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Abstract. This paper describes a simple novel compound random field model
capable of realistic modelling the most advanced recent representation of visual
properties of surface materials - the bidirectional texture function. The presented
compound random field model combines a non-parametric control random field
with local multispectral models for single regions and thus allows to avoid de-
manding iterative methods for both parameters estimation and the compound
random field synthesis. The local texture regions (not necessarily continuous) are
represented by an analytical bidirectional texture function model which consists
of single scale factors modeled by the three-dimensional moving average random
field model which can be analytically estimated as well as synthesized.
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1 Introduction

Convincing and physically correct virtual models require not only precise 3D shapes in
accord with the captured scene, but also object surfaces covered with genuine nature-
like surface material textures with physically correct reflectance to ensure realism in
virtual scenes. The primary purpose of any synthetic texture approach is to reproduce
and enlarge a given measured texture image so that ideally both natural and synthetic
texture will be visually indiscernible. However, the appearance of real materials dra-
matically changes with illumination and viewing variations. Thus, the only reliable rep-
resentation of material visual properties requires capturing of its reflectance in as wide
range of light and camera position combinations as possible. This is a principle of the re-
cent most advanced texture representation, the seven dimensional Bidirectional Texture
Function (BTF) [13]. Compound random field models consist of several sub-models
each having different characteristics along with an underlying structure model which
controls transitions between these sub models [19]. Compound Markov random field
models (CMRF) were successfully applied to image restoration [3, 5, 19, 21], segmen-
tation [24], or modeling [9, 16, 11, 17]. However, these models always require demand-
ing numerical solutions with all their well known drawbacks. The exceptional CMRF
[9] model allows analytical synthesis at the cost of a slightly compromised compression
rate.

We propose a compound moving average bidirectional texture function model BTF-
CMA model which combines a non-parametric and parametric analytically solvable



moving average (MA) random fields (RF) and thus we can avoid using some of time
consuming iterative Markov Chain Monte Carlo (MCMC) method for both BTF-CMA
model parameters estimation as well as BTF-CMA synthesis. Similarly to the previ-
ously mentioned CMRF methods, our presented model avoids range map estimation
which is required for most RF based BTF models ([15, 8, 12, 14, 18]). Beside texture
synthesis, texture editing is another useful application which has large potential for sig-
nificant speed-up and cost reduction in industrial virtual prototyping [16]. Although
some recent attempts have been made to automate this process, automatic integration
of user preferences still remains an open problem in the context of texture editing [16].
Proposed method present partial solution of this problem by combining estimated local
models from several different source textures or simply editing estimated local models
of the original texture.

2 Compound Random Field Texture Model

Let us denote a multiindex r =(r1,r2), r∈ I, where I is a discrete 2-dimensional rectan-
gular lattice and r1 is the row and r2 the column index, respectively. Xr ∈ {1,2, . . . ,K}
is a random variable with natural number value (a positive integer), Yr is multispectral
pixel at location r and Yr, j ∈ R is its j-th spectral plane component. Both random
fields (X ,Y ) are indexed on the same lattice I. Let us assume that each multispectral or
BTF observed texture Ỹ (composed of d spectral planes) can be modelled by a com-
pound random field model, where the principal random field X controls switching to
a regional local model Y =

⋃K
i=1

iY . Single K regional submodels iY are defined on
their corresponding lattice subsets iI, iI∩ jI = /0 ∀i 6= j and they are of the same RF
type. They differ only in their contextual support sets iIr and corresponding parameters
sets iθ . The CRF model has posterior probability

P(X ,Y |Ỹ ) = P(Y |X ,Ỹ )P(X |Ỹ )

and the corresponding optimal MAP solution is:

(X̂ ,Ŷ ) = arg max
X∈ΩX ,Y∈ΩY

P(Y |X ,Ỹ )P(X |Ỹ ) ,

where ΩX ,ΩY are corresponding configuration spaces for random fields (X ,Y ).

2.1 Region Switching Model

The principal RF (P(X |Ỹ )) can be, for example, represented by a flexible K−state
Potts random field [17, 22, 23]. Instead of the Potts RF or some alternative general para-
metric MRF, which require a Markov chain Monte Carlo (MCMC) solution, we suggest
to use simple non-parametric approximation based on our roller method [6, 7].

The control random field X̆ is estimated using simple K-means clustering of Ỹ
in the RGB colour space into predefined number of K classes, where cluster indices
are X̆r ∀r ∈ I estimates. The number of classes K can be estimated using the
Kullback-Leibler divergence and considering sufficient amount of data necessary to
reliably estimate all local Markovian models.



Fig. 1. Examples of the cork texture (upper row) and lichen (bottom row) and their CMRF3MA

synthesis (right column).

The roller method is subsequently used for optimal X̆ compression and extremely
fast enlargement to any required field size. The roller method [6, 7] is based on the
overlapping tiling and subsequent minimum error boundary cut. One or several optimal
double toroidal data patches are seamlessly repeated during the synthesis step. This
fully automatic method starts with the minimal tile size detection which is limited by
the size of control field, the number of toroidal tiles we are looking for and the sam-
ple spatial frequency content. The roller method advantageously maintains the original
overall ratio single regions areas, e.g., the average standard deviation for this percentage
ratio after four times enlarged texture map was observed to be less than 3 %.



2.2 Spatial Factorization

The spatial factorisation is technique that enables separate modelling of individual band
limited frequency components of input image data and thus to use random field models
with small compact contextual support. This factorization step is the prerequisite for
satisfactory visual quality result of the presented model. Each grid resolution represents
a single spatial frequency band of the texture which corresponds to one layer of Gaus-
sian pyramid [13]. The input data are decomposed into a multi-resolution grid and all
resolution data factors represents the Gaussian-Laplacian pyramid of level k which is
a sequence of k images in which each one is a low-pass down-sampled version of its
predecessor.

Fig. 2. An example of the lichen texture (upper left), its control field (upper right), the CMRF3MA

synthesis (bottom left), and a comparative synthesis using a 3D Gaussian generator.



Fig. 3. Synthetic (CMRF3MA) lichen texture and its edited version (right).

2.3 Local Moving Average Models

Single multispectral texture factors are modelled using the extended version (3DMA)
of the moving average model [20]. A stochastic multispectral texture can be considered
to be a sample from 3D random field defined on an infinite 2D lattice. A spatial input
factor Y is represented by the 3DMA random field model. Yr is the intensity value
of a multispectral pixel r ∈ I in the image space. The model assumes that each factor
is the output of an underlying system which completely characterizes it in response
to a 3D uncorrelated random input. This system can be represented by the impulse
response of a linear 3D filter. The intensity values of the most significant pixels together
with their neighbours are collected and averaged, and the resultant 3D kernel is used
as an estimate of the impulse response of the underlying system. A synthetic mono-
spectral factor can be generated by convolving an uncorrelated 3D random field with
this estimate. Suppose a stochastic multi-spectral texture denoted by Y is the response
of an underlying linear system which completely characterizes the texture in response to
a 3D uncorrelated random input Er, then Yr is determined by the following difference
equation:

Yr = ∑
s∈Ir

BsEr−s (1)

where Bs are constant matrix coefficients and Ir ⊂ I. Hence Yr can be represented
Yr = h(r) ∗Er where the convolution filter h(r) contains all parameters Bs. In this
equation, the underlying system behaves as a 3D filter, where we restrict the system im-
pulse response to have significant values only within a finite region. The geometry of Ir
determines the causality or non-causality of the model. The selection of an appropriate
model support region is important to obtain good results: small ones cannot capture all



details of the texture and contrariwise, inclusion of the unnecessary neighbours adds to
the computational burden and can potentially degrade the performance of the model as
an additional source of noise.

The parameter estimation can be based on the modified Random Decrement tech-
nique (RDT) [2, 1]. RDT assumes that the input is an uncorrelated random field. If ev-
ery pixel component is higher than its corresponding threshold vector component and
simultaneously at least one of its four neighbours is less than this threshold the pixel
is saved in the data accumulator. The procedure begins by selecting thresholds usually
chosen as some percentage of the standard deviation of the intensities of each spectral
plane separately. Additionally to that, a 3D MA model requires also to estimate the
noise spectral correlation, i.e.,

E{ErEs} = 0 ∀r1 6= s1∨ r2 6= s2 ,

E{Er1,r2,r3Er1,r2,r̄3} 6= 0 ∀r3 6= r̄3 .

The synthetic factor can be generated simply by convolving an uncorrelated 3D RF
E with the estimate of B according to (1). All generated factors form new Gaussian
pyramid. Fine resolution synthetic smooth texture is obtained by the collapse of the
pyramid i.e. an inverse procedure of that one creating the pyramid.

The resulting synthesized texture is obtained by mapping individual synthesized
local sub textures to the enlarged control field realization. Additional pixel swapping
and filtering along the individual region border increases the visual quality of the result
as the overall intensity of the borders may be distracting.

φl = 0◦,θl = 0◦ synthesis φl = 345◦,θl = 75◦ synthesis
φv = 0◦,θv = 15◦ φv = 162◦,θv = 60◦

Fig. 4. An example of the measured BTF terracotta texture and its synthetic (even images) results,
where φ ,θ are azimuthal and elevation illumination / viewing angles, respectively.

3 Results

Automatic texture quality evaluation is important but still unsolved difficult problem
and qualitative evaluation is for now possible only using impractical and expensive vi-
sual psycho-physics. We have recently tested [10] on our texture fidelity benchmark



(http://tfa.utia.cas.cz) several published state-of-the-art image quality measures and
also one dedicated texture measure (STSIM) in several variants. We have tested the
presented novel BT F−CMRF3MA model on natural colour textures from our extensive
texture database (http://mosaic.utia.cas.cz), which currently contains over 1000 colour
or BTF textures. Tested textures were either natural, such as two textures on Figs.1,2,5,3
or man-made Fig.4 (terracotta). Tested BTF material samples from our database [4] are
measured in 81 illumination and viewing angles, respectively. A material sample mea-
surements (Fig.4) from this database have resolution of 1800×1800 and size 1.2 GB.
Fig.4 shows a cutout example from such measurements of a terracotta material and its
synthesis for two different illumination and view angle combinations. All presented ex-
amples use five level control field (K = 5), the hierarchical contextual neighbourhood
of the third order, and the three-layer Gaussian-Laplacian pyramid.

Fig.2 advantageously compares the presented BT F−CMRF3MA model (Fig.2 - bot-
tom left) with local fields modeled by simple multidimensional Gaussian generator
(Fig.2-bottom right). The Gaussian generator produces too noisy and spatially uncorre-
lated synthetic texture (e.g. top right corner). The model can be easily used to create an
artificial texture by editing single local sub-textures (Fig.3), which can be either learned
from separate sources or their parameters can be manually modified. Fig.5 illustrates a
fourfold enlarged stone texture.

Resulting synthetic more complex textures (such as lichen on Figs.1-bottom,2) have
generally better visual quality (there is no any usable analytical quality measure) than
textures synthesised using our previously published [12, 8, 15] simpler MRF models.
Synthetic multispectral textures are mostly surprisingly good for such a fully automatic
fast algorithm. Obviously there is no universally optimal texture modelling algorithm
and also the presented method will produce visible repetitions for textures with dis-
tinctive low frequencies available in small patch measurements (relative to these fre-
quencies). BTF-CMRF is capable to reach huge BTF compression ration ∼ 1 : 1×105

relative to the original BTF measurements but ≈ 5× lower than [12].

4 Conclusions

The presented CMRF (BTF-CMRF) method shows good visual performance on se-
lected real-world materials. The appearance of such materials should consist of several
types of relatively small regions with fine-granular inner structure such as sand, grit,
cork, lichen, or plaster. The model offers large data compression ratio (only tens of pa-
rameters per BTF and few small control field tiles) easy simulation and exceptionally
fast seamless synthesis of any required texture size. The method can be easily gener-
alised for colour or BTF texture editing by estimating some local models on one or
several target textures. Both analysis as well as synthesis of the model are exceptionally
fast. The model does not compromise spectral correlation thus it can reliably model
motley textures. A drawback of the method is that it does not allow a BTF data space
restoration or modelling of unseen (unmeasured) BTF space data unlike some fully
parametric probabilistic BTF models, and it requires a pyramidal spatial factorization.
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9. Haindl, M., Havlı́ček, V.: A compound MRF texture model. In: Proceed-
ings of the 20th International Conference on Pattern Recognition, ICPR 2010.
pp. 1792–1795. IEEE Computer Society CPS, Los Alamitos (August 2010),
http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.442
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Fig. 5. An example of the stone texture (upper left), its original size (upper right) and fourfold
enlarged CMRF3MA synthesis.


