
CLASSIFICATION OF BREAST DENSITY IN X-RAY MAMMOGRAPHY
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ABSTRACT

Breast density is an important cue to detect both the pres-
ence of suspicious cancerous masses and to predict future
possibility for cancer development. A fast breast density
classification method is presented and successfully tested on
two state-of-the-art mammogram databases. The X-ray dig-
ital mammogram tissue texture is locally represented by the
two-dimensional adaptive causal autoregressive spatial model
and its parameters are used as the classification features.

Index Terms— Mammography, ACR, BI-RADS, MRF,
breast density

1. INTRODUCTION

Breast cancer is the most common type of cancer among
middle-aged women in most developed countries [1, 2]. Al-
most one woman in ten grows a breast cancer in her life.
To lower the mortality rate, women in the developed coun-
tries usually regularly attend a preventive mammography
screening. Although the X-ray mammography is sensitive
in screening and diagnosis of breast cancer, it suffers from a
high false-positive (FP) rate [3]. Mammographic breast den-
sity is very important but one of the most undervalued and
underused risk factors in studies investigating breast cancer
occurrence. The risk of breast cancer is four to six times
higher for women with dense breasts [4]. Breast density
may also decrease the sensitivity by up to 40 % [4], obscure
tumors, or mimic breast cancer, and, thus, the accuracy of
mammography. An increase in breast density can also be
used to characterize the effects of hormone replacement ther-
apy. Thus many papers [5, 6, 7, 8, 9, 10, 11] consider auto-
matic breast density classification using different approaches
in feature extraction, used classifiers, and tested databases.

1.1. ACR BI-RADS

American College of Radiology (ACR) Breast Imaging Re-
porting and Data System (BI-RADS) [12] classifies breast
density into the following 4 groups:
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BI-RADS I The breast is almost entirely fat, fibrous and
glandular tissue makes up less than 25% of the breast.

BI-RADS II There are scattered fibroglandular densities. Fi-
brous and glandular tissue makes up from 25 to 50% of
the breast.

BI-RADS III The breast tissue is heterogeneously dense and
the breast has more areas of fibrous and glandular tissue
(from 51 to 75%) that are found throughout the breast.
This can make it hard to see small masses (cysts or tu-
mors).

BI-RADS IV The breast tissue is extremely dense. The
breast is made up of more than 75% fibrous and glan-
dular tissue. This can lead to missing some cancers.

Fig. 1. Example mammograms with different density values
- left to right consequently contain BI-RADS I, II, III and IV.
Images from the INbreast database

2. MRF TEXTURE MODEL

The mammography tissue textures in the form of mono-
spectral images are locally modeled by their dedicated di-
rectional Gaussian noise-driven autoregressive random field
two-dimensional model (2DCAR), because this model has
good modeling performance, is very fast and allows ana-
lytical treatment [13, 14]. The 2DCAR random field is a
Markovian family of random variables with a joint proba-
bility density on the set of all possible realizations Y of the
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where α is a unit vector, tr() is a trace of the corresponding
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Here, r = [r1, r2, φ] is spatial multiindex denoting the his-
tory of movements on the rectangular lattice I , where r1, r2

are row and column indices, and the possible model devel-
opment directions are φ ∈ {0◦, 45◦, 90◦, 135◦, 180◦, 225◦,
270◦, 315◦}. The 2DCAR model can be expressed as a sta-
tionary causal uncorrelated noise-driven 2D autoregressive
process:

Yr = γφXr + er , (2)

where γφ = [a1, . . . , aη] is the parameter vector, Xr is a
support vector of [Yr− 1s, . . . , Yr− ηs]

T where is ∈ Icr . Icr
denotes a causal (or alternatively unilateral) contextual neigh-
borhood (i.e., all the support pixels were previously visited
and thus their values are known), and η = cardinality(Icr).
Furthermore, er denotes white Gaussian noise with zero
mean and a constant but unknown variance σ2.

The method uses a locally adaptive version of this 2DCAR
model [13], where its recursive statistics are modified by an
exponential forgetting factor, i.e., a constant smaller than 1
which is used to weight the older data.
Parameter estimation of the 2DCAR model using either the
maximum likelihood, or the least square or Bayesian meth-
ods can be found analytically. The Bayesian parameter esti-
mates of the 2DCAR model using the normal-gamma param-
eter prior are:

γ̂Tr−1 = V −1
x(r−1)Vxy(r−1) , (3)

V(r−1) = Ṽ(r−1) + V(0) ,

β(r) = β(0) + r − 1 ,

and β(0) is an initialization constant and sub-matrices in
V(0) are from the parameter prior. The parameter estimate
(3) can also be evaluated recursively ([13]).

3. CLASSIFICATION SCHEME

For breast density classification we use supervised classifica-
tion. In both the training and classification steps the breast
area has to be first identified in the image. With fully digital
databases (INbreast), this step is very simple – breast pixels
are usually only those with value greater than 0.

Fig. 2. Classifier training

Digitised databases commonly contain lots of noise and
also mostly have some labels scanned in the mammograms.
To extract the breast area we first apply a median filter on the
image to reduce noise and then use adaptive thresholding to
extract non-background areas. The breast is then selected as
the biggest non-background area. For performance efficiency
we also downscale the images to 400 px height keeping the
aspect ratio.

3.1. Classifier training

The classifier is trained as indicated in Fig. 2. After the breast
area has been segmented from the image, we extract the fea-
ture vectors θ for each pixel θ = {γφ1

, γφ2
, ...} . The model

directions used are φi ∈ {90◦, 135◦, 180◦, 315◦}, for which
we observed the best results. We use the maximum-likelihood
classifier based on the multivariate Gaussian distribution:

f(X|C) =
1√

(2π)k|ΣC |
e(−

1
2 (θ−µC)TΣC
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whereC is the BI-RADS density value of the particular mam-
mogram. µC is the mean value of class C and ΣC is the cor-
responding covariance matrix.

This way we estimate the feature distribution of each BI-
RADS class. We presume that even though the ACR BI-
RADS density description specifies the different classes based
on the ratio of fatty and dense areas in the breast, our tex-
ture model is able to distinguish between fatty, heterogeneous,
mostly dense and dense textures. Thus we can train the tex-
ture models as if the heterogeneity is a kind of texture within
the breast.

3.1.1. Feature space visualisation

To confirm the correctness of our chosen texture model for the
application of breast texture modeling, we visualised the fea-
ture space, distinguishing the different density types with the
colour of the pixels. We extracted the feature values for all the
pixels of different breasts and applied the Karhunen-Loeve



Fig. 3. Features from INbreast data and class combinations
(rightwards, top to bottom) 1x4, 1x2, 1x3, 2x3, 2x4, 3x4

transform, taking values of the 2 most significant components
as the x and y coordinates of the features to be displayed.

We can see in Fig. 3 that our model distinguishes the
different density textures fairly well with best results being
between the most distant classes. This is indeed logical since
closer classes have more similar textures.

3.2. Breast density classification

Fig. 4. Classification

We classify the mammograms into the different density
categories as shown in Fig. 4. We first extract the feature vec-
tors for each pixel as described in Sec. 3.1 and then for each
pixel compute the likelihood for each density class (4). The

Table 1. INbreast database classification results for all
double-class combinations and the complete four BI-RADS
tissue classes (rows ∼ references, columns ∼ interpretation).

1x4 1 2 3 4 Sensitivity
1 132 0 0 4 97%
2 88 0 0 59 0.0%
3 23 0 0 76 0.0%
4 2 0 0 26 92.8%

Precision 98.5% 86.7%
1x3, 1 128 0 8 0 94.1%

2 81 0 66 0 0.0%
3 15 0 84 0 84.8%
4 4 0 24 0 0.0%

Precision 88.3% 91.3%
1x2, 1 80 56 0 0 58.8%

2 20 127 0 0 86.4%
3 7 92 0 0 0.0%
4 0 28 0 0 0.0%

Precision 80% 69.4%
2x4, 1 0 133 0 3 0.0%

2 0 137 0 10 93.2%
3 0 60 0 39 0.0%
4 0 4 0 24 85.7%

Precision 97.2% 70.6%
2x3, 1 0 132 4 0 0.0%

2 0 122 25 0 83.0 %
3 0 33 66 0 66.7%
4 0 6 22 0 0.0%

Precision 78.7% 72.5%
3x4, 1 0 0 96 40 0.0%

2 0 0 118 29 0.0 %
3 0 0 89 10 89.9%
4 0 0 14 14 50.0%

Precision 86.4% 58.3%
1x2x3x4, 1 95 23 18 0 69.9%

2 33 60 49 5 40.8%
3 6 19 58 16 58.6%
4 0 7 3 18 64.3%

Precision 70.9% 55% 45.3% 46.2%

pixel is then assigned the class with highest likelihood. We
can see in the example in Fig. 5 that the different texture types
are reasonably assigned with the dense area clearly marked in
red colour. The whole breast is then classified according to
the pixel majority class.

4. MAMMOGRAM DATABASES

The INbreast database [15] is a mammographic database,
with images acquired at a Breast Centre, located in a Uni-
versity Hospital (Hospital de São João, Breast Centre, Porto,



Table 2. MIAS database, all dichotomous and one clas-
sification result for all three (fatty, fatty-glandular, dense-
glandular) tissue classes (rows ∼ references, columns ∼ in-
terpretation).

1x3 1 2 3 Sensitivity
1 92 0 12 88.5%
2 33 0 70 0.0 %
3 5 0 106 95.5%

Precision 94.8% 89.8%
1x2, 1 72 32 0 69.2%

2 10 93 0 90.3 %
3 2 109 0 0.0%

Precision 87.8% 74.4%
2x3, 1 0 104 0 0.0%

2 0 95 8 92.2 %
3 0 57 54 48.6%

Precision 62.5% 87.1%
1x2x3, 1 89 8 7 85.6%

2 20 57 26 55.3 %
3 8 34 69 62.2%

Precision 76.1% 57.6% 67.6%

Portugal). INbreast has a total of 115 cases (410 - 8Mpix,
12bit gray-scale DICOM images) of which 90 cases are from
women with both breasts (4 images per case) and 25 cases
are from mastectomy patients (2 images per case).

The Mammographic Image Analysis Society Digital
Mammogram Database (MIAS) [16] is a database with 322
medio-lateral oblique (MLO) 1024 × 1024 images digitized
to 50 microns per pixel from the original X-ray film-screen
mammograms. MIAS uses its own density description -
fatty (∼ BI-RADS I), fatty-glandular (∼ BI-RADS II-III),
dense-glandular (∼ BI-RADS III-IV).

5. RESULTS

The comparative experimental results were tested on the
MIAS database [16] and on the state-of-the-art public digital
mammogram INbreast database [15]. We tested the classifi-
cation of all the possible pairs of classes to see the limits of
our method. We also tested the classification of all the classes
together. For each tested case we selected 5 random mammo-
grams for each class as training data and classified the rest of
the database (excluding training images). The results can be
seen in Tabs. 1, 2. Value at i-th row and j-th column means
the number of times a mammogram of class i was classified
as class j. The top-left cell of each table shows which classes
have been classified against each other.

The results for the MIAS database seem a little more pre-
cise than for the INbreast database. This can be caused by the
fact that the MIAS database doesn’t provide the density infor-
mation according to the ACR BI-RADS standard but rather

Fig. 5. Example of pixel classification into different density
classes

provides its own method with 3 classes instead of 4. There
are no alternative tissue classification results for the INbreast
database, so we compare our results with the state-of-the-art
methods applied to the obsolete MIAS data.

Muhimmah and Zwiggelaar [8] obtained slightly better
results (〈63; 91〉%) sensitivity and precision (〈74; 80〉%) for
their best multiresolution histogram features-based published
method and (〈57; 83〉%) sensitivity and precision (〈54; 75〉%)
for the single resolution variant on the MIAS database. Both
methods use the Directed Acyclic Graph - Support Vector Ma-
chine (DAG-SVM) classifier. However, the multiresolution
method uses fifty times more features than our method and the
single resolution method is worse than our presented single
resolution method. Mustra et al. [11] has the best published
results - (〈75; 87〉%) sensitivity and precision (〈74; 91〉%) on
MIAS to our knowledge. They need fifteen times more fea-
tures than we do, use slow k-NN classifier, and while we learn
the classifier on just five images per class, they use the whole
database of 321 images (leave-one-out).

6. CONCLUSION

We have presented a novel method for breast density classifi-
cation in X-ray mammography. The method was tested on the
widely known, yet a little obsolete, MIAS database and the
state-of-the art INbreast database, and our preliminary results
are promising and competitive. Furthermore, the intermedi-
ate results of our method can be used for preliminary breast
tissue type classification. In the future, we plan to extend the
classification part with a more complex classifier than a max-
likelihood multivariate Gaussian, incorporate a sophisticated
preprocessing step and use the multiresolution approach.
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