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Abstract Mixtures of product components assume independence of variables given

the index of the component. They can be efficiently estimated from data by means of

EM algorithm and have some other useful properties. On the other hand, by consid-

ering mixtures of dependence trees, we can explicitly describe the statistical relation-

ship between pairs of variables at the level of individual components and therefore

approximation power of the resulting mixture may essentially increase. However,

we have found in application to classification of numerals that both models perform

comparably and the contribution of dependence-tree structures to the log-likelihood

criterion decreases in the course of EM iterations. Thus the optimal estimate of

dependence-tree mixture tends to reduce to a simple product mixture model.

Keywords Product mixtures ⋅ Mixtures of dependence trees ⋅ EM algorithm ⋅
NIST numerals

1 Introduction

In the last decades there is an increasing need of estimating multivariate and mul-

timodal probability distributions from large data sets. Such databases are usually

produced by information technologies in various areas like medicine, image process-

ing, monitoring systems, communication networks and others. A typical feature of

the arising “technical” data is a high dimensionality and a large number of mea-

surements. The unknown underlying probability distributions or density functions

are nearly always multimodal and cannot be assumed in a simple parametric form.

For this reason, one of the most efficient possibilities is to approximate the unknown

J. Grim (✉)

Institute of Information Theory and Automation, Czech Academy of Sciences,

Prague, Czech Republic

e-mail: grim@utia.cas.cz

P. Pudil

Faculty of Management, Prague University of Economics Jindřichův Hradec,

Prague, Czech Republic

© Springer International Publishing Switzerland 2016

J.J. Merelo et al. (eds.), Computational Intelligence,

Studies in Computational Intelligence 620, DOI 10.1007/978-3-319-26393-9_22

365



366 J. Grim and P. Pudil

multidimensional probability distributions by finite mixtures and, especially, by mix-

tures of components defined as products of univariate distributions [6, 8, 13, 17, 18,

23]. In case of discrete variables the product mixtures are universal approximators

since any discrete distribution can be expressed as a product mixture [12]. Similarly,

the Gaussian product mixtures approach the universality of non-parametric Parzen

estimates with the increasing number of components. In addition, the mixtures of

product components have some specific advantages, like easily available marginals

and conditional distributions, a direct applicability to incomplete data and the pos-

sibility of structural optimization of multilayer probabilistic neural networks (PNN)

[9, 10, 19, 21, 22].

Nevertheless, the simplicity of product components may become restrictive in

some cases and therefore it could be advantageous to consider more complex mixture

models. A natural choice is to use dependence-tree distributions [3] as components.

By using the concept of dependence tree we can explicitly describe the statistical

relationships between pairs of variables at the level of individual components and

therefore the approximation “power” of the resulting mixture model should increase.

We have shown [7] that mixtures of dependence-tree distributions can be optimized

by EM algorithm in full generality. In the domain of probabilistic neural networks the

mixtures of dependence trees could help to explain the role of dendritic branching

in biological neurons [20].

In this paper we describe first the product mixture model (Sects. 2 and 3). In

Sect. 4 we recall the concept of dependence-tree distribution in the framework of

finite mixtures. In Sect. 5 we discuss different aspects of the two types of mixtures in

a computational experiment—in application to recognition of numerals. The results

are summarized in the conclusion.

1.1 Estimating Mixtures

Considering distribution mixtures, we approximate the unknown probability distri-

butions by a linear combination of component distributions

P(x|w,𝜣) =
∑

m∈
wmF(x|𝜽m),  = {1,… ,M}, (1)

w = (w1,w2,… ,wM), 𝜽m = {𝜃m1, 𝜃m2,… , 𝜃mN},

where x ∈ X are discrete or real data vectors, w is the vector of probabilistic weights,

 is the component index set and F(x|𝜽m) are the component distributions with the

parameters 𝜽m.
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Since the late 1960s the standard way to estimate mixtures is to use the EM algo-

rithm [4–6, 24–26, 36, 38]. Formally, given a finite set  of independent observa-

tions of the underlying N-dimensional random vector

 = {x(1), x(2),…}, x = (x1, x2,… , xN) ∈ X, (2)

we maximize the log-likelihood function

L(w,𝜣) = 1
||

∑

x∈
log

[
∑

m∈
wmF(x|𝜽m)

]

(3)

by means of the following EM iteration equations (m ∈ , n ∈  , x ∈ ):

q(m|x) =
wmF(x|𝜽m)

∑
j∈ wjF(x|𝜽j)

, w′

m = 1
||

∑

x∈
q(m|x), (4)

Qm(𝜽m) =
∑

x∈

q(m|x)
∑

y∈ q(m|y)
logF(x|𝜽m), 𝜽

′

m = argmax
𝜽m

{

Qm(𝜽m)
}

. (5)

Here the apostrophe denotes the new parameter values in each iteration. One can

easily verify (cf. [6]) that the general iteration scheme (4) and (5) produces nonde-

creasing sequence of values of the maximized criterion (3). In view of the implicit

relation (5) any new application of EM algorithm is reduced to the explicit solution

of Eq. (5) for fixed conditional weights q(m|x).
Considering product mixtures, we assume the product components

F(x|𝜽m) =
∏

n∈
fn(xn|𝜃mn), m ∈  (6)

and therefore Eq. (5) can be specified for variables independently (n ∈  ):

Qmn(𝜃mn) =
∑

x∈

q(m|x)
w′
m||

log fn(xn|𝜃mn), 𝜃

′

mn = argmax
𝜃mn

{

Qmn(𝜃mn)
}

. (7)

The mixtures of product components have some specific advantages as approx-

imation tools. Recall that any marginal distribution of product mixtures is directly

available by omitting superfluous terms in product components. Thus, in case of

prediction, we can easily compute arbitrary conditional densities and for the same

reason product mixtures can be estimated directly from incomplete data without es-

timating the missing values [18]. Product mixtures support a subspace modification

for the sake of component-specific feature selection [10] and can be used for sequen-

tial pattern recognition by maximum conditional informativity [14]. Moreover, the

product components simplify the EM iterations, support sequential version [11] and

increase the numerical stability of EM algorithm.
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2 Multivariate Bernoulli Mixtures

In case of binary data xn ∈ {0, 1} the product mixture model (1), (6) is known as

multivariate Bernoulli mixture based on the univariate distributions

fn(xn|𝜃mn) = (𝜃mn)xn(1 − 𝜃mn)1−xn , 0 ≤ 𝜃mn ≤ 1, (8)

F(x|𝜽m) =
∏

n∈
(𝜃mn)xn(1 − 𝜃mn)1−xn , m ∈ . (9)

The conditional expectation criterion Qmn(𝜃mn) can be expressed in the form

Qmn(𝜃mn) =
∑

𝜉∈n

(∑

x∈
𝛿(𝜉, xn)

q(m|x)
w′
m||

)

log fn(𝜉|𝜃mn),

and therefore there is a simple solution maximizing the weighted likelihood (7):

fn(𝜉|𝜃mn) =
∑

x∈
𝛿(𝜉, xn)

q(m|x)
w′
m||

⇒ 𝜃

′

mn =
∑

x∈
xn
q(m|x)
w′
m||

. (10)

We recall that the multivariate Bernoulli mixtures are not restrictive as an approxi-

mation tool since, for a large number of components, any distribution of a random

binary vector can be expressed in the form (1), (9), (cf. [12]).

In case of multivariate Bernoulli mixtures we can easily derive the structural (sub-

space) modification [8, 10] by introducing binary structural parameters 𝜑mn ∈ {0, 1}
in the product components

F(x|𝜽m) =
∏

n∈
fn(xn|𝜃mn)𝜑mn fn(xn|𝜃0n)1−𝜑mn

, m ∈ . (11)

It can be seen that by setting 𝜑mn = 0 in the formula (11), we can substitute any

component-specific univariate distribution fn(xn|𝜃mn) by the respective common

background distribution fn(xn|𝜃0n). The structural component (9) can be rewritten

in the form

F(x|𝜽m) = F(x|𝜽0)G(x|𝜽m,𝝓m), m ∈ , (12)

where F(x|𝜽0) is a nonzero “background” probability distribution—usually defined

as a fixed product of the unconditional univariate marginals

F(x|𝜽0) =
∏

n∈
fn(xn|𝜃0n), 𝜃0n =

1
||

∑

x∈
xn, n ∈  .
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In this way we obtain the subspace mixture model

P(x|w,𝜣,𝜱) = F(x|𝜽0)
∑

m∈
wmG(x|𝜽m,𝝓m), (13)

where the component functions G(x|𝜽m,𝝓m) include additional binary structural pa-

rameters 𝜑mn ∈ {0, 1}:

G(x|𝜽m,𝝓m) =
∏

n∈

[
fn(xn|𝜃mn)
fn(xn|𝜃0n)

]
𝜑mn

, 𝝓m = (𝜑m1,… , 𝜑mN). (14)

Consequently, the component functions G(x|𝜽m,𝝓m) may be defined on different

subspaces. In other words, for each component we can “choose” the optimal subset

of informative features. The complexity and “structure” of the finite mixture (13) can

be controlled by means of the binary parameters 𝜑mn since the number of parame-

ters is reduced whenever 𝜑mn = 0. Thus we can estimate product mixtures of high

dimensionality while keeping the number of estimated parameters reasonably small.

The structural parameters 𝜑mn can be optimized by means of the EM algorithm

in full generality (cf. [8, 10, 21]) by maximizing the corresponding log-likelihood

criterion:

L = 1
||

∑

x∈
log

[
∑

m∈
wmF(x|𝜽0)G(x|𝜽m,𝝓m)

]

.

In the following EM iteration equations the apostrophe denotes the new parameter

values (m ∈ , n ∈  ):

q(m|x) =
wmG(x|𝜽m,𝝓m)

∑
j∈ wjG(x|𝜽j,𝝓j)

, w′

m = 1
||

∑

x∈
q(m|x), (15)

𝜃

′

mn =
∑

x∈
xn
q(m|x)
w′
m||

, 𝛾

′

mn =
1
||

∑

x∈
q(m|x) log

fn(xn|𝜃
′

mn)
fn(xn|𝜃0n)

. (16)

Assuming a fixed number 𝜆 of component specific parameters we define the optimal

subset of nonzero parameters𝜑
′

mn by means of the 𝜆 highest values 𝛾
′

mn > 0. From the

computational point of view it is more efficient to specify the structural parameters

by simple thresholding

𝜑

′

mn =

{
1, 𝛾 ′

mn > 𝜏

0, 𝛾 ′

mn ≤ 𝜏

,

(

𝜏 ≈
𝛾0
MN

∑

m∈

∑

n∈
𝛾

′

mn

)

where the threshold 𝜏 is derived from the mean value of 𝛾
′

mn by a coefficient 𝛾0. The

structural criterion 𝛾

′

mn can be rewritten in the form:
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𝛾

′

mn = w′

m

1∑

𝜉=0
fn(𝜉|𝜃

′

mn) log
fn(𝜉|𝜃

′

mn)
fn(𝜉|𝜃0n)

= w′

mI(fn(⋅|𝜃
′

mn)||fn(⋅|𝜃0n)). (17)

In other words, the structural criterion 𝛾

′

mn can be expressed in terms of Kullback-

Leibler information divergence I(fn(⋅|𝜃
′

mn)||fn(⋅|𝜃0n)) [29] between the component-

specific distribution fn(xn|𝜃
′

mn) and the corresponding univariate “background”

distribution fn(xn|𝜃0n). Thus, only the most specific and informative distributions

fn(xn|𝜃
′

mn) are included in the components.

It can be verified [10, 21] that, for a fixed 𝜆, the iteration scheme (15)–(17) guar-

antees the monotonic property of the EM algorithm. Recently the subspace mixture

model has been apparently independently proposed to control the Gaussian mixture

model complexity [31] and to estimate Dirichlet mixtures [2].

The main motivation for the subspace mixture model (13) has been the statis-

tically correct structural optimization of incompletely interconnected probabilistic

neural networks [10, 13, 16, 21]. Note that the background probability distribution

F(x|𝜽0) can be reduced in the Bayes formula and therefore any decision-making

may be confined to just the relevant variables. In particular, considering a finite set

of classes 𝜔 ∈ 𝛺 with a priori probabilities p(𝜔) and denoting 
𝜔

the respective

component index sets, we can express the corresponding class-conditional mixtures

in the form:

P(x|𝜔,w,𝜣,𝜱) = F(x|𝜽0)
∑

m∈
𝜔

wmG(x|𝜽m,𝝓m), 𝜔 ∈ 𝛺. (18)

In this way, the Bayes decision rule is expressed in terms of a weighted sum of

component functions G(x|𝜽m,𝝓m) which can be defined on different subspaces:

𝜔

∗ = d(x) = argmax
𝜔∈𝛺

{p(𝜔|x)} = argmax
𝜔∈𝛺

{p(𝜔)
∑

m∈
𝜔

wmG(x|𝜽m,𝝓m)}. (19)

3 Mixtures of Dependence Trees

As mentioned earlier, the simplicity of product components may appear to be lim-

iting in some cases and a natural way to generalize product mixtures is to use

dependence-tree distributions as components [7, 32–34]. Of course, marginal dis-

tributions of the dependence-tree mixtures are not trivially available anymore and

we lose some of the excellent properties of product mixtures, especially the unique

possibility of structural optimization of probabilistic neural networks. Nevertheless,

in some cases such properties may be unnecessary, while the increased complexity

of components could become essential.
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The idea of the dependence-tree distribution refers to the well known paper of

Chow and Liu [3] who proposed approximation of multivariate discrete probability

distribution P∗(x) by the product distribution

P(x|𝜋, 𝛽) = f (xi1 )
N∏

n=2
f (xin |xjn ), jn ∈ {i1,… , in−1}. (20)

Here 𝜋 = (i1, i2,… , iN) is a suitable permutation of the index set  and 𝛽 is the

dependence structure

𝛽 = {((i2, j2),… , (iN , jN))}, jn ∈ {i1, .., in−1}

which defines a spanning tree of the complete graph over the nodes {1, 2,… ,N}
because the edges 𝛽 do not contain any loop. In this paper we use a simplified notation

of marginal distributions whenever tolerable, e.g.,

f (xn) = fn(xn), f (xn|xk) = fn|k(xn|xk).

The above approximation model (20) can be equivalently rewritten in the form

P(x|𝜶,𝜽) =

[ N∏

n=1
f (xn)

][ N∏

n=2

f (xn, xkn )
f (xn)f (xkn)

]

, (21)

because the first product is permutation-invariant and the second product can always

be naturally ordered. Thus, in the last equation, the indices (k2,… , kN) briefly de-

scribe the ordered edges (n, kn) of the underlying spanning tree 𝛽 and we can write

P(x|𝜶,𝜽) = f (x1)
N∏

n=2
f (xn|xkn ), 𝜶 = (k2,… , kN), 𝜽 = {f (xn, xkn )}. (22)

Here 𝜶 describes the dependence structure and 𝜽 stands for the related set of two-

dimensional marginals. Note that all univariate marginals uniquely follow from the

bivariate ones.

The dependence-tree mixtures can be optimized by means of EM algorithm in full

generality, as shown in the paper [7]. Later, the concept of dependence-tree mixtures

has been reinvented in [32–34].

Considering binary variables xn ∈ {0, 1} we denote by P(x|w,𝜶,𝜣) a mixture of

dependence-tree distributions

P(x|w,𝜶,𝜣) =
∑

m∈
wmF(x|𝜶m,𝜽m), x ∈ X, (23)
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F(x|𝜶m,𝜽m) = f (x1|m)
N∏

n=2
f (xn|xkn ,m) (24)

with the two-dimensional marginals 𝜽m = {f (xn, xkn |m), n = 2,… ,N}, the underly-

ing dependence structures 𝜶m and the weight vector w:

𝜣 = {𝜽1,𝜽2,… ,𝜽M}, 𝜶 = {𝜶1,𝜶2,… ,𝜶M}, w = (w1,w2,… ,wM).

The related log-likelihood function can be expressed by the formula

L(w,𝜶,𝜣) = 1
||

∑

x∈
log [

∑

m∈
wmF(x|𝜶m,𝜽m)]. (25)

In view of Eq. (5), the EM algorithm reduces the optimization problem to the

iterative maximization of the following weighted log-likelihood criteria Qm,m ∈ 

with respect to 𝜽m and 𝜶m:

Qm(𝜶m,𝜽m) =
∑

x∈

q(m|x)
w′
m||

logF(x|𝜶m,𝜽m) (26)

=
∑

x∈

q(m|x)
w′
m||

[ log f (x1|m) +
N∑

n=2
log f (xn|xkn ,m) ].

By using usual 𝛿-function notation we can write

Qm(𝜶m,𝜽m) =
∑

x∈

q(m|x)
w′
m||

[
1∑

𝜉1=0
𝛿(𝜉1, x1) log f (𝜉1|m)

+
N∑

n=2

1∑

𝜉n=0

1∑

𝜉kn=0
𝛿(𝜉n, xn)𝛿(𝜉kn , xkn ) log f (𝜉n|𝜉kn ,m)] (27)

and further, using notation

̂f (𝜉n|m) =
∑

x∈

q(m|x)
w′
m||

𝛿(𝜉n, xn), ̂f (𝜉n, 𝜉kn |m) =
∑

x∈

q(m|x)
w′
m||

𝛿(𝜉n, xn)𝛿(𝜉kn , xkn ),

we can write:

Qm(𝜶m,𝜽m) =
1∑

𝜉1=0

̂f (𝜉1|m) log f (𝜉1|m) (28)

+
N∑

n=2

1∑

𝜉kn=0

̂f (𝜉kn |m)
1∑

𝜉n=0

̂f (𝜉n, 𝜉kn |m)
̂f (𝜉kn |m)

log f (𝜉n|𝜉kn ,m).
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For any fixed dependence structure 𝜶m, the last expression is maximized by the two-

dimensional marginals 𝜽
′

m = {f ′ (𝜉n, 𝜉kn |m), n = 2,… ,N}:

f ′ (𝜉n|m) = ̂f (𝜉n|m), f ′ (𝜉n|𝜉kn ,m) =
̂f (𝜉n, 𝜉kn |m)
̂f (𝜉kn |m)

. (29)

Making substitutions (29) in (28) we can express the weighted log-likelihood crite-

rion Qm(𝜶m,𝜽
′

m) just as a function of the dependence structure 𝜶m:

Qm(𝜶m,𝜽
′

m) =
N∑

n=1

1∑

𝜉n=0
f ′ (𝜉n|m) log f

′ (𝜉n|m)

+
N∑

n=2

1∑

𝜉n=0

1∑

𝜉kn=0
f ′ (𝜉n, 𝜉kn |m) log

f ′ (𝜉n, 𝜉kn |m)
f ′ (𝜉n|m)f

′ (𝜉kn |m)
.

Here the last expression is the Shannon formula for mutual statistical information

between the variables xn, xkn [37], i.e. we can write

(f ′n|m, f
′

kn|m
) =

1∑

𝜉n=0

1∑

𝜉kn=0
f ′ (𝜉n, 𝜉kn |m) log

f ′ (𝜉n, 𝜉kn |m)
f ′ (𝜉n|m)f

′ (𝜉kn |m)
(30)

Qm(𝜶m,𝜽
′

m) =
N∑

n=1
−H(f ′n|m) +

N∑

n=2
(f ′n|m, f

′

kn|m
).

In the last equation, the sum of entropies H(⋅) is structure-independent and there-

fore the weighted log-likelihood criterion Qm(𝜶m,𝜽
′

m) is maximized by means of the

second sum, in terms of the dependence structure 𝜶m.

The resulting EM iteration equations for mixtures of dependence-tree distribu-

tions can be summarized as follows (cf. [7], Eqs. (4.17)–(4.20)):

q(m|x) =
wmF(x|𝜶m,𝜽m)

∑
j∈ wjF(x|𝜶j,𝜽j)

, w′

m = 1
||

∑

x∈
q(m|x), (31)

𝜶
′

m = argmax
𝛼

{ N∑

n=2
(f ′n|m, f

′

kn|m
)
}

, f ′ (𝜉n|m) =
∑

x∈

q(m|x)
w′
m||

𝛿(𝜉n, xn), (32)

f ′ (𝜉n, 𝜉kn |m) =
∑

x∈

q(m|x)
w′
m||

𝛿(𝜉n, xn)𝛿(𝜉kn , xkn ), n = 1, 2,… ,N. (33)
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Thus the optimal dependence structure 𝜶
′

m can be found by constructing the

maximum-weight spanning tree of the related complete graph with the edge weights

(f ′n|m, f
′

k|m) [3]. For this purpose we can use e.g. the algorithm of Kruskal [28] or

Prim [35] (cf. Appendix for more details).

The concept of dependence-tree mixtures can be applied to continuous variables

by using bivariate Gaussian densities (cf. [7, 15]).

4 Recognition of Numerals

In recent years we have repeatedly applied multivariate Bernoulli mixtures to recog-

nition of hand-written numerals from the NIST benchmark database, with the aim

to verify different decision-making aspects of probabilistic neural networks (cf. [13,

16]). In this paper we use the same data to compare performance of the product

(Bernoulli) mixtures and mixtures of dependence trees. We assume that the under-

lying 45 binary (two class) subproblems may reveal even very subtle differences

between the classifiers. Moreover, the relatively stable graphical structure of numer-

als should be advantageous from the point of view of dependence-tree mixtures.

The considered NIST Special Database 19 (SD19) contains about 400000 hand-

written numerals in binary raster representation (about 40000 for each numeral). We

normalized all digit patterns to a 32 × 32 binary raster to obtain 1024-dimensional

binary data vectors. In order to guarantee the same statistical properties of the

training- and test data sets, we have used the odd samples of each class for training

and the even samples for testing. Also, to increase the variability of the binary pat-

terns, we extended both the training- and test data sets four times by making three

differently rotated variants of each pattern (by –4, –2 and +2
◦
) with the resulting

80000 patterns for each class.

In order to make the classification test we estimated for all ten numerals the class-

conditional distributions by using Bernoulli mixtures in the subspace modification

(13) and also by using dependence-tree mixtures. Recall that we need 2048 para-

meters to define each component of the dependence-tree distribution (24). The mar-

ginal probabilities of dependence-tree components displayed in raster arrangement

(cf. Fig. 1) correspond to the typical variants of the training numerals. Simultane-

ously, the figure shows the corresponding maximum-weight spanning tree 𝜶m. Note

that the superimposed optimal dependence structure naturally “reveals” how the nu-

merals have been written because the “successive” raster points are strongly corre-

lated.

For the sake of comparison we used the best solutions obtained in a series of

experiments—both for the product mixtures and for the dependence-tree mixtures.

The independent test patterns were classified by means of Bayes decision function

(19). Each test numeral was classified by using mean Bayes probabilities obtained

with the four differently rotated variants. Table 1 shows the classification error based

on the product mixtures (18) as a function of model complexity. Number of para-
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Fig. 1 Mixture of dependence trees for binary data—examples of marginal component probabil-

ities in raster arrangement. Note that the superimposed optimal dependence structure (defined by

maximum-weight spanning tree) reflects the way the respective numerals have been written

Table 1 Recognition of numerals from the NIST SD19 database by mixtures with different number

of product components

Experiment no. I II III IV V VI VII VIII

Components 10 100 299 858 1288 1370 1459 1571

Parameters 10240 89973 290442 696537 1131246 1247156 1274099 1462373

Classif. error in % 11.93 4.28 2.93 2.40 1.95 1.91 1.86 1.84
In the third row the number of parameters denotes the total number of component specific parame-

ters 𝜃mn

meters in the third row denotes the total number of component-specific parameters

𝜃mn (for which 𝜙mn = 1). Similar to Table 1 we can see in Table 3 the classification

error as a function of model complexity, now represented by different numbers of

dependence-tree components.

The detailed classification results for the best solutions are described by the error

matrix in Table 2 (ten class-conditional mixtures with the total number of M=1571

product components including 1462373 parameters) and Table 4 (ten mixtures with

total number of M = 400 dependence tree components including 819200 parame-

ters). As it can be seen the global recognition accuracy (right lower corner) is compa-

rable in both cases. Note that in both tables the detailed frequencies of false negative

and false positive decisions are also comparable.

Roughly speaking, the dependence-tree mixtures achieve only slightly better

recognition accuracy with a comparable number of parameters, but the most complex

model (M = 500) already seems to overfit. Expectedly, the dependence tree mixtures

needed much less components for the best performance but they have stronger ten-

dency to overfitting. The best recognition accuracy in Table 1 (cf. col. VIII) well

illustrates the power of the subspace product mixtures.

The most surprising result of the numerical experiments is the decreasing im-

portance of the component dependence structure during the EM estimation process.

We have noticed that in each class the cumulative weight of all dependence trees

expressed by the weighted sum
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𝜮
′ =

∑

m∈
𝜔

w′

m

N∑

n=2
(f ′n|m, f

′

kn|m
) (34)

is decreasing in the course of EM iterations (cf. Fig. 2). In other words the optimal

estimate of the dependence tree mixture tends to suppress the information contri-

bution of the dependence structures in components, i.e. the component dependence

trees tend to degenerate to simple products. Nevertheless, this observation is prob-

ably typical only for mixtures having a large number of components since a single

product component is clearly more restrictive than a single dependence tree.

5 Conclusions

We compare the computational properties of mixtures of product components and

mixtures of dependence trees in application to recognition of numerals from the

NIST Special Database 19. For the sake of comparison we have used for each of

the considered mixture models the best solution obtained in series of experiments.

The detailed description of the classification performance (cf. Tables 2 and 4) shows

that the recognition accuracy of both models is comparable. It appears that, in our

case, the dependence structure of components does not improve the approximation

power of the product mixture essentially and, moreover, the information contribu-

tion of the dependence structure decreases in the course of EM iterations as shown in

Fig. 2. Thus, the optimal estimate of the dependence tree mixture tends to approach

a simple product mixture model. However, this observation is probably related to

large number of components only.

We assume that the dependence tree distribution is advantageous if we try to fit

a small number of components to a complex data set. However, in case of a large

number of multidimensional components the component functions are almost non-

overlapping [17], the structural parameters tend to fit to small compact subsets of

data and the structurally modified form of the components is less important. We can

summarize the results of comparison as follows:

Table 3 Recognition of numerals from the NIST SD19 database by mixtures with different number

of dependence trees

Experiment No. I II III IV V VI VII VIII

Components 10 40 100 150 200 300 400 500

Parameters 20480 81920 204800 307200 409600 614400 819200 1024000

Classif. error in % 6.69 4.13 2.64 2.53 2.22 2.13 1.97 2.01
For comparable number of parameters the dependence-tree mixtures achieve only slightly better

recognition accuracy
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Table 4 Classification error matrix obtained by means of dependence-tree mixtures (number of

components M = 400, number of parameters: 819200)

Class 0 1 2 3 4 5 6 7 8 9 False

n. (%)

0 19979 11 62 21 18 26 25 2 28 10 1.0

1 5 21981 78 13 74 1 20 155 21 4 1.7

2 22 15 19777 72 26 5 6 35 72 6 1.3

3 20 10 66 20169 1 120 1 20 122 27 1.9

4 12 16 13 4 19245 1 13 52 44 177 1.7

5 25 5 15 157 8 17874 45 9 129 36 2.3

6 100 19 38 25 43 90 19575 1 75 3 2.0

7 17 33 108 24 71 0 0 20367 28 299 2.8

8 18 30 47 167 27 55 22 17 19337 70 2.3

9 12 20 62 74 89 33 3 144 134 19196 2.9

False

p. (%)

1.4 0.7 2.4 2.7 1.8 1.8 0.7 1.6 3.1 3.2 1.97

The last column contains percentage of false negative decisions. The last row contains false positive

rates in percent of the respective class test patterns with the global error rate in bold

Fig. 2 The decreasing

information contribution of

the dependence structure to

the estimated

dependence-tree mixtures

(the first eight iterations of

the ten estimated

class-conditional

distributions). The EM

algorithm tends to suppress

the information contribution

of the dependence structures

to the optimal estimate

In Case of a Large Number of Components

∙ intuitively, the large number of components is the main source of the resulting

approximation power

∙ dependence structure of components does not improve the approximation power

of product mixtures essentially

∙ the total information contribution of the component dependence structures

decreases in the course of EM iterations

∙ the optimal estimate of the dependence tree mixture tends to approach a simple

product mixture model
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In Case of a Small Number of Components

∙ a single dependence tree component is capable to describe the statistical relations

between pairs variables

∙ consequently, the approximation power of a single dependence tree component is

much higher than that of a product component

∙ information contribution of the dependence structure can increase in the course of

EM iterations

∙ dependence structure of components can essentially improve the approximation

quality

In this sense, the computational properties of dependence tree mixtures provide

an additional argument to prefer the product mixture models in case of large multidi-

mensional data sets. A large number of product components in the subspace modifi-

cation (19) seems to outperform the advantage of the more complex dependence-tree

distributions.
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Appendix: Maximum-Weight Spanning Tree

The algorithm of Kruskal (cf. [3, 28]) assumes ordering of all N(N − 1)∕2 edge

weights in descending order. The maximum-weight spanning tree is then constructed

sequentially, starting with the first two (heaviest) edges. The next edges are added

sequentially in descending order if they do not form a cycle with the previously cho-

sen edges. Multiple solutions are possible if several edge weights are equal, but they

are ignored as having the same maximum weight. Obviously, in case of dependence-

tree mixtures with many components, the application of the Kruskal algorithm may

become prohibitive in high-dimensional spaces because of the repeated ordering of

the edge-weights.

The algorithm of Prim [35] does not need any ordering of edge weights. Starting

from any variable we choose the neighbor with the maximum edge weight. This first

edge of the maximum-weight spanning tree is then sequentially extended by adding

the maximum-weight neighbors of the currently chosen subtree. Again, any ties may

be decided arbitrarily since we are not interested in multiple solutions.

Both Kruskal and Prim refer to an “obscure Czech paper” of Otakar Borůvka [1]

from the year 1926 giving an alternative construction of the minimum-weight span-

ning tree and the corresponding proof of uniqueness. Moreover, the Prim’s algorithm

was developed in 1930 by Czech mathematician Vojtěch Jarník (cf. [27], in Czech).

The algorithm of Prim can be summarized as follows (in C-code):
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// Maximum-weight spanning tree construction
//***************************************************************
// spanning tree: {<2,A[2]>,...,<NN,A[NN]>}
// NN........ number of nodes, N=1,2,...,NN
// T[N]...... labels of the defined part of the spanning tree
// E[N][K]... positive weight of the edge <N,K>
// A[K]...... heaviest neighbor of K in the defined subtree
// GE[K]..... greatest edge weight between K and defined subtree
// K0........ the most heavy neighbor of the defined subtree
// SUM....... total weight of the spanning tree
//***************************************************************
for(N=1; N<=NN; N++) {GE[N]=-1; T[N]=0; A[N]=0;}
N0=1; T[N0]=1; K0=0; // initial values
for(I=2; I<=NN; I++) // spanning tree loop
{ FMAX=-1E0;

for(N=2; N<=NN; N++) if(T[N]<1)
{ F=E[N0][N];

if(F>GE[N]) {GE[N]=F; A[N]=N0;} else F=GE[N];
if(F>FMAX) {FMAX=F; K0=N;}

} // end of N-loop
N0=K0; T[N0]=1; SUM+=FMAX;

} // end of spanning tree construction
//***************************************************************
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