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Abstract  

Two novel criteria capable of assessing spectral similarity and modelling plausibility of 
synthetic Bidirectional Texture Functions (BTF),  static colours textures are presented. The 
criteria credibly compare their spectral contents. Their primary aim is to support optimal 
modelling algorithms and  measurement setup development by comparing the originally 
measured target texture with its synthetic simulations. The suggested spectral similarity 
criteria are extensively tested on measured natural BTF textures and an artificial distinctly 
coloured texture, and favourably compared with several alternative spectral similarity criteria.  
The performance quality of the proposed criteria is demonstrated on a long series of specially 
designed monotonically spectrally degrading experiments.  
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1 Introduction 

An automatic texture, or more generally image, quality assessment, and mutual-similarity 
evaluation of two or more of them, presents a very important but still unsolved complex 
problem. Recent validation of the state-of-the-art image and texture fidelity criteria (Haindl 
and Kudělka, 2014) on the web-based benchmark (http://tfa.utia.cas.cz) has demonstrated 
that none of these published criteria can be used for the texture quality validation at all. There 
is still a pressing need for a reliable criterion for such a validation, e.g., to support BTF 
texture model development (i.e., a comparison of the original measured texture with a 
synthesized or reconstructed one, evaluation of   optimal parameter settings for such a model) 
or texture database retrieval.  

The Bidirectional Texture Function (BTF) (Haindl and Filip, 2012) is a 7-dimensional function 
describing surface texture appearance variations due to varying illumination and viewing 
angles. Because the appearance of real materials dramatically changes with illumination and 
viewing variations, any reliable representation of material visual properties requires capturing 
of its reflectance in as wide range of light and camera position combinations as possible. 
Thus this function is typically represented by thousands of images per material sample, each 
taken for a specific combination of the illumination and viewing condition. The primary 
purpose of any synthetic BTF texture approach is to reproduce and enlarge a given measured 
texture image so that ideally both natural and synthetic texture will be visually indiscernible 
and simultaneously to achieve a significant compression capability. 

The similarity metrics also play an important role in efficient content-based image retrieval 
(e.g., from digital libraries, or multimedia databases). Surprisingly, many already developed 
approaches are limited to mono-spectral images, which is clearly a major disadvantage as 
colour is arguably the most significant visual feature. 

The psycho-physical evaluations, i.e., quality assessments performed by humans, currently 
represent the only trustworthy alternative. Methods of this type require time-demanding 
experiment design setup, strictly controlled laboratory conditions, and representative sets of 
human testers, i.e., sufficient numbers of individuals, ideally from the general public, naive 
with respect to the purpose and design of the experiment. Such experiments are thus 
extremely impractical, expensive, generally demanding, and hence non-transferable into daily 
routine practice, operable on demand, and ideally in real time. For hyperspectral textures, 
such experiments are even impossible because not all spectra can be visualized 
simultaneously. 
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In this article we restrict our attention to only the spectral (e.g., colour) composition 
comparison, which represents only a partial answer to the image quality assessment, and 
propose a novel solution to this problem. Two introduced spectral criteria together with their 
previously published alternatives are extensively tested and mutually compared using our 
suggested test series. 

The rest of the paper is organized as follows: Section 2 briefly presents existing possibilities 
to compare the image colour composition. Section 3 explains in detail our own new criteria, 
Section 4 describes the performed criteria validation experiments and shows the achieved 
results. Section 5 summarizes the paper with a discussion and compares our proposed 
criteria with their existing alternatives. 

2 Alternative spectral measures 

In this section we first briefly survey some of the existing criteria capable of comparing image 
colour compositions. The straightforward option for the image colour content comparison is to 
use a three-dimensional histogram, which approximates the image colour distribution. Let us 
denote by  aϱ   and  bϱ   the  ϱ-th bin of the three-dimensional histogram of the images  A  and  
B , where A is the  template visual texture or image and similarly B  is the texture or image to 
be compared, and Yr

A denotes the r-th multi-spectral pixel from the experimental image  A  
where  r = [ r 1 , r 2 , r3 ]  is a multi-index with row, column, and spectral components, 
respectively. The range of the histogram multi-index   ϱ = [ i,j,k]     depends on a colour space  
C  in which the image is represented (for example in the standard 24-bit RGB colour space, 
the range of all three components of the multi-index is an integer from < 0; 255>). 

The intuitive way is to compute the three-dimensional histograms   difference: 

 (1) 

which is a special case of the Minkowski distance (city block distance, also called Manhattan 
distance): 

 

Plausible alternative values of the index q used in practice include the Euclidean distance (q = 
2) or the Chebyshev distance (maximum / chessboard distance, q = 1) 

 

where  a i ; a j ; ak represents 1st, 2nd and 3rd components of vector aϱ  and similarly for b i ; b j ; 
bk. For 0 < q < 1 (fractional dissimilarity) the Minkowski distance is not a metric because it 
violates the triangle inequality (Howarth and Ruger, 2005).  

Several other approaches for three-dimensional histogram comparison have been suggested, 
such as the histogram intersection (Swain and Ballard, 1991): 

 (2) 

the squared chord (Kokare et al., 2003): 
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 (3) 

and the Canberra metric (Kokare et al., 2003): 

 (4) 

where  

Another measure, based on χ2 statistic was suggested in (Zhang and Lu, 2003): 

 (5) 

The information theoretic measures can be also considered for evaluating the colour 
distribution differences. One possible option is a symmetric modification of the Kullback-
Leibler divergence – a variant of the empirical Jeffrey divergence: 

 (6) 

where  

The Jeffrey divergence is numerically stable, symmetric and robust with respect to noise and 
the size of histogram bins (Puzicha et al., 1997). 

3 Proposed spectral-similarity criteria 

The proposed spectral-similarity criteria allow the comparison of the spectral contents 
between two textures or arbitrary images.  

A possible measure is to use a modified structural similarity metric (SSIM) (Wang et al., 2004) 
developed for texture comparison, as the texture-spectral-composition comparison might be 
considered a very special case of this task. The mono-spectral structural similarity metric 
(SSIM), which compares local statistics in corresponding sliding windows in two images in 
either the spatial or wavelet domain. This approach consists of three terms that compute and 
compare luminance, contrast and structure of the images. We have generalized this mono-
spectral criterion to multispectral textures and removed the structure term, because in the 
case of the spectral quality comparison the structure term is irrelevant. It results in a 
redefined reduced rSSIM: 

 (7) 

where # r3  is the spectral index cardinality, i.e., the number of spectral components, A r3  is the 
mean of space  Ar3   and  Ar3  is the standard deviation of space Ar3; similarly for  Br3  and  
Br3 . 

The second criterion we propose is  the symmetric mean exhaustive minimum distance: 

 (8) 
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 (9) 

where  Yr1, r2 , •
A  represents the multi-spectral pixel at location (r 1 , r2)  in the image  A, • 

denotes all the corresponding spectral indices, and similarly for   Y ŕ1 , ŕ2 , •
B.  Further,   ρ is an 

arbitrary vector metric (we used namely Manhattan, Euclidean and maximum metrics), N  is 
the set of not yet used (during the counting, explained below)  spatial  indices of the image     
B  pixels,   M = min {#{A}, #{B}},  #{A}  is the number of multi-spectral pixels in A,  and 
similarly for #{B}. We define  min {Ø} = 0. 

The term  ν(A, B)  is evaluated using the  raster scanning.  The algorithm scans the pixels in 
image  A, from the left top, and searches for the pixel index in set  N (which contains all 
spatial indices in the image  B  at the beginning of the process) for which the corresponding 
pixel is the closest one, in the sense of the used metric ρ. When such a pixel is found, the 
distance between this pixel and the scanned pixel from the image  A, measured by ρ, is added 
to the sum and the pixel index of   (ŕ1 , ŕ2)   is removed from the set  N. The algorithm 
proceeds to the right bottom of the image  A  and stops when either it reaches that corner of 
the image  A  or  N  becomes an empty set. The term  ν (B, A)  is computed similarly. Either  
ν( A, B )   or ν( B, A )   can be non-symmetric while  ζ( A, B )  is always symmetric. 

Modifications of the proposed criterion (9) restricted to colour textures, which take into 
account colour differences just noticeable by colour psychometric methods in the CIE Lab 
space are easily possible.  

Notice that the proposed spectral-similarity criterion  ζ  (8) is applicable to any number of 
spectral bands, not only for the usual three spectral bands of the standard colour images. 

4 Comparison and Results 

Both suggested spectral criteria together with their previously published alternatives have 
been extensively tested on the set of ten controllable degradation experiments. The main goal 
of the performed experiments is to investigate how the individual spectral similarity criteria are 
affected by the spectral distribution comparing the texture with its modified versions. 

 

Figure 1 – 2D histograms comparison of our synthetic test colour2 texture (left) and 
several measured colour textures from the ALOT (Burghouts and Geusebroek, 2009) 

database 

All evaluated criteria were tested on BTF texture space measurements (Figure 2 - wood01) 
(Muller et al., 2004) and    colour   textures (colour2, wood). The colour texture (256 x 256) has 
11 375 distinct colours and it was deliberately manually created to have a  2D histogram 
(Figure 1 left) with numerous local extrema, which is expected to be demanding  for most 
tested criteria. This assumption is obviously reflected in the results and confirms the quality of 
the proposed criteria. For the sake of comparison, the histograms of this image and several 
real measured textures are shown in Figure 1.  
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Figure 2 – One illustrative BTF wood01 sample from the 6561 measurements 

The BTF wood measurements (Figure 2) are measured in all combinations of 81 different 
spherical illuminations and viewing angles totalling 6561 measured textures. Obviously it is 
not possible to run all experiments and to verify spectral quality for all, possibly, infinite 
number (any combination of the continuous spherical illumination and viewing angles) of 
synthetic BTF space texture components. The measured BTF data (usually several thousand 
colour images per material) are analysed for their intrinsic dimensionality (Haindl and Filip, 
2012) and then subsequently approximated by a small number of BTF subspaces. The tested 
BTF wood01 measurement space is represented by twenty BTF subspace measurement 
clusters, which subsequently serve for building the BTF space’s mathematical model for this 
wooden material.  

4.1 Artificially degraded textural test series 

The spectral similarity criteria are tested on sequences of gradually degraded textures which 
are generated from the original test texture. This source texture is the first member  A1

X = A 
of each sequence, so that each subsequent member (except the original) of this sequence is 
generated from its predecessor in the sequence:   At

X = f (A t-1
X), t=1,…,100. Here  Yr,t

A  
denotes the r-th multi-spectral pixel from the experimental image   A t

X, X  is the 
corresponding experiment's label, and  r = [ r 1 , r 2 , r 3 ]  is a multi-index with row, column, and 
spectral components, respectively.  

We have created ten degraded textural series A - J. Series  A, B, D, I, J  are created by 
adding a constant either to one or all spectral channels in the RGB or CIE Lab colour spaces. 
In the C series the colour of each pixel is replaced with a colour which has the closest higher 
probability than the replaced pixel colour. The replacement is done with the candidate colour 
probability. E uses goniometric function based degradation. F adjusts each channel intensity 
to approach the average spectral intensity. G and H series use two modifications of a random 
pixel’s substitution. Detailed description of all these degradation schemes is beyond the 
scope of this article and will published elsewhere. 
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Figure 3 – Final degradations for the wood01 sample for all ten test series 

Figure 3 illustrates the effect of single experimental worsening using the last hundredth 
degraded texture in each test series starting from the original wood BTF measurement on 
Figure 2. It is possible to see that while some test series (A, C, D, F, I, J) preserve the original 
spatial arrangement, the others change both spatial and spectral information.  

 

Table 1 - The strict monotonicity violation percentage of single criteria for the colour2 
texture experimental sequences The worst performance in each experiment is 

highlighted in red. 

The tested criteria are applied to quantifying spectral differences between the template 
texture and the remaining textures in the degradation sequence. For this evaluation all 10 x 
100 degraded colour texture images per one tested colour or BTF space component texture 
are converted to the CIE L*a*b* colour space. As all those sequences are constructed so that 
monotone spectral composition change is guaranteed, a good criterion should be able to 
correctly follow this trend. The Table 1 presents the number of monotonicity violations of 
single   criteria in the A-J evaluated experiments. Similar results were achieved also on all 
other tested textures.  

The validation experiments show that it is possible to conduct spectral similarity checking 
using our criteria on any image from the synthetic BTF space, and this validation performance 
also holds for the remaining -- and possibly infinite -- number of synthetic images in the 
corresponding tested BTF space. Unlike many existing approaches, the criterion is not based 
on three-dimensional histograms, instead representing the estimate of the image spectral 
distribution, and requiring a sufficiently large data set, which is seldom available. Our criteria 
neither require the same size of the compared images, nor do they have any limit on the 
number of spectral bands. The proposed criterion  ζ  is the only one to rank flawlessly on all 
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deteriorated textures in all controlled degradation experiments. The sSSIM (7) criterion makes 
sometimes a limited number of errors (Table 1) but ranked always as the second best 
criterion. The presented criteria propose a reliable fully automatic alternative to psycho-
physical experiments, which are, moreover, extremely impractical due to their cost and strict 
demands on design setup, conditions control, human resources, and time. 

5 Conclusions  

We present two spectral criteria for comparing spectral similarity of the Bidirectional Texture 
Functions and colour images. This comparison represents a partial solution for assessing 
quality of the BTF and multi-spectral textures, as well as colour images. Although the criteria 
do not consider the spatial distribution of spectral information, they can assist in numerous 
texture-analytic or synthesis applications. The performance quality of the proposed criteria is 
demonstrated on a long series of specially designed monotonically spectrally degrading 
experiments, which also serve for the comparison with the existing alternative criteria. The 
proposed criterion ζ  is the only one to perform faultlessly on all of our extensive validation 
tests. The validation experiments show that it is possible to conduct spectral similarity 
checking using our criteria on any image from the synthetic BTF space, and this validation 
performance also holds for the remaining -- and possibly infinite -- number of synthetic 
images in the corresponding tested BTF space. The criteria can be used for evaluating image 
spectral similarity of any images or textures and thus supports the texture-model 
development. Unlike many existing approaches, the ζ criterion is not based on three-
dimensional histograms, instead representing the estimate of the image spectral distribution, 
and requiring a sufficiently large data set, which is seldom available. Our criteria neither 
require the same size of the compared images, nor do they have any limit on the number of 
spectral bands. The ζ  criterion is slightly more time-demanding than some alternative criteria. 

The presented criteria propose an automatic alternative to psycho-physical experiments, 
which are costly and impractical. 
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