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Figure 1: A preview of several edited synthetic dynamic textures.

Abstract

A fast simple method for dynamic textures enlargement and edit-
ing is presented. The resulting edited dynamic texture is a mix-
ture of several color dynamic textures that realistically matches the
given color textures appearance and respects their original optical
flows. The method simultaneously allows to spatially and tem-
porarily enlarge the original dynamic textures to fill any required
four dimensional dynamic texture space. The method is based on
a generalization of the prominent static double toroid-shaped tex-
ture modeling roller method to the dynamic texture domain. The
presented method keeps the original static texture roller principle
of separated analysis and synthesis parts of the algorithm. In its
analytical step, the input textures patches are found by an optimal
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overlap tiling and the subsequent minimum boundary cut. The opti-
mal toroid-shaped dynamic texture patches are created in each spa-
tial and time dimension, respectively. The spatial dimension tile
border is derived by textural features, color-tone, and the minimal
overlapping error. The time dimension tile border is detected by
minimizing the overlapping error and using the input textures op-
tical flow. The realistic appearance of the dynamic textures mix
requires to edit the patch color space and to find border patches
which consists from more than one type of the texture. These bor-
der patches are found similarly to the multi-texture analysis patch
step. Since all time-consuming processing, such as the finding of
optimal spatio-temporal triple toroidal patches, are done in the an-
alytical step which is completely separated from synthesis part, the
synthesis of the edited and enlarged resulting texture can by done
very efficiently by applying simple set of repeating rules for these
triple toroidal patches. Thus the presented method is extremely fast
and capable to synthesize a learned natural dynamic texture spa-
tially and its time span in real-time.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Color, shading, shad-
owing, and texture;

Keywords: Computer Graphics, Dynamic Texture, Dynamic
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1 Introduction

Visual texture modeling is the critical part for any computer-based
visualization application because whatever size is the measured tex-
ture, it is always inadequate and requires its enlargement to cover
the required visualized object’s surface area. The available mate-
rial sample size is either too small for rendering complex and large
virtual scenes, if we measure material visual properties of real ex-
isting objects, or the measurement technology does not allow us to
measure larger material samples. The typical example is the re-
cent most advanced visual surface material representation in the
form of the bidirectional texture function [Haindl and Filip 2013].
The amount of such measured data similarly to dynamic textures
is immense, e.g., in the range of tera bytes even for such spatio-
temporally restricted measurements thus any such texture visual-
ization inevitably requires simultaneously enlargement and some
compression capability. Texture editing enables to create photo-
realistic synthetic textures, which are either difficult to measure or
which even do not exist in nature. Dynamic (DT) texture synthe-
sis and editing aims to create a visual texture which is perceptually
similar, ideally visually indiscernible, to the target dynamic texture
and has the required spatial and temporal extent. The target tex-
ture can be either a measured sample or a set of desired features for
the resulting DT. Natural DT modeling is a very challenging and
difficult task, due to unlimited variety of possible materials, illu-
mination, and viewing conditions, simultaneously complicated by
the strong discriminative functionality of the human visual system.
Dynamic texture editing is useful process which allows to synthe-
size alternative and unmeasured types of DTs. It allows to reach
huge compression ratio if numerous DTs can be constructed from
several basis small DT samples, or to study relationship between
model parameters and their impact on visual DT appearance, etc.

1.1 Dynamic Texture

Similarly to other types of visual textures, there is neither an exact
definition of the dynamic (or video, temporal) texture [Haindl and
Filip 2013]. DT can be characterized by some spatially invariant
statistics like other visual textures [Zhu et al. 1998] but addition-
ally to that it requires also some temporal invariance. DT can be
represented as as a realization of a 4D stochastic random field. The
two main approaches can by applied to the dynamic texture mod-
eling - the approach based on the measured data sampling and the
mathematical model based approach. Typically the modeling by
some mathematical probabilistic model is by far less demanding
on memory, but sometimes produces lower visual quality results,
while the intelligent sampling methods can produce better quality
textures but they need to store material patches [Haindl and Richtr
2013]. Three major properties [Doretto et al. 2003] are present in
DTs. They intuitively define whole texture - the static texture itself,
global dynamics and local dynamics (Fig. 4). The static texture
represents a structure of the scene and its objects, the global motion
moving of the whole scene (e.g. rotating or sliding camera), and
the local motion dynamics in the texture (small motion, oscillation
or overlapping and disappearing of small objects).

Some of the early methods were based on simple particle system,
where particles were parts of the mapped semi-transparent textures
with integrating light from the neighbouring polygons. Perry and
Picard [Perry and Picard 1994] modeled flames, Stam [Stam and

Fiume 1993; Chiba et al. 1994] or Chiba [Chiba et al. 1994] pub-
lished similar models simulating simple gas phenomena like clouds
or smoke. The Szummer [Szummer and Picard 1996] method is
based on (causal) auto-regressive model restricted to gray-scale
DT and linear dynamic between pixels only. The Schodl [Schödl
et al. 2000] method is restricted to temporal enlargement based
on similarity and optical flow to find possible transitions from one
frame in the original video clip to another one. Parts of the video
with similar textural and motion data are simply played in infi-
nite loops using blur between frames to reduce visually apparent
jumps. The statistical method by Bar-joseph [Bar-Joseph et al.
2001; Bar-Joseph 1999] can create DT using wavelet transform
and steerable pyramids directly extending the 2D problem into 3D
domain. This method produces new data, but the method is time
and space consuming and can produce [Bar-Joseph et al. 2001]
only spatially and temporally limited data. The larger DT can be
generated only by creating several small ones and concatenating
them while blending their boundary frames, but this approach of-
ten introduces strong optical distraction and excessive blur in the
blended frames. This method can also create some type of mix-of-
DT output. Typical sampling methods [Schödl et al. 2000; Kwatra
et al. 2003; Phillips and Watson 2003] are based on simple repeti-
tion of input data with edge blending and adequate morphing tech-
niques. The repetition is done in spatial or temporal way and may
be just frame based [Schödl et al. 2000] or it uses time consum-
ing graph-like min-cut methods [Kwatra et al. 2003]. The method
[Lizarraga-Morales et al. 2014] selects subsequent patches using
iterative greedy-like search based on the modified textural LBP fe-
tures. Its major drawback is unseparated analytical and synthesis
steps. The Doretto [Doretto et al. 2003] and Soatto [Soatto et al.
2001] model based method is based on auto-regressive moving av-
erage process and SVD. This method allows to edit the synthesized
result by changing model parameters, but the parameters have un-
known influence on the textural appearance (i.e. speed or direction
for wind, or granularity for water textures) and must be interpreted
for every given type of a texture. Similarly to static textures, DT
can be modeled as a mixture of several dynamic textures [Chan
and Vasconcelos 2008; Chan and Vasconcelos 2005]. These types
of textures can be created e.g. by layered dynamic textures [Chan
and Vasconcelos 2006], mix of dynamic textures [Bar-Joseph et al.
2001; Chan and Vasconcelos 2005; Chan and Vasconcelos 2008],
or by our triple toroid- shaped tiles and optical flow based approach
which focus on dynamics and human-eye-observation. Filip [Filip
et al. 2006] presented much faster way to synthesize color textures.
Similar results were presented in [Chan and Vasconcelos 2005;
Constantini et al. 2006; Costantini et al. 2008] using tensor decom-
position and SVD techniques.

We present a new simple method for synthesizing dynamic tex-
tures, mix of DTs and DT editing. The method generalizes our
approach [Haindl and Richtr 2013] mainly by its novel editing and
mixing capabilities and it is illustrated on the inpainting applica-
tion. The possibly infinitely large (in spatial and temporal dimen-
sions simultaneously) synthesized texture is created from a notice-
ably smaller patches of input DTs. The result is seamless, without
any strong distortions and does not require any blurring or mor-
phing techniques. These properties is achieved through intelligent
sampling and subsequent copying patches abreast using simple ad-
jacency rules. Few triple toroid-shaped tiles can create numerous
noticeably larger synthesized DTs with similar stochastic proper-
ties. By using toroidal-shaped tile and fitting them by optical flow,
the synthesized texture can be recreated from various input textures
to generate many types of output textures or even mix-of-textures.
The repetition of the spatial and temporal dimension is suppressed
both by using overlapping samples and their random placement in
the synthesized texture and temporal deformation of the texture dy-
namics. This intelligent sampling allows to retain a small enough
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Figure 2: The overall flowchart of the presented method.

representative data samples to represent the whole texture. It also
allows the creation of the infinitely large seamless output by re-
peating sequence of these toroidal samples. Our method can create
large range of varios DT types and produce high quality realistic
appearance results.

2 Toroidal-Based Texture Model

The presented enlargement method principle is to find optimal
triple toroid-shaped dynamic texture tiles which can be subse-
quently seamlessly repeated in dynamic texture data space spatial
and temporal directions. The method estimates several optimal
triple toroid-shaped dynamic texture tiles combining estimated op-
tical flow and double toroid-shaped dynamic texture frame tiles as
described in detail in [Haindl and Richtr 2013] and it is a part of the
presented method. Although the principle of the optimal spatial and
temporal cuts detection is similar, the temporal and spatial visual
perception differs [Edelman 1992; Fahle and Poggio 1981], thus
we have developed two distinct approaches for the spatial and opti-
cal flow driven temporal cuts. The overall flowchart of the present
method is illustrated on Fig. 2. The input 4D DT’s frequencies and
the optimal patch size (2D tile block: size, location) are computed
and their time properties (Optical flow block) are analyzed in par-
allel, followed by the search for additional patches (Multiple (k)
3D animated tiles) and their temporal translations (Temporal jumps
search). The optimal spatial (Multiple 2D tile search) and tempo-
ral (Temporal cut) cut is then computed. The synthesis step avoids
damaged or unwanted parts and the results are synthesized by ran-
domly generated DT arrangement.

2.1 Static and Dynamic Double Toroid-Shaped Tiles

The toroid-shaped tile (see Fig. 2) is a patch from the original data
with the specific property to have toroidal border condition in each
(horizontal, vertical, and temporal) dimension. The textural tile is
assumed to be indexed on the regular three-dimensional toroidal
lattice. The lattice size depends on the estimated texture periodicity
in all dimensions.

Figure 3: The double toroid-shaped tile and its source frame tex-
ture, respectively.

Figure 4: Left: Dynamic overview. Black arrows: Global dynam-
ics (optical flow) of the whole texture cause moving of every patch;
Red arrows: Local patch dynamics (optical flow) which can be dif-
ferent each time and derives small patch-shape changes. Right:
Optical flow illustration, synthesized result (with varying tempo-
ral shift illustrated by the color tone of patches), three patches with
different time shift (0, 5 and 10 frames) and different local (arrows)
optical flow, respectively.

The optimal tile search algorithm which respects its toroidal border
condition produces a tile which can be seamlessly repeated in both
spatial and the temporal dimensions, respectively. Thus the bound-
ary between two tiles placed abreast is invisible. The main idea
of the triple-toroidal tiling is to find some relevant and sufficiently
representative tiles from the measured DT, which can be directly
seamlessly copied to the output DT, where the offset is driven by
the tile shape placed on the three dimensional tile label lattice.

The static double toroid-shaped tile edges (patches) are found by
the roller method [Haindl and Hatka 2005] and they are combined
using their optical flow controlled propagation throughout the time
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(see [Haindl and Richtr 2013]). The tiles are fitted to local dynamics
(see Fig. 4) and subsequently expanded into the triple toroid-shaped
forms.

Let us denote r = [r1,r2,r3,r4] a multiindex, where the compo-
nents are row, column, spectral (color information and vector of
optical flow), and frame indices, respectively. • denotes all values
of the corresponding index. The optimal horizontal and vertical
overlaps are found using the following criterion:

ζ
∗
r = minζ

 1
bζc ∑

∀r∈Iζ

ψ
ζ
r

 , (1)

where bζc denotes the the corresponding overlap area of ζ , Iζ

is the overlap area index set, and ψ
ζ
r is the L2 norm of the cor-

responding (ζ = h horizontal or ζ = v vertical) overlap error for a
multispectral pixel vector Yr.

The optimal size of the tile is found by minimizing the overlap er-
ror ζ ∗r (see ( 1) or [Haindl and Hatka 2005]) by the Fourier trans-
formation [Haindl and Hatka 2005] to find the dominant texture
periodicity (with the weight in every frame, or in one representative
frame).

The located single frame double toroid-shaped tile is propagated
along the optical flow which represent DT global dynamics to the
subsequent frames to model the textural structures movement. The
propagated double toroid-shaped tile (see Animated 2D tile block
in Fig. 2) in every frame serves as the initialization for local mod-
ification of such a double toroid-shaped tile to each frame-specific
final shape. Multiple animated 2D tiles (with possible overlapping)
are found in the source texture by minimizing the overlap error ζ ∗r
in border areas of the patches given advantage of the same global
optical flow in the same frames of DT. The minimal distance of
the patches are given by smaller breadth of up/down of left/right
overlaps (see block Multiple (k) 2D animated tiles in Fig. 2). The
local dynamics problem is solved by the iterative border elabora-
tion to minimize the overlapping border error ζ ∗r in areas given by
approximately animated tiles. The optimal shape for the primary
tile is computed by the back-propagation dynamic-programming-
like rules which minimize both spatial (Ψh+

r ,Ψv+
r ) and temporal

(Ψh∗
r ,Ψv∗

r ) cut cost:

ψ
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ψ
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}
,

ψ
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ψ
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}
,

Ψ
h+
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h+
r +min

{
ψ

h∗
r−[c,1,•,0], . . . ,ψ

h∗
r+[c,−1,•,0]

}
,

Ψ
v+
r = ψ

v+
r +min

{
ψ

v∗
r−[1,c,•,0], . . . ,ψ

v∗
r+[−1,c,•,0]

}
.

The parameter c is derived by the average of the optical flow from
the actual frame to the next frame plus local optical flow in a given
patch (it usually creates large areas inside patch to handle small
periodic motion like leaves fluttering). Large optical flow values
increase this parameter value, which allows greater flexibility and
possibly also significantly larger tile border modifications. This al-
lows adaptation for scenes with higher movement dynamics.

This scheme allows the non-greedy-computation of the double (spa-
tially) toroid-shaped patch in the whole 4D textural space, what is
advantageous in cases where there are several distinct dynamic tex-
tures moving in spatial directions. In this case the back-propagation
is used to find parts inconvenient of the texture (i.e., parts of the dy-
namic texture with not sufficiently long patches). It can also over-
ride the problems with errors or textural artifacts.

Figure 5: The example of combining two very different types of
textures (left - river and shrub, right - different color tone of back-
ground and focused objects.

These restricted search areas extremely speed up the computation
time needed to find the optimal tile shape in comparison to the
whole textural multispectral space search. These areas are simulta-
neously beneficial in avoiding some typical DT modeling problems
such as artifacts introduced by extremely varying speed or problems
with highly dynamic textures (e.g., fire or water) or mix of dynamic
textures. In these areas optimal fitting planes can be found. In the
fitting step the overlap error is computed only from actual spatial
data:

Ψ
h+
r = ψ

h+
r +min

{
ψ

h+
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}
,
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v+
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{
ψ

v+
r−[1,c,•,0], . . . ,ψ

v+
r+[−1,c,•,0]

}
.

The major advantage of our approach is the complete separation
between the analytical and the synthesis steps. Once patches are
found, the output can be synthesize on-the-flow simply by copying
toroid-shaped data tiles with the corresponding offsets. These tiles
are stored in a small tile database which is entirely unrelated to
any synthesis application, so the analysis and synthesis steps are
completely separated.

2.2 Triple Toroid-Shaped Tile

A temporal cut which allows seamless tile repetition in the time
dimension can be done by the graph-cut algorithm [Kwatra et al.
2003] or by a frame-to-frame loop [Schödl et al. 2000]. Our al-
gorithm starts by finding the most similar sets of o frames, which
is the most time consuming part of our approach (hence the nearly
all-to-all distances are computed). For finding similar frames, we
adopt the similarity matrix proposed by Schödl [Schödl et al. 2000].
The minimized error can be chosen as the pixel-to-pixel difference
of frames or by some other metric [Kwatra et al. 2005] with addi-
tion of local optical flow like fourth part of RGB spectral dimen-
sion. Since the most similar sets of frames are found, our approach
creates transition pixel per pixel or by one consistent part of tex-
ture to other given by type of optical flow in the texture (for details
see [Haindl and Richtr 2013]).

3 Dynamic Texture Editing

Our approach allows to edit DT in several ways. The system of
toroidal samples allows to apply the textural operators to tone col-
ors, change dynamics or differs texture itself without possibility to
affect the homogeneity of the whole DT. For example to change
the dynamics of one object in the DT it usually requires area seg-
mentation (which must be consistent in all frames), detection of an
object and changing its dynamics. Our approach allows to skip the
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Table 1: Measured textures (left column), enlarged cutouts in tem-
poral and horizontal dimension (middle), and the enlargement in all
three dimensions, respectively.

Original X,T enlarged X,Y,T enlarged

segmentation step, since the texture is divided into logically consis-
tent patches (given by spatial similarity and similar dynamics) from
previous analysis steps.

Elementary, but not trivial type of texture editing is to synthesize
texture consisting of multiple input textures (Fig. 5). The resulting
texture is therefore a mix of textures, which can vary in two of
the three basic properties of DT - the texture itself (this includes
changes in lighting, but also the other conditions - detail, different
viewing angle, etc.) and local dynamics (intensity and direction of
wind, rain, etc.). It is obvious that the maximal number of possibly
synthesized textures is:

(Nin tex ∗Np per tex)
(d w tex

w patch e+1)∗(d h tex
h patch e+1) , (2)

if we assume a constant distribution of patches in input textures.
Nin tex is number of input textures, Np per tex is average numbers
of patches per input texture. Similarly, w tex and h tex are verti-
cal and horizontal size of the synthesized texture respectively and
w patch and h patch are horizontal and vertical size of patches,
respectively. More generally and because we often use different
number of patches in every texture (to ensure better visual appear-
ance of synthesized textures) the ( 2) can be simplified to:

(Npatches)
(d w tex

w patch e+1)∗(d h tex
h patch e+1) , (3)

where the first product in 2 becomes to Npatches as the number of
all patches found by the analytical part of our algorithm. The ba-
sic synthesis of the mix of DTs consist just from finding the same
triple toroid-shaped tiles or - more accurately - by finding one (or
more) optimal triple toroid-shaped tile in one primary DT and find-
ing the minimal cost of placing this shape to other textures by find-
ing optimal time-spatial shift of the optimal shape. If there are more
textures the computational time can by reduced by using a texture
pyramid, testing only local optical flow, or testing global optical
flow first (alternatively in the backward order).

Figure 6: Illustration of the direct mix of DTs with color toning and
two synthesized textures with different color tone (left). Examples
of synthesized results without color toning and with color toning
(right).

3.1 Colortone

Using several input textures can create the problem with slightly
different color tone or illumination of particular input DTs. This
problem can be overcome, i.e., by tone mapping (see Fig. 7). The
color tone of patches can be fitted to the color tone of the selected
input texture, or a consensus of all textures. More advanced al-
gorithms and approached can be used for this problem [Tian et al.
2002]. We used very simple but satisfying approach - fitting av-
erage R,G,B or H, S, L/V values of one texture to another by per
pixel multiplication. This simple approach creates good results in
the most of cases (see Fig. 6) of synthesized DTs. Optimal shape is
computed in the primary texture and found by spatio-temporal shift
in the secondary texture. HSV and L parameters (or RGB) are ex-
tracted from all input textures. In the synthesis step the color tone
of textures are fitted (per pixel) to one input texture to create simi-
lar color appearance. The number of possibly synthesized textures
then grows to:

N∗in tex ∗ (Npatches)
(d w tex

w patch e+1)∗(d h tex
h patch e+1) , (4)

where N∗in tex is the number of input textures (color tones) to which
the synthesized result can be mapped (plus possibly consensus of
all/subset of textures). In this automatic approach we assume that
the input DTs are selected manually and that they are visually sim-
ilar and do not differ significantly in color (i.e. grass and clouds).

3.2 Mix of Dynamic Textures

Our triple toroid-shaped approach can handle the mix of DT (see
Fig. 5 and previous section) by random patches placing. Sometimes
DTs vary in dynamics or appearance and patches that satisfy the
similarity can not be found. In these cases we can use border type
of input texture. We assume the existence of the transition (border)
between types of DT but also the lack of one (or both) texture itself
(see Fig. 7). In this approach the optimal shape is computed in the
primary texture and found by spatio-temporal shift in the secondary
textures with different type of DT. The random DT arrangement is
generated by iterative growing of DT types from two or more arbi-
trary coordinates. Patches that can’t be filled are computed in the
second step. For every empty location the best-fit patch are found
in the given border textures (marked by violet) by minimizing error
cost to each already (even another border patch) completed adjacent
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Figure 7: Illustration of the mix of DTs with border patches. Three
synthesized textures with different DTs are shown (the color tone
of textures change are optional).

patches found before. One (by the types of DT) of four/five (by the
exact adjacent patch data) patches are found). Although, such type
of the source data is difficult to obtain, it is visually sufficient to
have even a small data sample. The dominant component that de-
termines the quality of the appearance of the synthesized result tend
to be both major pure DTs.

For each area labeled as a border (labeled ’??’ in Fig 6, right) the
best fitting patch from border texture is found by minimizing the
error between this sample itself and each already completed adja-
cent sample (the one patch for every location or one patch for every
type of surroundings DT). Although, the second analytical phase
is added, the analytical and synthesis step are still separated. The
border patches can be found for each location or every type of loca-
tion (i.e., B type texture on left, A type texture or right and border
texture itself up and down) which drastically reduce computational
time.

In this different approach, the number of possibly synthesized tex-
tures by one type is due to non rectangular shape at one DT type
area

Ni = N∗in tex ∗ (Npatches)
n patch , (5)

where n patch is number of (even incomplete) places for patches
of type i type of DT.

DTcount

∏
i=1

Ni +Nborder , (6)

where DTcount is count of DT type in the synthesized result and
Nborder is total number of possible combinations of textures border
which is typically small (one or two patches for one border patch
type).

The detection of border texture (see Fig. 7) is similar to finding lo-
cation of the optimal triple toroid-shaped tile but it needs additional
computation. In some cases the minimizing function ( 1) is not sat-
isfying (imagine two textures which differs in color but are similar
in dynamics and structure i.e.textures of leaves or grass with very
different color. The borders of leaves are always dark, so by mini-
mizing cut lines error the false result can be found). We add color

Figure 8: A scheme of a border texture with 8-neighborhood (right).
Border texture patches are computed top-down and new border
patches are computed from surroundings patches.

pyramid of the whole overlap areas (1, ...,h)×(1, ...,M). Many dif-
ferent textural features (like LBP, Haralick and many others) can be
used in the similar way.

Finding of border patches can be done either online or offline. First
the sufficient numbers of patches for all DT type are found (see la-
bels A1, A2 and B1, B2, B3 in Fig. 7 right) and then the borders
textures are applied. In offline version border patch for all pos-
sible combination of input DT are found (see Fig. 8 for example
of 8-neighborhood border patches). The border patch are fitted to
the previously found patches by minimizing (1) and the temporal
cut cost (for details see [Haindl and Richtr 2013]) with the set of
proper input textures. In the online version a new border patch (see
Fig. 8, left) is found for every location in arbitrary order from sur-
rounding patches (even border texture patches found by previous
step). Many alternatives of founding the patches are possible, e.g.,
weighted by number of already know neighborhood patches. This
allows greater variability of results, but violates the separation of
analysis and synthesis. If the assumption of temporal homogene-
ity is used, we can presume that temporal optimal overlap can by
found in analysis part as preprocessing for border texture (as well
for another input textures) and space borders can be found later, in
synthesis. If the complete temporal cut is found, the spatial cut and
fitting can be found in tens of seconds.

3.3 Temporal Dimension Editing

The DTs mixing and editing can be done directly in temporal di-
mension too. The input textures can be manually labeled or divided
by global and local dynamics (e.g., strenght of wind, rain density,
etc.). The patches are found and divided to smaller patches by this
temporal labels while preserving the toroidal transition (e.g., NO
RAIN⇒ BEGINS TO RAIN as can be seen in Fig. 9, left) similar to a
Markov chain or FSM. This temporal editing and mixing technique
can produce high visual quality results, but it is very demanding on
the quality of input data.

In order to avoid the typical synthesizing problem - periodicity
(given by the small amount of input data) - we use the spatial edit-
ing methods: multiple patches, several input DTs, mix of DTs. Be-
sides editing of the spatial dimension to an increase variability, we
use also temporal methods. The same samples only slightly time-
shifted, but with different dynamics, disrupt the overall impression
of their periodicity. Simple random time shift of one part of DT
can cause many inconsistencies in synthesized result. The opti-
mal approach would be a segmentation (consistent in all frames),
detection of an object and changing only its dynamics. Our ap-
proach allows to skip the segmentation step, since the texture is
divided into logically consistent patches (given by spatial similar-
ity and similar dynamics) from previous analysis steps and edit the
patches separately, but in the border of patch, we change the time
factor gradually. We first generate only time indices of pixels and
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Figure 9: Synthesized texture with three identical, time shifted
patches, detail are zoomed. The texture is consistent in spatial and
temporal dimensions, but vary in local dynamics (left). Example of
one DT labeling with probabilistic state changing rules (right).

then the convolution with the Gaussian kernel is done in order to
soften the time change.

Time shift of patches are applied with maximal change to base time
by neighbor patch (Fig. 4, right) to satisfy consistency of dynamics
of the texture. Of course the temporal shift of patches must satisfy
global dynamic condition (which is usually satisfied).

4 Results

The proposed method was extensively tested on DTs from the Dyn-
Tex [Peteri et al. 2010] database (See some results in Tab. 1). The
all used DTs were color with resolution up to HD 720 and varying
length (from seconds to minutes). The analysis usually takes from
minutes to hours and it strongly depends on the length and the self-
similarity of a texture (due to the branch and bound method). The
synthesis time is negligible and it is only limited by memory op-
eration and the video storing/coding operations. Our approach can
work with various DTs types but it has also some limits. Strong per-
spective distortions, non periodical color gradient or chaotic local
dynamics might degrade the resulting DT quality.

Time dimension edit We have demonstrated the ability to edit
the time dimension of the texture to increase its variability and to
suppress its repetition impression (see Fig. 9). The time variabil-
ity can be enhanced by using more time jumps in one type of DT.
The output texture can use a graph-like structure for labeled time
sections editing.

Video editing (Inpainting) Since our solution is able to create
arbitrarily large textures from a relatively small sample of data it
can be used to repair corrupted sections of a DT (see Fig. 10). Any
synthesized texture can be made artifact free simply by ignoring
patches with these artifacts. This can be used for example in editing
video containing a DT. The DTs area in a texture is simply replaced
by the (different or the same) synthesized DTs or only minimal suf-
ficient number of patches are used to cover the unwanted DT part.

Mix of textures We have demonstrated the capability of cre-
ating the mix of DTs from several input DTs. The similarity in
the structure of DTs allows usage of the same patch shape and the
similarity in the DT type guarantees similar dynamics. Small dif-
ferences in DTs appearance can be handled by the color tones map-
ping, which can also be used to intensify the variability of the output
(e.g., adding a faint shadow, slightly different flower color, etc.). If
the DT types varies strongly in its structure, the border texture (if
exists) can be used to connect both DT types in the synthesized re-
sults. Tab. 2 shows examples of the DTs mix. The small pictures
are input DTs, the large image is the synthesized result. GRASS2
and GRASS3 show random mixing from two and three input DTs,
respectively. The SHRUBS and FENCE show two DT types with

Figure 10: Example of simple video editing - the area with ’dam-
aged’ grass (top, left) is repaired by filling whole texture by another
texture.

very different structures and/or color. TREE IN THE RAIN show a
mix of DTs with exactly the same scheme on Fig. 8. All input tex-
tures are in the HD 720 format, uncompressed and from our own
DT database.

Mix of textures in input texture Our method can easily handle
input textures containing several DTs types. In these cases, our
algorithm selects only one type of DT. This is caused by the toroidal
property, which is usually fulfilled only from patches of the same
type of DT.

5 Summary

We have proposed a new approach for the fast 4D dynamic multi-
spectral textures synthesis and editing based on the toroid-shaped
tiles. The synthesized examples illustrate good performance of our
approach for many types of DTs. Our approach can edit temporal
and spatial properties of DT and can easily create a mix of sev-
eral dynamic textures. We have validated our solution on several
DT modeling problems. The method is simple. It can generate in-
finitely long textures in all dimension. Its most important advantage
is its complete separation of the analytical and synthesis parts, thus
the synthesis can be performed effectively in real-time.
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