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Abstract. Considering different application possibilities of product distribution mixtures we
have proposed three formal tools in the last years, which can be used to accumulate decision-
making know-how from particular diagnostic cases. First, we have developed a structural mix-
ture model to estimate multidimensional probability distributions from incomplete and possibly
weighted data vectors. Second, we have shown that the estimated product mixture can be used
as a knowledge base for the Probabilistic Expert System (PES) to infer conclusions from definite
or even uncertain input information. Finally we have shown that, by using product mixtures,
we can exactly optimize sequential decision-making by means of the Shannon formula of condi-
tional informativity. We combine the above statistical tools in the framework of an interactive
open-access medical diagnostic system with automatic accumulation of decision-making knowl-
edge.
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1 Introduction

The great success of Wikipedia is based on the joint effort of great many people bringing
together small pieces of knowledge in textual form. Motivated by the surprising extent
and quality of this information source we propose a statistical platform to accumulate
decision-making know-how from particular diagnostic cases. This project is based on
three statistical tools developed in recent years in different applications of product dis-
tribution mixtures.

First, in a series of papers we have studied different aspects of the structural mixture
model [7], [14], [15], [21] to estimate probability distributions in multidimensional spaces
from incomplete [16] and possibly weighted data vectors [20]. By means of a structural
“background” substitution technique we can evaluate conditional distributions in terms
of subsets of variables while ignoring the remaining variables. Second, we have proposed
to use the estimated discrete mixture of product components as a knowledge base for the
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Probabilistic Expert System (PES, [8], [9], [10], [16]) with the aim to infer conclusions
from either definite or uncertain input information. Given a sub-vector of input values or
a probability distribution on the input subspace, we can thus compute the corresponding
conditional distributions of arbitrary output variables. Finally, we have shown that, in
case of mixtures of product components we have a unique possibility to evaluate the
Shannon formula of conditional informativity exactly [23]. By means of this criterion we
can choose the most informative questions with respect to any subset of goal variables. In
this paper we discuss the possibility of combining the above formal tools in the framework
of a statistical open-access interactive diagnostic system with optimally controlled dialog
and automatic accumulation of decision-making knowledge. Natural application area of
a sequential interactive decision-making system is medical diagnostics [1], [2], [4].

The basic idea of the project is to accumulate large statistical data sets by means of
an interactive diagnostic application freely available online. We assume that anonymous
users can be motivated by diagnostic information to specify some symptoms in an inter-
actively controlled dialog. The final output protocol including symptoms and diagnoses
can be stored as an anonymous by-product in the database, which is the fundamental
source for estimating the probabilistic knowledge base.

The diagnostic result has to be formulated as a recommendation to consult a physician
and therefore the protocol of the dialog should contain maximum useful information
including symptoms and possible diagnoses. The physician should be motivated to join
in the interactive dialog and possibly correct or complete the patient’s data according
to his/her personal opinion. In this way the active cooperation of the physicians can
improve the general validity of the data.

There is obviously no guarantee that the statistical database arising in an open-access
mode will be reliable and error free but, in this respect, the diagnostic system provides
automatic self-correcting possibilities. The estimated product mixture model can be used
”backwards” to eliminate or suppress the incorrect or suspicious data by weighting. In
view of the self-correcting mechanisms concerning the data, variables and components,
the process of designing hypotheses and collecting data may be viewed on as rather robust
and open for anybody.

A typical feature of the considered medical decision-making is a large number of
discrete diagnostic and symptom variables. It is therefore important that, at both the
estimation and application stages, the structural mixture model can be treated as having
no fixed dimension. We can arbitrarily add or remove variables or mixture components
at any level of the design process and, simultaneously, we can optimize the mixture
parameters by using incomplete data.

The goal of this paper is to describe the theoretical background of the proposed diag-
nostic system in formal statistical terms. In Section 2 we first formalize the problem of
medical decision-making. Section 3 describes the role of the Probabilistic Expert System
and its application in a controlled dialog scheme. Section 4 describes the “engine” of the
diagnostic system concerning the details of estimating the probabilistic knowledge base
from data. In Section 5 we discuss the problem of initial parameters, and Section 6 sum-
marizes the concluding remarks. However, the problem of interactive medical diagnostics
is extremely complex and there are many related medical aspects and questions going
beyond the scope of this paper.
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2 Problem of Medical Decision-Making

The goal of medical diagnostics is to derive diagnostic conclusions from a set of symptoms
and informative data. Without essential loss of generality, we can describe the input
information (symptoms) by a set of discrete variables x1, x2, . . . , xK , and the diagnoses
by discrete variables y1, y2, . . . , yJ since possible continuous variables can be discretized.
A typical diagnostic variable will be binary (negative, positive) but can be of a general
discrete type in the case of several mutually exclusive alternatives. Below, we sometimes
include all discrete variables into a single N-dimensional vector for convenience:

x = (x1, x2, . . . , xN) ∈ X , xn ∈ X n, X = X 1 × · · · × XN , yj = xK+j , j = 1, 2, . . . , J,

y = (y1, y2, . . . , yJ) ∈ Y ≡ XK+1 × · · · × XK+J , N = K + J.

A particular diagnostic case can thus be described by a vector x ∈ X containing some
known symptoms xi1 , xi2 , . . . , xik and some related diagnoses yj1, yj2, . . . , yjl. Obviously,
such a vector will be always incomplete or even sparse since we have to consider a large
number of possible symptoms and diagnostic variables, while only a small part of them is
known or can be specified in a particular case.1 For this reason the possibility of learning
from incomplete data is essential.

For the sake of statistical decision-making the relationship between the diagnostic
and symptom variables can be described in full generality by a joint probability distri-
bution. Considering mixtures of product components, we approximate unknown discrete
probability distributions in the form

P (x) =
∑

m∈M

wmF (x|m), F (x|m) =
∏

n∈N

fn(xn|m), M = {1, . . . ,M} (1)

wm ≥ 0,
∑

m∈M

wm = 1,
∑

ξn∈Xn

fn(ξn|m) = 1, N = {1, . . . , N}

where xn ∈ X n are general discrete variables, N is the index set of variables, wm are
probabilistic weights, M is the component index set and fn(·|m), n ∈ N are univariate
discrete probability distributions defined by the probabilities fn(ξn|m), ξn ∈ X n. We
recall that discrete product mixtures are not identifiable (cf. [12], Lemma 1) but they
are not restrictive as a statistical model since any discrete distribution can be expressed
in the form (1), (cf. [12], Remark 1).

From the point of view of medical diagnostics the product mixtures have two im-
portant advantages: they can be estimated by means of EM algorithm [26],[27], [3], [6]
and, especially, arbitrary marginal distribution is easily evaluated by omitting superflu-
ous terms in the products. In particular, if we denote PC(xC) a marginal distribution of
the mixture (1) corresponding to variables xi1 , xi2 , . . . , xik :

xC = (xi1 , xi2 , . . . , xik) ∈ XC , C = {i1, i2, . . . , ik} ⊂ N , (2)

then we can write

PC(xC) =
∑

m∈M

wmFC(xC |m) =
∑

m∈M

wm

k
∏

s=1

fis(xis |m). (3)

1We can formally describe the missing value as an additional discrete option.
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The last Equation (3) is essential since, using the marginal property, we can estimate
the mixture parameters from incomplete data (cf. [16]) and, by considering a structural
mixture model [7], we can treat the decision problem as having no fixed dimension (cf.
Section 4.1).

3 Probabilistic Expert System

The estimated product mixture (1) can be used as a knowledge base for the Probabilistic
Expert System (PES), (cf. [8], [9], [10], [16]). In this way we can use the efficient inference
mechanism of PES to derive diagnostic conclusions from the input variables (symptoms)
in terms of conditional distributions. If we denote PDC(yD,xC) the marginal distribution
of the mixture (1) corresponding to the symptom variables xC and diagnostic variables
yD

yD = (yj1, yj2, . . . , yjl) ∈ YD, D = {j1, j2, . . . , jl} ⊂ N , (4)

then we can write

PDC(yD,xC) =
∑

m∈M

wmFD(yD|m)FC(xC |m) =
∑

m∈M

wm

l
∏

s=1

fjs(yjs|m)

k
∏

s=1

fis(xis |m).

Thus, for any subset of symptoms xC ∈ XC and diagnostic variables yD ∈ YD we can
compute the related conditional distributions by the formula

PD|C(yD|xC) =
PDC(yD,xC)

PC(xC)
=

∑

m∈M

Wm(xC)FD(yD|m). (5)

Here Wm(xC) are the component weights corresponding to a given vector of symptoms
xC ∈ XC :

Wm(xC) =
wmFC(xC |m)

∑

j∈MwjFC(xC |j)
, m ∈ M. (6)

The conditional distribution (5) represents a general exact response to the definite input
information xC ∈ XC . However, for an interested user it could be more intuitive to
evaluate the conditional distributions of diagnostic variables separately, e.g.,

Pj|C(yj|xC) =
PjC(yj,xC)

PC(xC)
=

∑

m∈M

Wm(xC)fj(yj|m), j ∈ D. (7)

In case of uncertain input represented in full generality by a given probability distribu-
tion P ⋆

C(xC), we have to make the substitution (5) or (7) in the formula of complete
probability:

P ⋆
D(yD) =

∑

xC∈XC

PD|C(yD|xC)P
⋆
C(xC) =

∑

m∈M

W ⋆
mFD(yD|m), (8)

P ⋆
j (yj) =

∑

xC∈XC

Pj|C(yj|xC)P
⋆
C(xC) =

∑

m∈M

W ⋆
mfj(yj|m) (9)



Medical Diagnostic Wikipedia 5

where
W ⋆

m =
∑

xC∈XC

Wm(xC)P
⋆
C(xC). (10)

Recall that the uncertain input information in the general form P ∗
C(xC) is rarely known

and must be approximated if only a partial knowledge is available, e.g., only the marginal
distributions P ∗

n(xn), n ∈ C, [9].
There is an interesting option to globally evaluate the reliability of the inference mech-

anism given the symptoms xC . Let us recall that the conditional distribution of diagnostic
variables yD is given as a weighted sum of the component distributions FD(yD|m), (cf.
(5)) where the conditional weight Wm(xC) reflects the particular importance of the m-th
component, given the the symptoms xC . On the other hand the unconditional compo-
nent weights wm reflect the support of the respective components in the database. In
this sense the scalar product of both weight vectors

ρ(xC) =
∑

m∈M

wmWm(xC), xC ∈ XC , (0 < ρ(xC) < 1) (11)

can be viewed as a global reliability measure of the conditional distributions PD|C(yD|xC)
given the symptoms xC ∈ XC .

In recent years the product mixtures (1) have repeatedly been applied to pattern
recognition, e.g., to recognition of hand-written numerals [14], [15], [23]. Let us note
that classification based on the Bayes formula can be viewed as a special case of the
probabilistic inference mechanism (9) if the variable yj defines the recognized classes.

3.1 Relevant Diagnostic Variables

By means of the probabilistic inference mechanism we can compute the conditional dis-
tributions of all diagnostic variables given a set of input values (symptoms). However,
the number of possible diagnoses may be very large and for the sake of an efficient inter-
active dialog the attention should be focused on a reasonably small subset of significant
diagnostic variables, e.g., by ordering their importance.

The idea of the first choice is to compare the conditional and unconditional (prior) dis-
tributions of diagnostic variables since any substantial change of the distribution (caused
by the given conditioning symptoms) suggests a risk which should be evaluated in more
detail. We can formally compute the absolute difference between the two distributions
Pj|C(yj|xC), Pj(yj):

△Pj =
∑

yj∈Yj

|Pj(yj)− Pj|C(yj|xC)|, j ∈ D

or, e.g., the Kullback-Leibler information divergence:

I(Pj(·)||Pj|C(·|xC)) =
∑

yj∈Yj

Pj(yj) log
Pj(yj)

Pj|C(yj|xC)
,

or some other suitable dissimilarity measure.
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Unfortunately, formal dissimilarity does not reflect the medical meaning of diagnostic
variables. The medical relevance can be introduced by specific weights but the user should
have an option to express his personal interest and influence the direction of the dialog.

Let us recall that the probabilistic inference mechanism yields the conditional distri-
butions of diagnostic variables in a multidimensional form (5). The general formula is
not very intuitive from the point of view of a user but it can be useful for computation of
conditional informativity of questions in the next section. Thus the underlying computa-
tional complexity is the main reason to keep the number of relevant diagnostic variables
within certain limits. We recall that there is no irreversible information loss in the re-
duced number of diagnoses since the subsequent application of the inference mechanism
takes all diagnostic variables into account again.

3.2 Optimal Choice of Questions

In the case of medical decision-making we always assume that the final decision is done
by a physician and therefore the main purpose of the interactive system is to accumulate
maximum diagnostically relevant information for the final consultation. The output of the
inference mechanism supplies the conditional probabilities of possible diagnoses and may
be useful for the physician. Thus the key problem of the interactively controlled dialog
is the optimal choice of diagnostically relevant symptom variables (questions) from the
available set. At each stage the user (patient) should be offered a set of additional ques-
tions ordered according to their informativity. The interactive process can be continued
as long as the user is motivated to answer additional questions.

The evaluation of symptoms typically suggests several suspicious diagnoses. The goal
of the so-called differential diagnostics in medical decision-making is to eliminate the
irrelevant diagnoses by answering additional questions. The fundamental problem of
choosing additional informative symptom variables (questions) can be solved optimally
in the formal context of the probabilistic knowledge base.

We use the fact that, unlike other methods (cf. [1], [2], [5], [24], [25]), the knowledge
base estimated in the form of product mixture provides a unique possibility to evaluate
at any decision level the exact conditional informativity (in the Shannon sense) of the
remaining symptom variables [23]. In other words, given a subset of symptoms xC and
a set of potentially relevant diagnostic variables yD,

xC = (xi1 , xi2 , . . . , xik) ∈ XC , yD = (yj1, yj2, . . . , yjl) ∈ YD, (12)

we can compute we can evaluate the exact Shannon informativity with respect to the
chosen diagnoses yD for all the remaining symptom variables xn, n /∈ C. In particu-
lar, we can directly write equations for both the related marginals and the conditional
distributions the exact conditional Shannon informativity - with respect to the chosen
diagnoses yD. In particular, we can directly write Eqs. for both the related marginals
and the conditional distributions

PnC(xn,xC) =
∑

m∈M

wmFC(xC |m)fn(xn|m), (13)

Pn|C(xn|xC) =
PnC(xn,xC)

PC(xC)
=

∑

m∈M

Wm(xC)fn(xn|m), (14)
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Figure 1: Sequential recognition of numerals. In the first row the images show the
changing ”expectation” of the classifier according to the currently uncovered raster fields.
The images in the second row illustrate the conditional informativity of the hidden raster
fields. The last image is the true underlying numeral two.

PDCn(yD,xC , xn) =
∑

m∈M

wmFD(yD|m)FC(xC |m)fn(xn|m) (15)

PD|Cn(yD|xC , xn) =
PDCn(yD,xC , xn)

PCn(xC , xn)
=

∑

m∈M

Wm(xC , xn)FD(yD|m). (16)

Here Wm(xC , xn) are the conditional component weights given the input vector xC ∈ XC

and the evaluated symptom variable xn:

Wm(xC , xn) =
wmFC(xC |m)fn(xn|m)

∑

j∈MwjFC(xC |j)fn(xn|j)
=

wmFC(xC |m)fn(xn|m)

PCn(xC , xn)
. (17)

In view of Equation (16) the conditional Shannon informativity of the symptom variable
xn, n /∈ C with respect to the diagnostic variables yD can be computed for any given
subvector xC ∈ XC by means of the Shannon formula

IxC
(YD,X n) = HxC

(YD)−HxC
(YD|X n) (18)

where HxC
(YD), HxC

(YD|X n) are the respective Shannon entropies:

HxC
(YD) =

∑

yD∈YD

−PD|C(yD|xC) logPD|C(yD|xC), (19)

HxC
(YD|X n) =

∑

xn∈Xn

Pn|C(xn|xC)
∑

yD∈YD

−PD|Cn(yD|xC , xn) logPD|Cn(yD|xC , xn).

(20)
Recall that high Shannon information IxC

(YD,X n) reflects a strong statistical depen-
dence between the variable xn and the diagnostic variables yD given the symptoms
xC ∈ XC . It is maximum if the variable xn uniquely determines the value of yD given
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xC . On the other hand the information (18) is zero if the variable xn and the sub-vector
yD are conditionally independent given xC ∈ XC .

To illustrate the power of sequential decision-making we show in Fig.1 an example
of recognition of numerals from the NIST Special Database 19 (cf. [23]). The digits are
normalized to a 32×32 binary raster. At the beginning the numeral is not visible and the
raster fields are uncovered sequentially according to maximum conditional informativity.
In the first row Fig. 1 shows the changing ”expectation” of the classifier according to the
currently uncovered raster fields. The second row shows the corresponding conditional
informativity of hidden raster fields. As we can see, merely seven visible raster fields are
sufficient to correctly recognize the underlying numeral two.

3.3 Controlled Dialog Scheme

The interactive controlled dialog is the most important open-access user interface. It is
the main source of data and therefore it should motivate potential users to accept the
form of controlled dialog with the resulting diagnostic information and comments.

Similarly to a natural dialog between a physician and a patient, the user has to specify
some symptoms and the Probabilistic Expert System playing the role of a physician should
evaluate possible relevant diagnoses (in terms of conditional distributions of diagnostic
variables). As mentioned earlier, the list of relevant diagnoses should be restricted to
enable efficient evaluation of additional informative questions. A suitable choice can be
suggested by means of a formal ordering as discussed in Section 3.1, but the final decision
should be made by the user. We recall that the subsequent application of the inference
mechanism including the next symptom takes all diagnostic variables into account again.

As shown in Section 3.2 the evaluation of conditional informativity provides an ordered
list of the remaining questions which is recomputed after any new specific symptom is
revealed. In this way the ordered list of relevant diagnoses yD always reflects the complete
input information xC .

There are many unresolved aspects of the interactive dialog to be considered specif-
ically. Let us recall that the choice of subsequent informative questions based on the
conditional Shannon informativity is formally applicable to very complex problems of
differential diagnostics, but the computation could become time consuming and the se-
lected questions are optimal only in a formal sense. Obviously, the Shannon formula does
not fully reflect the medical importance of variables.

The interactive dialog can be stopped by the user at any time with the possibility
to read the final protocol, i.e., the resulting diagnostic conclusions at a suitable level of
details and in a desirable form including input symptoms, possible relevant diagnoses,
suggested medication and comments. The final output for a user must always contain a
recommendation to consult a physician. The protocol of the interactive dialog should be
useful for the physician since his cooperation in storing reliable data is of high value. The
physician should be motivated to enter the patient’s dialog to check the communicated
symptoms and verify the resulting diagnoses.

The symptoms and diagnoses in the final form can be stored as an incomplete data
vector in the database. For this purpose any uncertain diagnostic output can be stored
as a set of data vectors weighted by the corresponding probabilities.
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4 Estimation of the Probabilistic Knowledge Base

The maximum-likelihood estimates of mixture parameters can be computed by means of
the EM algorithm [3],[26],[27],[6]. Formally, given a finite set S of independent observa-
tions of the underlying N -dimensional random vector

S = {x(1),x(2), · · · }, x = (x1, x2, · · · , xN) ∈ X (21)

we maximize the corresponding log-likelihood function

L =
1

|S|

∑

x∈S

log

[

∑

m∈M

wmF (x|m)

]

=
1

|S|

∑

x∈S

log

[

∑

m∈M

wm

∏

n∈N

fn(xn|m)

]

(22)

by means of the following EM iteration equations (m ∈ M, n ∈ N ,x ∈ S):

q(m|x) =
wmF (x|m)

∑

j∈MwjF (x|j)
, w

′

m =
1

|S|

∑

x∈S

q(m|x), (23)

f
′

n(ξn|m) =
1

∑

x∈S q(m|x)

∑

x∈S

δ(ξn, xn)q(m|x), ξn ∈ X n. (24)

Here the apostrophe denotes the new parameter values in each iteration. We recall that
the EM iteration equations have to be carefully implemented because there is a risk
of multiple latent underflow in Equation (23). For this reason the conditional weights
q(m|x) have to be evaluated in a logarithmic form and suitably scaled (cf. [21]).

The log-likelihood criterion nearly always has local maxima and therefore the iterative
computation depends on the starting point. Nevertheless, in cases of large data sets and
a large number of components, possible local maxima do not differ very much and the
corresponding approximation quality of the estimated mixture is usually comparable.

4.1 Structural Mixture Model

The structural (subspace) approach to product mixtures makes use of an idea originally
proposed within the framework of statistical pattern recognition (cf. [7]). Introducing
binary structural parameters φmn ∈ {0, 1}, n ∈ N , m ∈ M we define the mixture compo-
nents in the form

F (x|m) =
∏

n∈N

fn(xn|m)φmnfn(xn|0)
1−φmn, (25)

where fn(xn|0), n ∈ N are some fixed univariate background distributions. A convenient
option is to set them equal to global marginal distributions: fn(xn|0) = P ∗

n(xn), n ∈ N .
If we set φmn = 0 then we can replace any component-specific distribution fn(xn|m) with
the respective background distribution fn(xn|0). We can equivalently write

F (x|m) = F (x|0)G(x|m,φm), m ∈ M, F (x|0) =
∏

n∈N

fn(xn|0), (26)
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where F (x|0) is a nonzero “background” probability distribution and the component
functions G(x|m,φm) include the structural parameters φmn ∈ {0, 1}:

G(x|m,φm) =
∏

n∈N

[

fn(xn|m)

fn(xn|0)

]φmn

, φm = (φm1, · · · , φmN) ∈ {0, 1}N . (27)

In this way, the component functions G(x|m,φm) may be defined on different subspaces.
By using substitution (26) we can write the structural mixture in the form

P (x) = F (x|0)
∑

m∈M

wmG(x|m,φm), (28)

The structural mixture model can be optimized by means of the EM algorithm in full
generality (cf. [7], [15], [21]) by maximizing the corresponding log-likelihood function:

L =
1

|S|

∑

x∈S

log

[

∑

m∈M

wmF (x|0)G(x|m,φm)

]

.

In the following iteration equations, the apostrophe denotes the new parameter values
(m ∈ M, n ∈ N ,x ∈ S):

q(m|x) =
wmG(x|m,φm)

∑

j∈M wjG(x|j,φj)
, w

′

m =
1

|S|

∑

x∈S

q(m|x), (29)

f
′

n(ξn|m) =
1

∑

x∈S q(m|x)

∑

x∈S

δ(ξn, xn)q(m|x), (30)

γ
′

mn =
1

|S|

∑

x∈S

q(m|x) log
f

′

n(xn|m)

fn(xn|0)
. (31)

The optimal subset of nonzero parameters φ
′

mn is defined by the highest values γ
′

mn and
can be chosen by simple thresholding:

φ
′

mn =

{

1, γ
′

mn > τ
0, γ

′

mn ≤ τ
, τ =

α

MN

∑

m∈M

∑

n∈N

γ
′

mn, (0 < α < 1), m ∈ M. (32)

In some cases the structural parameters defined by Equation (32) may tend toward over-
fitting and the following component-specific thresholds τm, m ∈ M may be more robust
:

φ
′

mn =

{

1, γ
′

mn > τm
0, γ

′

mn ≤ τm
, τm =

α

N

∑

n∈N

γ
′

mn, (0 < α < 1), m ∈ M. (33)

Let us recall that the background probability distribution F (x|0) is reduced in Equa-
tion (29) as well as in the conditional weightsWm(xC). In this way Equation (17) includes
only the relevant variables:

Wm(xC) =
wmG(xC |m,φm)

∑

j∈MwjG(xC |j,φj)
, m ∈ M. (34)
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The structural EM algorithm is directly applicable to data of extreme dimensionality
(cf. [13], [18]) but the underlying data set should also be large. A specific feature of
medical decision-making are “spars” data vectors which imply less complex statistical
relationship between variables. For this reason the estimation of the related structural
mixture model could be less demanding concerning the size of the training set - despite
the large dimension of the diagnostic problem.

4.2 EM Algorithm for Missing Data

The problem of missing data is a traditional area of mathematical statistics. The data
can be made complete by simply omitting the incomplete vectors or variables but, in
this way, we lose a large part of the original information. Another possibility is to
replace the missing values with some estimates (see e.g., [3]). However, the substituted
values are always typical in some sense and therefore the natural variability of data
would decrease. Alternatively, the product mixture model enables a simple possibility of
directly processing incomplete data since the product components can be reduced to an
arbitrary subspace currently specified by the vector x ∈ X . In other words, we estimate
the mixture parameters using only the available data (cf. [16]).

In order to modify the EM algorithm for incomplete data we denote by N (x) ⊂ N
the subset of indices of the defined variables in a given vector x and Sn ⊂ S the subset
of vectors with the defined value xn:

N (x) = {n ∈ N : xn is defined in x}, Sn = {x ∈ S : n ∈ N (x)}.

The log-likelihood function for incomplete data is given by Equation

L =
1

|S|

∑

x∈S

log





∑

m∈M

wm

∏

n∈N (x)

fn(xn|m)



 (35)

and the corresponding modified EM iteration equations can be expressed in the form
(m ∈ M, n ∈ N (x), x ∈ S):

q(m|x) =
wm

∏

n∈N (x) fn(xn|m)
∑M

j=1wj

∏

n∈N (x) fn(xn|j)
, w

′

m =
1

|S|

∑

x∈S

q(m|x), (36)

f
′

n(ξ|m) =
1

∑

x∈Sn
q(m|x)

∑

x∈Sn

δ(ξ, xn)q(m|x), ξ ∈ X n. (37)

Roughly speaking, we calculate the values q(m|x) in Equation (36) only for the variables
xn currently available in x and the new parameters f

′

n(·|m) in Equation (37) are estimated
only for data vectors x ∈ Sn with the defined variable xn. Obviously, there is a standard
trade-off between the percentage of missing values and the estimation accuracy.

4.3 EM Algorithm for Weighted Data

The EM algorithm can be applied to arbitrarily weighted data for example to utilize some
external knowledge about the meaning or reliability of data vectors [20]. Denoting γ(x)
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the relative frequency of x in S we can write

x /∈ S ⇒ γ(x) = 0, ⇒
∑

x∈X

γ(x) =
1

|S|

∑

x∈S

1 = 1 (38)

and we can express the log-likelihood function in the following equivalent form

L =
1

|S|

∑

x∈S

log[
∑

m∈M

wmF (x|m)] =
∑

x∈X

γ(x) log[
∑

m∈M

wmF (x|m)] (39)

We can use the equivalent notation in the EM iteration equations as well:

q(m|x) =
wmF (x|m)

∑

j∈MwjF (x|j)
, w

′

m =
∑

x∈X

γ(x)q(m|x), (40)

f
′

n(ξ|m) =
∑

x∈X

δ(ξ, xn)γ(x)
q(m|x)

w′

m

, ξ ∈ X n, m ∈ M (41)

In words, the weighted modification of the log-likelihood function is maximized by weighted
EM iteration equations (40), (41).

4.4 Self-Correcting Mechanisms of PES

The probabilistic knowledge base estimated from a large data set in the form of a prod-
uct mixture can be used “backwards” to evaluate the reliability of the original data. We
can identify erroneous or suspicious data vectors x ∈ S by computing the log-likelihood
logP (x). In recent years this approach has been successfully verified in evaluation of
suspicious (malign) locations in screening mammograms (cf. [19], [20], [21]) and identifi-
cation of defects or abnormalities in textures [17] or impaired pixels in images [22].

In large data sets, the unreliable, suspect or incorrect data can be automatically
removed or suppressed by weighting, e.g.,

γ(x) = logP (x)/L̄, L̄ =
1

|S|

∑

x∈S

logP (x). (42)

In general, by weighting the data in the EM algorithm we influence the form of the esti-
mated distribution with unfavorable consequences for the final accuracy of the estimates
[11]. However, unlike standard estimation problems, in the case of medical diagnostics
we would increase the reliability of the resulting inference mechanism and suppress the
influence of noisy, incorrect or atypical data.

In a similar way we can easily identify “useless” components having very small weights.
In view of the related EM equation (40), the component weight wm reflects how frequently
and strongly the component F (x|m) fits to the available data. Except for rare diagnoses,
the components with very low weight values wm can be omitted without substantial effect
on the accuracy of the inference mechanism. For the same reason we can remove sparsely
used variables xn for which

∑

m∈M φmn is very small or zero.
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5 Initial Design of the Knowledge Base

The structural mixture model is a weighted sum of product components. Each component
defined as a product of univariate discrete distributions (i.e., histograms) can be viewed as
an elementary diagnostic hypothesis. In this sense the initial components can be designed
intuitively by specifying the typical co-occurrence of a diagnosis and related symptoms.
A natural assumption is cooperation with medical experts; however, given a large training
database, the initial intuitively designed components can be reliably optimized by means
of the EM algorithm. The EM algorithm would automatically modify the suggested
univariate distributions in components or suppress the weights of unsuitably or incorrectly
specified components.

An important feature of the EM algorithm is its monotonic property. The mixture
parameters at any phase of computation can be viewed as initial estimates and therefore
new components can be added sequentially, in the course of iterations [12]. For the same
reason a new variable xn can be included at any level of the design process simply by
specifying the corresponding background distribution fn(xn|0).

6 Concluding Remarks

The design of an interactive medical diagnostic system is a difficult task, in which a lot
of software development is necessary. This paper deals mainly with formal prerequisites
for the interactive diagnostic system, but there are many open problems and questions
which can hardly be assumed and solved in advance.

At the beginning, the design process should relate to a limited diagnostic area and
refer to reliable support by medical experts. Both the symptoms and the diagnoses should
be included sequentially in a reasonable hierarchical structuring. In the initial stages the
system should refer to a sufficiently large and reliable database, preferably created in
cooperation with a well-motivated community, e.g., students or physicians.
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