are given and the results are illustrated. To show the
performance and the robustness of the designs, random w disturbance with ‐1< w <1 and zero
mean is added to each feature point. As an illustration of the simulated IBVS systems, the block
diagram of the closed loop IBVS system with sliding surface design and its Simulink model is
shown in Figure 6 and Figure 7, respectively. For all these simulations, initial joint angle vector
q

0
 is given below and the desired pose of Puma 560 with P* in 3D is shown in Figure 8.

0 0 4 10 4 4  rad.q p p p p pé ùë û= - (19)

Figure 6. The block diagram of the simulated IBVS systems with sliding surface design.

Figure 7. The Simulink model of the simulated IBVS systems with sliding surface design.
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Figure 8. The desired pose of Puma 560 with P* as red balls.

The main performance criterions for an IBVS system are convergence time (tconv) and velocity
limits. In this study, an error cost function is also added to these criterions to show the
performance of each design and it is given in (20)

( ) ( )
2

1 0

convtk

i
i

J e e t .dt
´

=

=å ò (20)

where ei is the error of each feature and i is the index of feature error. Besides these perform‐
ance numbers, the parameters which have to be assigned for each design are another metric
for a closed loop system. These parameters are also discussed in each design. Furthermore,
feature motions in image plane are examined to discuss FOV keeping capability for future
studies. The inside of the sliding surface block for each design is also given.

3.1. Case 1: Classical IBVS with fixed sliding slope

To make a comparison between each design, a classical IBVS system with fixed sliding slope
is assumed as in (5) and (6). The fixed value for λ is chosen as 0.5. Inside the Simulink block of
the sliding surface design for this case is shown in Figure 9.
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Figure 9. The Simulink block of sliding surface for Case 1.

The feature motions in image plane are shown in Figure 10.a with initial feature points in red
circles and target feature points in blue circles. The velocity signals of the end effector are
shown in Figure 10.b, and the error signals are shown in Figure 10.c, respectively.

Figure 10. The results for Case 1. (a) Feature motions in image plane (b) Velocities of the end effector (c) Feature errors
(d) Error vs. error derivative trajectory.

As shown in Figure 10.a‐b, the paths of the feature points are linear and the errors are
exponentially decreasing as expected from classical IBVS [1]. As the convergence time, the time
instant when all absolute errors decreases under 1 pixel is assumed and it is 12.89 s as shown
in Figure 10.c. The error cost for Case 1 is 2482. As an example of fixed sliding slope, error and

error derivative trajectory  for the first feature in u coordinate is shown in
Figure 10.d.

3.2. Case 2: IBVS with linear varying sliding surface using fuzzy logic

The choice of an appropriate λ plays a critical role in the performance of the proportional
velocity controller in (6). As the second design, linear sliding slope design with varying λ for
fast convergence and low velocity profile is aimed, and assigning the slope by using fuzzy
logic that is an approach in fuzzy sliding mode is proposed.

IBVS derives different error signals for each feature. FL needs error and error derivative for
an appropriate λ but it is very hard to decouple the error signals of each feature to associate
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with velocity signals. To avoid this problem, Euclidian norm values of the error and error
derivative vectors are used as the inputs of FL in the design of the sliding surface. Inside the
Simulink block of the sliding surface design for this case is shown in Figure 11. Fuzzy Logic
Controller block in Figure 11 is implemented MATLAB Fuzzy Logic Toolbox.

Figure 11. The Simulink block of sliding surface for Case 2.

The type of FL unit is Mamdani and the membership functions of the error, the error derivative
norm inputs and output λFL  are shown in Figure 12. For a better softened varying λFL, the
membership functions are chosen as gaussian and gaussian‐bell curve. For each input and
output, three membership functions are defined. The rulebase for FL is defined using nine
rules and this rulebase is given in Table 1. The rules are defined according to the approach as
in (8). The FL surface for nonlinear mapping between the inputs and the output is demon‐
strated in Figure 13. Here, it must be noted that λFL varies between 0.51 and 1.85 as shown in
Figure 13.

Figure 12. FL membership functions for λFL  (a) Input e (b) Input de/dt (c) Output λFL .
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Figure 13. FL surface for λFL .

Figure 14. The results for Case 2. (a) Feature motions (b) Velocities of the end effector (c) Feature errors (d) λFL  (e)
Error vs. error derivative trajectory.
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e / ė Low Medium High

Low High High High

Medium High Medium Low

High Low Low Low

Table 1. FL rulebase for linear varying sliding surface.

The feature motions in image plane are shown in Figure 14.a, the velocity signals of the end
effector are shown in Figure 14.b, and the error signals are shown in Figure 14.c, respectively.

The varying sliding slope λFL  is shown in Figure 14.d and it remains constant and low since
error and error derivative norms are high. Time interval for this steady condition is between
0 and 3.98 s. Within this time interval, the slope is fixed and error and error derivative follows
this slope as shown in Figure 14.e. Then, FL unit is activated by these norms and varying sliding
slope shows a nonlinear characteristic without discontinuity. Again, it remains constant and
high after norms are small with small fluctuations after 6.15 s. These fluctuations are a
consequence of noise added to the features.

The velocity profiles dwell in velocity limits and increases after 3.98 s as shown in Fig‐
ure 14.b. The errors decreases rapidly after varying sliding slope as shown in Figure 14.c and
error and error derivative try to follow varying sliding slope after 3.98 s. The convergence time
is 7.35 s and the error cost is 2591 for Case 2. In Figure 14.a, it can be seen that the feature
motions are linear, which means that this sliding approach doesn't affect motion characteristics
of IBVS.

3.3. Case 3: IBVS with integral sliding surface using fuzzy logic

IBVS with integral sliding surface in (10) is assumed as Case 3 and λP  is chosen as 0.5. FL is
used for λI  assignment. Inside the Simulink block of the sliding surface design for this case is
shown in Figure 15.

Figure 15. The Simulink block of sliding surface for Case 3.
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FL unit uses error as input, two membership functions are defined for this input and the FL
surface curve is shown in Figure 16. Here, it must be noted that limits of this curve, thus λI ,
can be changed but this affect velocity limits.

Figure 16. FL surface curve for λI .

The feature motions in image plane are shown in Figure 17.a, and the velocity signals of the
end effector are shown in Figure 17.b, respectively. The error signals and the error integral
term signals after λI  product are shown in Figure 17.c and 17.d, respectively. In Figure 17.b‐
d, it is clear that integral term forces fast convergence with high velocities, but this effort is
not enough by itself for fast convergence. In (12), it is mentioned that an integral term can be
active only when the errors are in predefined bounds if desired. It must be noted that this
approach will cause discontinuities and sudden changes in velocity signals of IBVS. The fea‐
ture motions in Figure 17.a show linear characteristics as classical IBVS. The convergence
time is 9.41 s and the error cost is 1852 for Case 3.
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Figure 17. The results for Case 3. (a) Feature motions (b) Velocities of the end effector (c) Feature errors (d) Error inte‐
gral term.

3.4. Case 4: IBVS with time‐varying sliding surface design and constant acceleration

In his study, Bartoszewicz proposed a time‐optimal sliding mode approach for robust control
of second‐order uncertain systems [14]. Time‐optimality needs time‐varying sliding slopes to
adapt the system to initial conditions. These initial conditions for an IBVS system are dominant
if they are far from zero. β is chosen as 0.5 for this case and A, B, and C are defined as in (12)
and (13), respectively. Time dependent terms in (13) affect velocity limits and by some trials,
T in (13) is assigned as 5 s. Inside the Simulink block of the sliding surface design for this case
is shown in Figure 18.

Figure 18. The Simulink block of sliding surface for Case 4.
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The feature motions in image plane are shown in Figure 19.a, the velocity signals of the end
effector are shown in Figure 19.b, the error signals are shown in Figure 19.c, and time
dependent terms in (13) are shown in 19.d, respectively.

Figure 19. The results for Case 4. (a) Feature motions (b) Velocities of the end effector (c) Feature errors (d) Time de‐
pendent terms in (13).

The feature motion trajectories in the previous cases are quite similar but in this case, the
motions are curvilinear as shown in Figure 19.a. This is the consequence of time dependent
terms shown in Figure 19.d. They are the sum of the terms in (13) and they drag the motions
throughout target features until the end of time dependence. β adjusts magnitude and signs
of these terms in (12) and it has to be chosen wisely. Besides being curvilinear, VS may lose
the feature points and stop processing when the features are close to FOV. The convergence
time is 11.82 s and the error cost is 2891 for Case 4.

3.5. Case 5: IBVS with nonlinear sliding surface design using tangent hyperbolic function

Tangent hyperbolic function is chosen as nonlinear sliding surface function and the magnitude
and slope of this function is also dependent on error and constant c1 as given in (15). Parameter
assignments of (15) are given below:

( )
1

0 07 80

0 01
pw e . e

c .

= - +

=
(21)
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Here, wp can be defined as a function of time as in (11) but it is chosen as a function of error in
this study. Inside the Simulink block of the sliding surface design for this case is shown in
Figure 20.

Figure 20. The Simulink block of sliding surface for Case 5.

The feature motions in image plane are shown in Figure 21.a, the velocity signals of the end
effector are shown in Figure 21.b, and the error signals are shown in Figure 21.c, respectively.
To show the nonlinear sliding surface, error and error derivative trajectories for the first feature
in u coordinate is shown in Figure 21.d.

Figure 21. The results for Case 5. (a) Feature motions (b) Velocities of the end effector (c) Feature errors (d) Error vs.
error derivative trajectory.
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Unlike the first four cases, the initial velocity values are quite small as shown in Figure 21.b
and that can be a big positive in the realization of an IBVS system as mentioned in [29]. The
feature motions are slightly curvilinear as shown in Figure 21.a. The convergence time is 10.85
s and the error cost is 4094 for Case 5. Error vs. error derivative trajectory follows tangent
hyperbolic function as shown in Figure 21.d.

3.6. Case 6: IBVS with nonlinear time‐varying sliding surface

Exponential nonlinear time‐varying sliding surface in (17) also utilizes initial error and error
derivative values. λ is chosen as 0.5 and k exponential time constant is chosen as 1 for a fast
transient response. Inside the Simulink block of the sliding surface design for this case is shown
in Figure 22.

The feature motions in image plane are shown in Figure 23.a, the velocity signals of the end
effector are shown in Figure 23.b, and the error signals are shown in Figure 23.c, respectively.

Figure 22. The Simulink block of sliding surface for Case 6.

Figure 23. The results for Case 6. (a) Feature motions (b) Velocities of the end effector (c) Feature errors (d) Nonlinear
term of each velocity.
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Nonlinear term of each velocity in (17) with 5 s transient is shown in Figure 23.d. After this
transient, the system behaves like classical IBVS system. The motions are curvilinear as shown
in Figure 23.a. The convergence time is 12.12 s and the error cost is 2795 for Case 6.

4. Conclusion and future works

As a new field of control systems, most studies on VS focus on image processing or pattern
recognition parts of the applications. The controller part has still gaps. On the other hand, SMC
is a convenient control method for linear and nonlinear systems, and it is based on the design
of sliding surfaces. In this study, five different sliding surface designs including analytical and
intelligent methods are modified and applied to an IBVS manipulator system to adapt the
designs and to compare the performance of these designs. The design methods are selected
according to their relevance and applicability to this type of visually guided manipulator
systems.

Sliding surface design is the first step of SMC and the designer has to consider robustness and
transient behaviour of the system. When these designs are considered for an IBVS system, the
designer has to deal not only with these issues but also the velocity limits, the convergence
time, and motion characteristics. Furthermore, the designer must have experience on sliding
surface design to tune the design parameters appropriately. In this study, these hotspots are
considered. In the simulations, a random noise is added to each feature point to show the
robustness of the designs. According to IBVS metrics mentioned above, a comparison of design
methods used in the study is given in Table 2.

Design Convergence
time (s)

Error cost Parameters Motion
characteristic

Classical IBVS with fixed sliding slope 12.89 2842 λ Linear

IBVS with linear varying sliding surface
using fuzzy logic

7.35 2591 λFL Linear

IBVS with integral sliding surface using fuzzy logic 9.41 1852 λP, λI‐FL Linear

IBVS with time‐varying sliding surface design and
constant acceleration

11.82 2891 β, T Curvilinear

IBVS with nonlinear sliding surface design using
tangent hyperbolic function

10.85 4094 wp

(function), c1

Curvilinear

IBVS with nonlinear time‐varying sliding surface 12.12 2795 λ, k Curvilinear

Table 2. Comparison of sliding surface designs in the study.

All designs in the study considered angular and linear velocity limits which are the most
restrictive quantity of a manipulator system, and these limits also form a homogenous basis
for comparison. In Table 2, it can be seen that IBVS with linear varying sliding surface using
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fuzzy logic is the fastest design according to convergence time. It can be concluded that
changing sliding slope using FL with error and error derivative inputs results fast response
with low velocity profiles. Nonetheless, the only parameter which has to be tuned in this design
is not a parameter but an FL unit. As an intelligent method, FL utilizes user or designer
experience and the designer has to be careful when using FL in order not to miss a rule.
Compared to classical IBVS with fixed sliding slope, all design methods in the study decreases
convergence time.

IBVS with integral sliding surface using fuzzy logic has the lowest error cost, but it must be
noted that the integral term should be used wisely against wind‐up conditions.

Three designs have linear motion characteristics and as mentioned in [1], it is important for
keeping FOV. When the other designs with curvilinear characteristics are needed for a VS
realization, additional methods should be used to avoid this drawback.

Parameter tuning of each design is another issue binding the theory with user experience. FL
units in these designs directly need user experience. In the future studies, intelligent hybrid
units which doesn't need user experience like ANFIS will be used.

In the future studies, the main goal will be the realization of these designs in real IBVS
manipulator system. Furthermore, not only kinematics of the manipulator, but also the
dynamics and inner loop control of the manipulator will be added to the realization.
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Abstract

The chapter presents a new and modern method to study the transient phenomena that
occur when connecting the reactive charges to an AC power source using the MATLAB-
Simulink software package. It is known that NI-USB data acquisition systems manufac‐
tured by National Instruments are not recognized by the Simulink software package in
64-bit systems. That is why a 32-bit system is obligatory. From this point of view, the article
presents a method by which this disadvantage is eliminated, making the data acquisi‐
tion process possible in the Simulink software package.

Keywords: capacitive circuit, data acquisition, diagrams, electrical diagram, MAT‐
LAB-Simulink, NI-USB

1. Introduction

Data acquisition systems of the NI-USB type, manufactured by National Instruments, allow
real-time evaluation of analog measurements in various practical situations. These quantities
can be read by the MATLAB software but cannot be processed in Simulink because Math‐
Works Incorporated does not offer support for this software in 64-bit systems. The chapter
presents a method that makes this possible and studies the case when an inductive-capacitive
load is connected to a voltage power source, with a data acquisition system in Simulink on 64-
bit systems. In this scope, we will consider an RLC series circuit with concentrated parame‐
ters, which are connected to an AC power source.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
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This scenario occurs in practice in case one wants to connect an electrical equipment that
includes capacitors to an AC power source. In this case, over voltages or over currents can
occur during transient regime, which can cause problems in systems sizing.

2. Theoretical considerations

The differential equation for transitory phenomena is presented below:

1 sin( )m
diiR L idt U t
dt C

w y+ + = +ò (1)

where R is the circuit resistance, L is the circuit inductance, C is the capacity of circuit, and Ψ
is the initial phase of voltage when was connected the circuit. The current is denoted by i and
the angular frequency by ω.

The most important and common regime is when the circuit resistance is very small, practically
the resistance of the junction wires. This event is known in the scientific literature as an
oscillating regime. If we consider the R resistance of circuit very small, the Laplace transform
applied to this circuit conducts to the following solution [1], [7]:
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where Equation (3) represents the voltage on the capacitor.
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where Equation (4) represents the voltage on the coil, and δ is a dumping factor:

2
R
L

d = (5)

and ω0 is the resonance angular frequency of the circuit:
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Due to the low value of the conductors’ resistance, the regime is oscillating. Therefore, a high-
frequency oscillation can be observed in the following charts, which overlaps the current and
voltage curve at a 50 Hz frequency.

3. Interface circuits necessary for study of inductive loads

For the experimental evaluation of these parameters, a data acquisition system manufactured
by National Instruments was used, namely, the NI USB-6003 type. The graphics and the
electrical diagram presented in Figures 1 and 2 were created using the MATLAB 2014b
software. The inductive circuit is connected to the AC voltage through a capacitor C, and the
DAQ input voltage levels are obtained using resistive dividers. A differential measurement
was chosen to perform calculations.

To eliminate the risk of connecting directly the AC phase voltage to the input of the data
acquisition system, symmetrical voltage dividers were used and the analog inputs of the
measuring system were connected in parallel with the median divider resistors Ri0 and Ri1.
To protect the analog inputs of data acquisition system to any voltage surge, the DZ Zener
diodes were used (Figure 3) [8].
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The measuring mode is a differential one, because it allows accurate measurements for low-
voltage amplitudes (below 1 V).

The used system for data acquisition has the following important parameters:

• 8 analog inputs (16-bit resolution, 100 kS/s);

• 2 analog outputs (16-bit, 5 kS/s/ch); 13 digital I/O lines; one 32-bit counter;

• Lightweight and BUS powered for easy portability;

• Easy to install sensors and signals with screw-terminal connectivity.

The system is compatible with MATLAB software but not with the Simulink package, because
the Data Acquisition Toolbox package does not appear in its graphical interface on 64-bit
operating systems.

Figure 1. Connecting an inductive capacitive load.

To study switching transient inductive-capacitive loads, two situations were considered to be
representative:

• Connecting an inductive-capacitive load to an alternating power supply made with the
following values of electrical parameters:

U=220 V; R=1.2 Ω; L=2 mH; C=100 μF.

In this case the diagram from Figure 1 is obtained.

• Disconnecting an inductive capacitive load from an alternating power supply made with
the following values of electrical parameters:

U=220 V; R=1.2 Ω; L=90 mH; C=100 μF.

In this case, the diagram from Figure 2 is obtained.
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s=daq.createSession(‘ni’);

addAnalogInputChannel(s,’Dev1’, 0, ‘Voltage’);

addAnalogInputChannel(s,’Dev1’, 1, ‘Voltage’);

s.Rate=45,000;

s.DurationInSeconds=1.5;

[data,time]=s.startForeground;

figure;

data(:,1)=data(:,1)*163;

data(:,2)=data(:,2)*27;

[ax,p1,p2]=plotyy(time,data(:,1),time,data(:,2),’plot’);

ylabel(ax(1),’Voltage[V]’); % label left y-axis

ylabel(ax(2),’Current[A]’); % label right y-axis

xlabel(‘Time[secs]’); % label x-axis

grid;

Data acquisition is made with the Ni-USB 6003 system, which has a sampling frequency of 100
ks/s. The sequence of MATLAB program that reads current and voltage inputs and make data
acquisition is shown as follows:

where 163 and 27 are values dependent on resistor values of interface from Figure 3. These
values are dependent on the input resistive divider values of the measurement system (163 is
the value of 2R1/Ri1 and 27 represents the value of 2R0/Ri0).

To run this code, it needs a system NI USB-6000 series connected to the PC and installing the
driver from the National Instruments website. The first part of this code represent data
acquisition with a rate of the 45 kS/s, and the acquisition time is 1.5 s. The second part of the
code represents the plotting mode of voltage and current [6].

Because the acquisition time is relatively high (1.5 s), after the completion of the acquisition
process, one can decrease this time to 0.1 s by focusing on the event (click Edit figure>Axes
properties…>xLimits).
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The sampling frequency is divided by two because there are two inputs to read. Therefore, it
was used a sampling rate of 45 kS/s for each channel.

Figure 2. Disconnecting an inductive-capacitive load.

Connecting regime from Figure 1 primarily highlights an oscillating process for current and
coil voltage. In the first moment of connection, an over current appears, with a peak of over
30 A. The overvoltage peak is almost 200 V in the first moment, after which these values are
stabilized to the oscillating values.

The disconnecting regime from Figure 2 highlights a peak voltage that can be almost 1000 V.
This value can be dangerous for consumers, connected to the alternating supply voltage. These
overvoltages can cause the semiconductor destruction or insulation electric penetrations.

Figure 3. Electrical diagram of the measurement system for inductive loads.
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4. Measurement processing in Simulink software package

Experimental measurements were made with a data acquisition system type NI USB-6003 with
a rate of 100 kS/s, and the measurements were processed by the 2014b MATLAB version, which
recognizes only data acquisition system in MATLAB, not in Simulink. Data processing in
Simulink involves the following steps:

• It makes the appropriate data acquisition in MATLAB (using specific program lines for data
acquisition system type);

• It saves the Workspace generated by the measurement (for further processing);

• The Data file from the Workspace opens;

• The Time file from the Workspace opens;

• Undock command is given to these files (Figure 4);

• The Time column is copied in the Data file and is placed at the beginning of the columns
(Figure 5).

• It executes the Dock Variables command and saves the new Workspace.

At this moment, the Data folder from the Workspace can be read from a Simulink simulation
model (Figure 6).

Figure 4. Original content of the Data folder from the Workspace.
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Figure 5. Modified content of the Data folder from the Workspace.

Figure 6. Simulink model for reactive load connecting.

5. Study of inductive loads

The first representative case for connecting the inductive-capacitive load leads to the following
charts for the inductor voltage, circuit current, and the powers dissipated in the coil.
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As one can observe, the coil voltage and current diagrams (Figures 7 and 8) show the identical
dependences with Figure 1 where the forms were obtained by data acquisition directly in
MATLAB, by programming. The MATLAB program is presented in paragraph 3.

Figure 7. Voltage variation on coil when connection is initiated.

Figure 8. Current variation on coil at connecting.
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Figure 9. Active power variation on intern coil resistance at connecting.

Figure 10. Reactive power variation on coil at connecting.

Figures 9 and 10 represent the diagrams of the active and reactive power variation during the
commutation process. An inductive load of 2 mH was connected to an alternating power
source.

Because of the capacitor, the oscillating process occurs in both the current curve and the coil
voltage. The value of capacitance that made the connection process was of 100 μF. The voltage
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oscillations and current circuit right after the connection was initiated are accompanied by the
oscillations of active and reactive power. The measurement was done in the time interval of
1.1 to 1.2 s.

Figure 11. Voltage variation on coil upon disconnection.

If one considers the second case, the disconnection of inductive-capacitive load, Simulink
model from Figure 6 leads to the following diagrams for electrical quantities considered: the
voltage variation on the coil at circuit disconnecting (Figure 11), the current variation in circuit
at disconnecting (Figure 12), and active and reactive powers in this regime (Figures 13 and
14). As can be seen, coil voltage and current diagrams (Figures 11 and 12) show the identical
dependences with Figure 2 where the forms were obtained by data acquisition directly in
MATLAB, by programming.

Figure 12. Current variation on coil upon disconnection.
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The high-frequency oscillations of the voltage and current curves generate oscillations also in
the two powers variation curves. The active and reactive powers dissipated on the coil upon
disconnection are shown in Figures 13 and 14.

Figure 13. Active power variation on internal resistance of coil upon disconnection.

Figure 14. Reactive power variation on coil upon disconnection.

If we take into consideration the two regimes, connecting and disconnecting, from the first
measurements, one can notice a reactive and active power peak in the powers chart. Then,
these stabilize at oscillating constant values.
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6. Interface circuits necessary for study of capacitive loads

For the study of transitory phenomena regarding capacitive loads, the interface circuits from
Figure 15 were used.

Figure 15. Electrical diagram of measurement system for capacitive loads.

The study of capacitive loads considered the case of connecting a capacitive load to an AC
voltage power source through an inductivity.

The measuring circuit is similar to the one in Figure 3, differing by the fact that, on the input
of acquisition system (−a1, +a1), the voltage on the C capacitor terminals is measured.

7. Study of capacitive loads

For the study of capacitive loads, take into consideration the case of connecting a capacitor to
an AC voltage power source through an inductivity of 2 mH. The electrical parameters have
the values:

• U=220 V;

• R=2 Ω;

• L=2 mH;

• C=100 μF;
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The MATLAB code for the data acquisition is the same with the one used in paragraph 3, and
as a result of its run, it was obtained from the diagram in Figure 16. This displays the current
and voltage variation on capacitor in the same axis system.

Figure 16. Variation of electrical parameters.

After Workspace processing, as described in paragraph 4, the Simulink model from Figure 6
was used for the reading of this data, and the following charts were obtained. The capacitor
voltage variation and current variation in the circuit are plotted in Figures 17 and 18.

Figure 17. Capacitor voltage variation.
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As seen in the voltage and current variation charts, a current peak appears in circuit, imme‐
diately after connection is initiated, and it can become dangerous for the other electrical
equipment. This is accompanied by a small voltage peak, which disappears quite fast. In the
current curve, a high-frequency oscillation can be noticed, which overlaps the current curve
and disappears after a time.

Figure 18. Capacitor current variation.

It must be noticed that these variation forms are dependent on the connecting moment, so they
are dependent on the ψ angle from Equations (2) and (3).

Diagrams from Figures 19 and 20 show the variation of the two dissipated powers. In
Figure 19, the active power variation on the circuit resistance is plotted, and in Figure 20, the
one of the reactive power dissipated on the capacitor.

Figure 19. Active power variation.
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Figure 20. Reactive power variation.

Figure 19 highlights the active power oscillations, owing to current oscillations in the circuit.
Figure 20 highlights the fact that the reactive capacitor power is negative and its value can be
read using the diagram. It is almost constant, with low oscillations around this value.

8. Conclusions

This analysis method allows the study of transient electrical phenomena on 64-bit operating
systems. In this case, the Data Acquisition Toolbox package, which is specific to the 32-bit
operating systems, does not appear in Simulink.

We have to mention that the transient regime for connecting the reactive loads to an AC power
source depends on the moment of connecting, given by the Ψ angle from relations (2)–(4). In
this paper, we considered a representative case of several measurements that emphasize the
higher values of voltage and current occurring immediately after connecting.

The most dangerous regime is the oscillating regime and this is the most common regime that
can be met in practice. In practice, this could be seen in the alternative power supply for electric
motors, which includes the starting capacitor. In this case, oscillating overvoltage may occur
and they need to be taken into account when sizing the systems. The value of these voltages
depends on the connecting moment, which is the initial phase of the AC voltage. For the circuits
designing and sizing phase, the overvoltage peaks occurring immediately after connection
must be taken into account, which can endanger the internal isolation of the equipment.
Overcurrent peaks in oscillatory regime can lead to the possible switching of protective relays.

It is important that the electric charge on the connected capacitor to be initially zero, otherwise
a high value of over current may occur after the connecting moment.
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In conclusion, it must be stressed that the proposed method can be applied to other Simulink
models of greater complexity.
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Abstract

The discrete‐event systems (DES) are systems guided by asynchronous events rather
than by the passage of the time as in traditional systems. There exists a wide set of
systems that could be considered within this class, such as communication protocols,
computer  and  microcontroller  operating  systems,  flexible  manufacturing  systems,
communication drivers for embedded applications and logistic systems, among others.
Their  proper  study  is  a  requirement  for  a  suitable  implementation  of  embedded
hardware  and  software,  for  example.  The  aim of  this  chapter  is  to  approach  the
simulation of  this  class of  systems within the MATLAB/SIMULINK framework.  A
suitable simulation process, allowing the injection of input signals to the system and
observing its output response, is a first step in the analysis of this class of systems,
which  may  lead  to  more  elaborated  analysis  such  as  reachability  and  deadlock
avoidance. The advantage of the approach and techniques proposed in this chapter is
the application of the set of tools, algorithms and visualization instruments present in
the MATLAB/SIMULINK to the simulation of Discrete‐Event Systems, which allows a
simple integration of  various DES by utilizing the matrices  that  define them. The
concluding section of the chapter provides a link for downloading all the code for the
examples developed here.

Keywords: discrete‐event systems, analysis, modelling, simulation, MATLAB/SIMU‐
LINK

1. Introduction

The discrete‐event systems (DES) are systems guided by asynchronous events rather than by
the passage of time as in the traditional framework of Control Theory, for example [1]. There
exists a wide set of systems that could be considered in the class of DES, such as operating systems
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of microprocessors and embedded microcontrollers, communication protocols such as IPv4/
IPv6,  complex software architectures such as database management systems,  production
systems and flexible manufacturing systems (FMSs), delivering and logistic systems, among
others. Their proper study is a requirement for the fulfillment of performance and safety
requirements, for example. The traceability of requirements and its satisfaction is simplified by
using a model that is suitable for a rigorous simulation process [2].

The aim of this chapter is to approach the simulation of DES within the MATLAB/SIMULINK
framework. Analysis such as the application of random inputs to a DES and the visualization
of system’s output response are intended to be covered in this chapter. The overall goal is to
enable the application of the set of tools, algorithms and visualization instruments present in
the MATLAB/SIMULINK to the analysis of DES. There exist several approaches for the
analysis of this class of systems. On the one hand, for example, empirical practices are used
for addressing the problems that arise in the DES field. Most of these practices are based on
experience and good knowledge among engineers in the daily execution of a system. On the
other hand, in the formal point of view, scientists and engineers typically use mathematical
tools based on automata theory, Petri nets (PN), Markov chains and Queue theory for ad‐
dressing main aspects in the design and implementation of DES. The aspects most studied in
the analysis of DES are the reachability and deadlock analysis, fault tolerance, control and
observability schemes, to mention a few [3].

In recent years, the simulation methods have taken great relevance in the design and imple‐
mentation of big systems. These methods allow engineers and scientists the study of complex
behaviours by simulating in the lab different real‐world scenarios. Intensive workload
conditions, parametric variations, environmental changes and fault scenarios are possible to
investigate by simulation methods. Statistical information, performance curves, and parameter
optimization are some of the possible results obtained by a simulation process.

2. Discrete‐event systems (DES)

As mentioned in the introduction, within a DES the state evolution depends on the occurrence
of events that are asynchronous in time. An event is an instantaneous action occurred in the
context of the DES that is relevant for the understanding of the system. An occurrence of an
event may cause an immediate change in the system state. For example, an event could be a
package arriving by the network connection, a button pressed by the user at a control panel,
a timer’s overflow within an embedded device driver, a change in a Boolean flag within an
Interrupt Service Routine, etc. By convention, it is supposed that no time is elapsed between
the event occurrence and the change of the state in a DES.

Some examples of DES’s include communication protocols, supply chains, queue systems, task
schedulers, logistic systems, device drivers, memory managers, landing and take‐off systems
of airplanes, urban rail systems and subway, and line of manufacturing and production
systems, among others. For a wide list of examples of DES, see [4].
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The study of a DES is important for several reasons, including safety and economic issues, for
example. There exist several approaches in the study of this class of systems. For example,
there exist empirical practices for addressing the problems that arise in the DES. Most of these
are based on experience and good knowledge among engineers in the daily execution of the
DES. In the formal point of view, scientists and engineers use automata theory, PN, Markov
chains and Queue theory for addressing main aspects in the design and implementation of
DES, such as the modelling, reachability and deadlock analysis, fault tolerance, and control
schemes, among other interesting properties [5, 6].

In recent years, the simulation methods have taken great relevance in the design and imple‐
mentation of big systems. These methods allow engineers and scientists the study of complex
behaviours by simulating in the lab different real‐world scenarios. Intensive workload
conditions, parametric variations, environmental changes and fault scenarios are possible to
investigate by simulation methods. Statistical information, performance curves, and parameter
optimization are some of the possible results obtained by a simulation process.

2.1. Modelling DES with finite state machines

The finite state machines (FSM) are one of the first and most used mathematical models for
the representation of the dynamics of a DES. A FSM is an extension of the concept of the
automaton [7]. The states and events are basic concepts in the construction of a FSM. It is
supposed that at every time, the FSM is in one of a finite number of states and that an incoming
event causes an immediate change in the state of the FSM. Formally, a FSM is defined by
G =(Q, Σ, δ, q0) where [8]:

• Q is a finite set of states,

• Σ is a finite set of input symbols called events,

• δ :Q ×Σ→Q is a partial relation called the state‐transition function,

• q0 is the initial state and is in Q.

As a graphical representation, the states are depicted as circles or ovals, while the events are
represented as labelled arrows from one “source” state to other “destination” state. The initial
state q0 is designated by an incoming arrow, usually thicker than the other, with no source
state.

Alternatively, the definition of a FSM may include a set of “marked states” designated as Qm

which represents the “acceptable” or “suitable” states of a DES. Moreover, an extension to the
state‐transition function may include subsets of Q as its range, allowing the representation of
a non‐deterministic FSM. For simplicity of the code implemented in this work, the determin‐
istic definition of a FSM with no marked states is considered. The modification of the code here
developed for the inclusion of those cases is not hard to achieve.
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Figure 1 depicts a FSM model of the basic functionality of a typical microwave oven adapted
from [9]. The initial state is Idle, as denoted by the thicker incoming arrow to s1, where the
oven performs no activity, and it is waiting for the buttons pressed by the user. The events that
the user may execute in the system are denoted by the labels over the arrows. For example, at
the “Idle” state the user may press the “Full Power” button (e1) that causes a change to the state
s2 “Full Power on.”

Figure 1. A FSM model of a microwave oven. The initial state is determined by the bold incoming arrow to s1 which

corresponds to Idle. The system events are labelled over the arrows and designated as ei for i =1…8 for an easy im‐

plementation. Similarly, the states are designated as sj for j =1…8.

Then the user may set the time for the cooking process at the “Set Time” state. For security
reasons, if the door is opened, the operation of the oven is disabled, otherwise it is enabled.
At the “Operation Enabled” state, i.e. s6, if the user presses the “Start” button, the cooking
process begins. Any opening of the oven’s door immediately disables its operation. After a
timeout event, the cooking process is completed and the FSM is restarted to its initial state
ready for the next operations.

For simplicity in the construction of the state‐event matrix, the labels si for i =1, …, 8 and ej

for j =1, …, 8, have been added to the FSM model representing the state and event, respec‐
tively. The initial state of the FSM in Figure 1 is q0 = e1 while the state‐event matrix is the fol‐
lowing:
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By using the information of the initial state and the state‐event matrix, the next section provides
a way of simulating an arbitrary FSM by the implementation of an S‐Function in MATLAB.
Before addressing the details of the implementation, the following subsection considers
another useful method based on PN for the modelling of a DES.

2.2. Modelling DES with PN

A PN is another mathematical tool widely used for the design, the modelling, and the
simulation of a DES [10]. The modelling process of a DES with a PN is quite natural and
intuitive, due to its graphical representation as in the case of FSM. One advantage of the PN
modelling technique is the compact representation of the systems. Moreover, the PN formalism
resides in a strong mathematical basis from the linear algebra. Formally, a PN model is a pair
(B, M0), where B is a Petri net structure (PNS) {P , T , F }, such that:

• P ={p1, p2,  ⋯ , pm} is a finite set of places;

• T ={t1, t2, ⋯ , tn} is a finite set of transitions;

• F = I∪ O is a flow relation, where I (pi, tj)→ℕ+ and O(ti, pi)→ℕ+ are the input and output
functions;

• M0∈ (ℕ+)m is a special vector known as the initial marking of the net, where m = | P | .

Pictorially, circles represent the places, while rectangles or bars, represent the transitions. The
flow relation F = I∪ O, is represented as directed arcs or arrows. On the other hand, the matrices
B −(i, j)∶ = I (pi, tj) and B +(i, j)∶ =O(ti, pi), capture the structure of the flow function, while
B ∶ = B +−B −, represents the incidence matrix of the PN. Thus, B is a matrix of size m ×n , where
m is the number of places, and n the number of transitions. The net’s state, or marking, is a
vector M (k )∈ (ℕ+)m, where m is the number of places in the PN. A marking represents the state
of the net at time  k , i.e., the number of tokens in each place at the time  k .
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In the classical definition of a PN, the number of tokens cannot be negative. Also, it is sup‐
posed that the index  k   is updated at every time that an event occurs. For simplicity, the
marking M (k ) is represented by using subscripts as Mk , and Mk (pi),  pi∈P  for representing
the number of tokens in place pi at the time  k . The initial marking M0 represents an initial
tokens distribution over the net’s places. Thus, M0(pi) for pi∈P , represents the initial num‐
ber of tokens in place pi. The marking M0 may enable one or more transitions to be fired. An
enabled transition ti∈T   at the marking M0,  denoted by M0 t , is one that fulfils
 M0(pj)≥B −(pj, ti), ∀ pj∈P . Given any marking, say Mk , the set of all its enabled transitions is
simply denoted as Mk . The firing of enabled transitions leads to the dynamic behaviour of
a PN, captured by the state equation:

k k kM M Bu1+ = +
r

The interpretation of the previous equation is as follows. The marking Mk , of size m ×1 ,
represents the system state at time k . The vector u→ k , of size n ×1 , represents the firing of one
or more enabled transitions by the marking Mk . The matrix B, of size m ×n , is the incidence
matrix of the net. The vector Mk +1 represents the state reached by net’s evolution. If Mk ti

and ti is fired, then using (1), the net reaches a new marking computed as Mk +1 =Mk + Bt
→
i. In

this equation, u→ k = t
→
i is a vector with a one in the i − th  position and zero anywhere else. This

marking’s evolution is denoted as Mk→
ti

Mk +1 , in order to emphasize the fact that from mark‐
ing Mk  the net fires ti and reaches Mk +1. The marking evolutions may consecutively enable
other transitions to be fired, which leads to the concept of reachability set of a PN. The
reachability set of the PN (B, M0) is denoted by R(B, M0), for emphasizing the fact that it de‐
pends on initial condition M0. Thus, R(B, M0) is the set of all markings Mk  evaluated by (1),
by only considering the firing of enabled transitions. A firing transition sequence of the PN

(B, M0) is a sequence of transitions σ = titjtk⋯ tl  such that M0→
ti

M1→
tj

M2→
tk

⋯Ml→
tl

Ms, where
the length of σ , denoted by  |σ | , is the number of its transitions. If the number of transi‐

tions in  σ is not finite, then |σ | =∞. A short representation for this trajectory is M0→
σ

Ms, for

highlighting the fact that from M0, the net fires σ, and reaches Ms. If Mk→
σ

Ms for some Mk

and σ, then Mkσ means that the marking Mk , enables the firing of the entire sequence σ.

The Parikh Vector σ→ ∈ℕm maps every transition in the set T  to its number of occurrences in
sequence σ. Thus, if σ = titjti then, σ→  is a n −vector  with a two in the i − th  position, one on the
j − th  position, and zero anywhere else. The firing language of an PN (B, M0) is
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  ℒ(B, M0) : = {σ∈T * |σ = titjtk … tl}, such that M0→
ti

M1→
tj

M2→
tk

⋯Mr→
tl

Ms, where T * is the Kleen
closure, as in automata theory [7], of the transition’s set.

Figure 2. PN model representing a FMS. The system is composed of a mill machine, a lathe and a robot, connected
through buffers. The incoming raw material arrives from the inventory to the robot’s section. Then they are routed to
the mill, lathe, painting or assembling stations.

Figure 2 represents a PN model of a FMS adapted from [11]. Be careful to not confuse the name
of a FMS in this subsection with the name of a FSM of the previous one. It is composed of a
robot arm (p3), a mill machine (p5), a lathe (p7), a painting device (p13) and an assembling

machine (p14). A set of buffers {p1, p2, p4, p6, p8, p9, p10, p12} connects together the system. The

FMS is able to process different components at the intermediate stages, which are lastly
assembled at the AM stage (p14). The firing of t1 and t2 represents the arriving of raw material

from a non‐depleting inventory, which is aleatory. It was interpreted and adapted from its
original layout in [11]. The incidence matrix of the PN is of size B 14×21 , while the initial
marking M0 14  is a zero vector, meaning that the FSM is empty. The incidence matrix B of the

FMS is the following:
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The next section is devoted to the implementation of suitable functions for the integration of
FSM models as well as PN models into a Simulink model.

3. Simulating DES in MATLAB

The S‐functions are a mechanism in the MATLAB environment for extending the capabilities
of SIMULINK. By writing an S‐function, the user is able to implement complex behaviours of
real systems that directly interact with other blocks in a SIMULINK model. The S‐function API
defines the structure of an S‐function and accepts MATLAB, C, C++ or FORTRAN as coding
languages. The S‐function is compiled as MEX files, which are linked, loaded and executed
dynamically. By using a special syntax, it is possible to write functions for continuous, discrete
and hybrid systems. Moreover, with a proper solver and a suitable integration step, the
modelling and simulation of a DES is possible with accuracy and great detail. The SIMULINK
library provides a block called S‐Function as a placeholder for the user defined S‐functions.
The block includes a dialog box where it is possible to specify the file containing the function
and its parameters.

There are two different categories for the S‐functions, called Level‐1 and Level‐2. Each of them
has its advantages and disadvantages. A detailed comparison among them is out of the scope
of this chapter. An interested reader may refer to the MATLAB documentation for more
information. The Level‐2 is the newest category and is the one used in the rest of this work.
The functions are written in MATLAB as m‐files.

The name of the m‐file has to be that of the function it implements and has to include five
standard sections. The setup section is executed in the initialization stage of the simulation
process and allows specifying the number of inputs, outputs, states and parameters, among
other characteristics of the function. The DoPostPropSetup is executed after the setup and allows
defining the blocks of memory used by the function. It also allows the definition of discrete
state variables. The InitConditions section specifies the initial conditions of the block, while the
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output section specifies the outputs it produces in the sense of the control theory. The Update
is perhaps the most important section since it is the place where the system’s dynamic is
implemented. The Update and Output section are executed at every integration step in the
simulation process.

3.1. Implementing the FSM dynamics

The state‐event matrix of a FSM captures its behaviour and allows a straightforward imple‐
mentation of its dynamics within a SIMULINK model. Following the structure of an S‐function,
the next code provides an overview of the main aspects of its implementation. The function is
called my_fsm and corresponds with the file name.

The setup defines the number of input parameters and its characteristics, among others.
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The DoPostPropSetup allows defining the state of the FSM that has to be preserved during the
simulation process. Since this implementation is for a deterministic FSM, it is one dimensional
and used as discrete state. The name is chosen conveniently to be “State.”

The InitConditions allows defining which of the states of the FSM is selected as initial. The
initial state is provided by the user as the second parameter of the block.

The Output function returns the current state of the FSM, which is stored in the 24 DWork
vector previously defined in the DoPostPropSetup section.

Finally, the Update section implements the change of state experiments by a FSM due to the
input signals it receives. For this purpose, the state‐event matrix is represented with the rows
labelled as the states of the FSM while the columns are labelled as its events. To simplify the
codification within a MATLAB function, only integers are used for representing both the state
as well as the events. In this way D(1, 2)=3 means that when the FSM is in the state one, i.e.
s1, and the input is the event two, i.e. e2, then the FSM reaches the state three, i.e. s3. When
D(i, j)=0 means that at the i − th  state, the j − th  event is not defined, and accordingly, the state
of the FSM is not changed. By assuming this convention in the codification of the FSM, the next
code is straightforward and implements the change of state in a FSM due to the incoming
events.
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3.2. FSM simulation example

The function my_fsm detailed in the previous subsection is used for the simulation of the
FSM of Figure 1. The state‐event matrix is coded as a matrix D 8×8  of integer where every
entry represents a state, as discussed in the previous subsection. Thus, for example,
D(1, 1)=2, as expected according to the FSM in Figure 1. The ε event from “Cooking Com‐
plete” to “Idle”, i.e. from s8 to s1, is coded as e8. That is, the event e8 corresponds to the last
column in the state‐event matrix. The entire matrix coded in the MATLAB workspace is:

D

2 3 0 0 0 0 0 0
0 3 4 0 0 0 0 0
2 0 4 0 0 0 0 0
0 0 4 5 6 0 0 0
0 0 0 0 6 0 0 0
0 0 0 0 0 7 0 0
0 0 0 5 0 0 8 0
0 0 0 0 0 0 0 1
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By using the above matrix D, Figure 3 shows a SIMULINK model that integrates the my_fsm
for simulating the FSM model of the microwave oven in the Figure 1. The FSM block encap‐
sulates a Level‐2 S‐function block with the my_fsm S‐function inside. The parameters are the
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matrix D and the initial state d0=1 defined in the MATLAB workspace in the same directory
of the SIMULINK model. A random number generator, together with constant of one,
represents the aleatory generation of events for the FSM block.

Figure 3. A SIMULINK model that uses the my_fsm function representing the microwave oven. The random integer
generator produces a number in the range 0, k −1  which represents the incoming events to the FSM model. The con‐
stant is added to avoid the generation of the zero event.

The constant is added to avoid the generation of the zero event which is meaningless in the
context of the simulation process of the microwave oven. The FSM block clearly defines the
input and output ports for the incoming events and system state, respectively. The scope allows
the visualization of the events reached by the FSM as the process simulation evolves.

Figure 4 shows a simulation of 200 events of the microwave oven model in Figure 3. At the
time zero, the FSM is in the state s1, as defined by d0=1. Then, the system changes to the state
s3, which means that the incoming event was e2, i.e. the user pressed the “Half Power” button
in the oven panel. At that time, the simulation process shows that the user pressed the “Full
Power” since the system state has down changed to s2. Then, the system remains at the same
state s2 for some time. After that, the system state changes to s3 again and it immediately moves
to the state s5 by briefly passing to the state s4 before.

The system state remains at s5 for a while and then it moves to the state s6, then to s7 and then
back to s5 again (the user opened the oven’s door!).

Then, it seems that the user closed the door (e5) and pressed the “Start” button (e6). Thus, the
cooking process ended above the event fifteen and the system state returns to its initial idle
condition at s1. Other interesting behaviours of the systems could be analysed from the chart.
For example, it could be noticed that in a second execution, over the event 18, the oven was
completing a more direct cooking process where the oven’s door has not opened once the
cooking process started. Above the event nineteen, the system returns to the idle state s1. This
could be considered a typical cooking process for a microwave oven.

Applications from Engineering with MATLAB Concepts266



In a similar way, the chart in the Figure 4 and others that may be obtained from different
simulation processes of the model in Figure 3 could be interpreted, allowing optimizations
of the FSM behaviour to meet security and performance requirements.

3.3. Implementing the PN dynamics

The dynamic behaviour of a PN is governed by its state equation. The enabling condition for
the transitions in a PN is an additional requirement for the trajectory evolutions in a model.
The setup stage allows defining the size of the net model.

The implementation considers two parameters. The first one is the incidence matrix B and the
second one is the initial marking M0. These parameters are used for defining the sizes of the
input and output ports of the block.

Figure 4. The different states of the FSM representing the microwave oven for a simulation process of 200 events. The
chart shows four complete cocking process, represented by those reaching the state eight. The difference in those com‐
pleted processes represents different action carried out by the user.
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The DoPostPropSetup stage allows the definition of the state of the PN. The PN marking has
to be preserved between simulation steps and also is the output of the block.

The InitConditions stage initializes the marking Mk , defined in the previous stage, to the
second input parameter, which corresponds to the initial marking M0.

The Output stage is used to provide to external blocks the current marking of the PN, which
corresponds to the DWork vector defined in the DoPostPropSetup stage.

The Update stage is where the PN dynamics is implemented. This stage verifies the transitions
that are allowed to fire by the input provided by an external agent, or controller, in the sense
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of the Control Theory. Likewise, it verifies that those allowed transitions are also enabled by
the current marking Mk  of the PN. A random number generator allows an aleatory firing
among the transitions that are ready to fire. Finally, the current marking Mk  is updated in
accordance to the PN state equation.

3.4. PN simulation example

The S‐function my_ptn is used for the simulation of the PN model in Figure 2. The SIMULINK
model is depicted in Figure 5a. The only elements required for the simulation process are the
incidence matrix B 14×21  and the initial marking M0 14 .

The model includes a block of 21 elements to represent that all of the transition of the model
are allowed to fire. In this way, the dynamics of the PN model entirely depends on the marking
of the net. The scope allows the visualization of the marking of all the places of the PN.

With a discrete solver and a fixed step of one, this model allows the simulation of the FMS. As
shown in Figure 5b, the subsystem for the PN model includes blocks for inputs and outputs.
These blocks could be used in the modelling of several controllability and observability
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problems by using matrices of proper size. For example, a matrix for the input function block
may be arranged with columns representing the transitions of the PN and the rows represent‐
ing the input commands to the system.

Figure 5. The integration of the S‐Function implementing a PN model into the SIMULINK environment. In (a) a model
for the FMS is depicted, with a constant input allowing all the 21 transitions to fire and a scope for signal visualization.
In (b) an insight of the FSM block is shown, which includes blocks for inputs and outputs.

Figure 6. First part of the state of the PN representing the Flexible Manufacturing System. The chart shows the mark‐
ing evolution of the places from p1 to p4 for a simulation process of 300 events. The first two places shows the pattern
of the arriving material from the inventory to the system.
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Similarly, a matrix for the output function block may be arranged with columns representing
the places of the PN and the rows representing the output signals from the system. However,
a deep study of these topics are out of the scope of this work, and are here mentioned for
providing a more complete simulation model that could be used for more purposes. Thus, for
both cases in this simulation, the core function for the input and output blocks are identity
matrices.

Figure 7. Second part of the state of the PN representing the FMS. The chart shows the marking evolution of the places
p5 to p8. The place p5 corresponds to the mill machine, while the places p6 and p7 correspond to the lather. The place

p8 shows the pieces waiting the AM machine.

Figure 8. Third part of the state of the PN representing the FMS. The chart shows the marking evolution of the places
from p9 to p12. The place p9 corresponds to a waiting stage for the pieces prior to its assembling in AM. The places

p10, p11 and p12 correspond to the painting stage.
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Figure 6 shows the marking of all the places in the PN model for a simulation process of 1000
events (seconds). Since the integration step was fixed to one, then every second in the scope
could be interpreted as an event in the DES. The aleatory behaviour of the signal in the scope
is due to the random selection of the transition firings in the Update section of the S‐function,
as detailed in the last subsection. It is easy noting an accumulation of tokens, or parts, in the
place p9 as well as in the place p14. On the one hand, the accumulation of tokens in place p9

means that the event associated to transition t13 is firing at a rate greater that of t12 and t14. On
the other hand, the accumulation of tokens in the place p14 is normal since there is where the
finished products are stored (Figures 7–9).

Figure 9. Last part of the state of the PN representing the FMS. The chart shows the marking evolution of the places
p13 and p14. The place p13 corresponds to the last section of the painting stage while the place p14 represents a buffer
of pieces finished in the FMS.

Indeed, it is to be expected that the number of tokens in the place p14 increases over time. A
good exercise is to modify the PN model including an extra transition with p14 as its unique
input place, run the simulation and analyze the effects in the marking of this place. Such an
extra transition may represent the interconnection of this system to another section in a more
complex assembling line.

The markings of the places p1 and p2 represents an increase in the number of raw parts arriving
to the FSM. The behaviour of the marking in the other places follows an aleatory pattern due
to the random number generator used in the selection of the firing transition inside the Update
section in the S‐function.

4. Conclusions

This chapter showed a suitable way of simulating Discrete‐Event Systems within a SIMULINK
model in the MATLAB framework. The dynamics of a FSM as well as a PN has been imple‐
mented by using Level‐2 MATLAB S‐function. One of the advantages of the technique
developed in this work is that for simulating a system, only the matrices that define a DES are
required.
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By using a discrete solver with a fixed step of one, accurate simulation processes in a SIMU‐
LINK model are possible. Two application examples illustrate the developed techniques. On
the one hand, a FSM model representing a microwave oven has been simulated. On the other
hand, a PN model representing a FMS has been simulated, as well.

Extension for FSM including marked states and non‐determinism are simple to implement
based in the code here provided. Similarly, extension for PN models including observability
and controllability problems are as well simple to implement.

The link for free downloading the code for the examples developed in this chapter is: http://
www.mathworks.com/matlabcentral/fileexchange/54959‐simulation‐of‐discrete‐event‐
systems‐in‐matlab
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