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Abstract—Visual texture modeling based on multidimensional
mathematical models is the prerequisite for both robust material
recognition as well as for image restoration, compression or
numerous physically correct virtual reality applications. A novel
multispectral visual texture modeling method based on a de-
scriptive, unusually complex, three-dimensional, spatial Gaussian
mixture model is presented. Texture synthesis benefits from
easy computation of arbitrary conditional distributions from the
model. The model is inherently multispectral thus it does not
suffer with the spectral quality compromises of the spectrally
factorized alternative approaches. The model is especially well
suited for multispectral textile textures and it can also describe
the most advanced textural representation in the form of a
bidirectional texture function (BTF).

I. INTRODUCTION

Human observer’s visual scene recognition is based on
shapes and materials. Unfortunately, the surface material ap-
pearance vastly changes under variable observation conditions
which significantly complicates and negatively affects its
mathematical synthesis as well as machine analysis. Reliable
computer-based interpretation of visual information which
would approach human cognitive capabilities is very challeng-
ing and impossible without significant improvement of the cor-
responding sophisticated visual information models capable to
handle huge variations of possible observation conditions. The
appropriate paradigm for such a surface material reflectance
function models is a multidimensional visual texture.

Texture synthesis approaches may be divided primarily into
sampling and model-based methods. Sampling methods [1],
[2], [3], [4], [5], [6] rely on sophisticated sampling from
real texture measurements while the model-based techniques
[7], [8], [9], [10], [11], [12], [13] describe texture data using
multidimensional mathematical models and their synthesis is
based on the estimated model parameters only.

Generative visual texture models are useful not only for
modelling physically correct virtual objects material surfaces
in virtual or augmented reality environments, image restoration
or compression but also for contextual recognition applications
such as segmentation, classification or image retrieval.

Physically correct surface material reflectance model (RM)
is sixteen-dimensional function [14]

RM(λi, xi, yi, zi, ti, θi, ψi, λv, xv, yv, zv, tv, θv, ψv, θi,T , θv,T ).

RM describes incident light with spectral value λi illuminating
surface location xi, yi, zi in time ti under spherical reflectance
angle θi, ψi and observed at time tv from surface location

xv, yv, zv under spherical reflectance angle θv, ψv and spec-
trum λv . θi,T , θv,T are the corresponding transmittance angles.
The model height parameters zi, zv indicate that even radiance
along light rays is not constant but depends on the height.
Such a RM model is too complex and there neither exist any
measurement of such data nor any mathematical representation
allowing its synthesis. One of the early compromised attempts
to capture real material appearance was done by Nicodemus
et al. [15] and later elaborated by Dana et al. [16] in the form
of Bidirectional Texture Function (BTF). Even if a BTF model
assumes several strong simplifying assumptions [17], [18],
[14] its measurement, compression and synthesis is on the
leading edge of current mathematical modelling and techno-
logical capabilities. BTF is a seven-dimensional function [14]
which considers not only measurement dependency on planar
material position and spectral channel but also its dependence
on illumination and viewing angles:

BTFθi,φi,θv,φv (r̃) (1)

where θ, φ are elevation and azimuthal angles of illumination
and view direction vector, the multiindex r̃ = [r1, r2, r3]
specifies planar horizontal and vertical position in a material
sample image and r3 is the spectral index. Reliable parameters
estimation of such a seven-dimensional stochastic model is
very difficult not only because it requires very demanding
numerical optimization but because the learning textural data
are always too limited to obtain robust and reliable estimates.
The solution is to factorize the original seven-dimensional
measurement space into a set of less dimensional textural fac-
tors. The realistic modeling strives not necessarily to recover
the exact pixel-wise correspondence with some original target
texture but rather a texture which is visually indiscernible from
the original one.

In our previous paper [19] we have introduced three two-
dimensional probabilistic mixture models, where a measured
3D multi-spectral texture had to be spectrally factorized and
the corresponding multivariate mixture models were further
learned from single orthogonal mono-spectral components and
used to synthesise and enlarge these mono-spectral factor
components. The presented model (BTF-3DGMM), on the
contrary, is fully multispectral and thus it does not need
to compromise spectral modeling quality in multicoloured
textures. We applied this model for simpler task of high
quality texture restoration [20] where the model can exploit
information from corrupted textural data. The presented ap-
plication to BTF (color / multispectral) texture synthesis is
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more demanding due to lack of any guiding local spatial
information and the requirement to enlarge synthetic texture
to any requested unobserved size.

II. SPATIAL 3D GAUSSIAN MIXTURE MODEL

A static homogeneous three-dimensional textural factor Y
is assumed to be defined on a finite rectangular N1×N2× d
lattice I , r = (r1, r2, r3) ∈ I denotes a pixel multiindex
with the row, columns and spectral indices, respectively. Let
us suppose that Y represents a realization of a random
vector with a probability distribution P (Y ). The statistical
properties of interior pixels of the moving window on Y
are translation invariant due to assumed textural homogeneity.
They can be represented by a joint probability distribution
and the properties of the texture can be fully characterized
by statistical dependencies on a sub-field, i. e., by a marginal
probability distribution of spectral levels on pixels within the
scope of a window centered around the location r and specified
by the index set:

Ir = {r + s : |r1 − s1| ≤ α ∧ |r2 − s2| ≤ β} ⊂ I .

The index set Ir depends on a modeled visual data and can
have any other than this rectangular shape. Y{r} denotes
the corresponding matrix containing all Ys in some fixed
order arrangement such that s ∈ Ir, Y{r} = [Ys ∀ s ∈ Ir],
Y{r} ⊂ Y , η = cardinality{Ir} and P (Y{r}) is the corre-
sponding marginal distribution of P (Y ).

A. 3D Gaussian Mixture

If we assume the joint probability distribution P (Y{r}), in
the form of a normal mixture

P (Y{r}) =
∑
m∈M

p(m)P (Y{r} |µm,Σm) Y{r} ⊂ Y ,

=
∑
m∈M

p(m)
∏
s∈Ir

ps(Ys |µm,s,Σm,s) (2)

where Y{r} ∈ <d×η is d×η matrix, µm is d×η mean matrix,
Σm is d×d×η a covariance tensor, and p(m) are probability
weights and the mixture components are defined as products
of multivariate Gaussian densities

P (Y{r} |µm,Σm) =
∏

s∈I{r}

ps(Ys |µms,Σms) , (3)

ps(Ys |µms,Σms) =
1

(2π)
d
2 |Σm,s|

1
2

(4)

exp

{
−1

2
(Yr − µm,s)TΣ−1m,s(Yr − µm,s)

}
,

i. e., the components are multivariate Gaussian densities with
covariance matrices (8).

The underlying structural model of conditional indepen-
dence is estimated from a data set S obtained by the step-
wise shifting of the contextual window Ir within the original

textural image, i. e., for each location r one realization of
Y{r}.

S = {Y{r} ∀ r ∈ I, Ir ⊂ I} Y{r} ∈ <d×η . (5)

1) Parameter Estimation: The unknown parameters of the
approximating mixture can be estimated using the iterative EM
algorithm [21]. In order to estimate the unknown distributions
ps(· |m) and the component weights p(m) we maximize the
likelihood function corresponding to the training set (5):

L =
1

|S|
∑

Y{r}∈S
log

[ ∑
m∈M

P (Y{r} |µm,Σm) p(m)

]
.

The likelihood is maximized using the iterative EM
algorithm (with non-diagonal covariance matrices):

E:

q(t)(m| Y{r}) =
P̃ (t)(Y{r} |µm,Σm) p(t)(m)∑
j∈M P (t)(Y{r} |µj ,Σj) p(t)(j)

,

M:

p(t+1)(m) =
1

|S|
∑

Y{r}∈S
q(t)(m |Y{r}) , (6)

µ(t+1)
m,s =

1∑
Y{r}∈S q

(t)(m |Y{r})∑
Y{r}∈S

Ysq
(t)(m |Y{r}) . (7)

The Mη covariance matrices are:

Σ(t+1)
m,s =

∑
Y{r}∈S,Ys∈Y{r}

q(t)(m |Y{r})∑
Yr∈S q

(t)(m |Y{r})
(Ys − µ(t+1)

m,s )(Ys − µ(t+1)
m,s )T

=

∑
Y{r}∈S,Ys∈Y{r}

q(t)(m |Y{r})YsY Ts∑
Yr∈S q

(t)(m |Y{r})

−
p(t+1)(m) |S|µ(t+1)

m,s

(
µ
(t+1)
m,s

)T
∑
Yr∈S q

(t)(m |Y{r})
. (8)

The iteration process is stopped when the criterion in-
crements are sufficiently small. The EM algorithm iteration
scheme has the monotonic property: L(t+1) ≥ L(t), t =
0, 1, 2, . . . which implies the convergence of the sequence
{L(t)}∞0 to a stationary point of the EM algorithm (local
maximum or a saddle point of L).

B. Texture Synthesis

Textures without significant low frequencies such as Fig.3-
bottom can be modeled using simple 3DGMM model. How-
ever, textures with substantial low frequencies (Figs.1,2,3-
top,4) will benefit from a pyramidal model [14]. Such texture
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Fig. 1. A carpet textile (top) and its 3DGMM synthesis.

is down-sampled to several rough scale layers. The synthesis
starts from the most down-sampled layer which is up-sampled
to guide a finer layer synthesis and this process is repeated
till the final fine resolution layer This frequency factorization
based synthesis allow to use lower cardinality η 3DGMM
models and consequently reduces the required learning data
size for robust parameter estimation. The advantage of a
mixture model is its simple synthesis based on the marginals:

pn | ρ(Yn |Y{ρ}) =
M∑
m=1

Wm(Y{ρ}) pn(Yn |m) , (9)

where Wm(Y{{ρ}) are the a posterior component weights
corresponding to the given sub-matrix Y{ρ} ⊂ Y{r}:

Wm(Y{ρ}) =
p(m)Pρ(Y{ρ} |m)∑M
j=1 p(j)Pρ(Y{ρ} | j)

, (10)

Pρ(Y{ρ} |m) =
∏
n∈ρ

pn(Yn |m) .

There are several alternatives for the 3DGMM model synthe-
sis [19]. The unknown multivariate vector-levels Yn can be
synthesized by random sampling from the conditional density
(9) or the mixture RF can be approximated using the GMM
mixture prediction.

The proposed method uses the 3DGMM model approxima-
tion by computing the conditional 3DGMM expectation:

E{Yn} =

∫
Yn pn | ρ(Yn |Y{ρ})dYn

=
M∑
j=1

Wj(Y{ρ})µjn . (11)

This is a fast non-iterative alternative for a 3DGMM model
synthesis.

III. EXPERIMENTAL RESULTS

Figs.1,2,3,4 illustrates the performance of our BTF-
3DGMM model of selected textile BTF measurements. Unfor-
tunately, the automatic texture quality evaluation is important
but still unsolved problem and qualitative evaluation is for now
possible only using impractical and expensive visual psycho-
physics. We have recently tested [23] on our texture fidelity
benchmark (http://tfa.utia.cas.cz) several published state-of-
the-art image quality measures and also one dedicated texture
measure (STSIM) in several variants. These results clearly
demonstrate that neither the standard image quality criteria
(MSE, VSNR, VIF, SSIM, CW-SSIM) nor the STSIM texture
criterion can be reliably used for texture quality validation (see
for details [23]). It is easy to manifest failure counterexamples
for each of these quality criteria. Thus our results can be
checked only visually and all illustrations have also the corre-
sponding original particular BTF measurement. All presented
illustrations were chosen using the simple group viewers
selection from possible alternative experimental parameters
settings. Figs.1,4 were synthesised using four, Fig.3-top three,
Fig.2 two, and Fig.3-bottom single layer models, respectively.
The BTF-3DGMM model has also a weak restoration tendency
(Fig.2-top right) thus the final results might require some addi-
tive noise (Fig.2-bottom). Fig.4 illustrates a sporadic modeling
problem with complicated low frequency pattern for which
there are no sufficiently large learning data set available.

The visual quality of the resulting textile synthetic textures
generally surpasses the outputs of the previously published
simpler MRF models [8], [22], [24], [18], [11]. This is
also illustrated by comparing three BTF textile textures, blue
knitted wool Fig. 2 and both coverings on Fig. 3, synthesized
using the proposed model Figs. 2-bottom,3, and alternatively
on Fig. 5 using the wide-sense Markovian models specified in
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Fig. 2. An example of the BTF knitted wool measurement (top left), its BTF-3DGMM synthesis, and synthesis with additive Poisson (bottom left) and
Gaussian noise.

[22]. Alternative 3D Gaussian Markov random field models
[14] produce similarly unconvincing results.

IV. CONCLUSION

The proposed visual texture synthesis method is capable to
simultaneously model and enlarge visual texture, to compress
a measured texture or to restore its missing or noisy parts. The
BTF-3DGMM model produces high quality results especially
of regular or near-regular colorful BTF or multispectral tex-
tures, provided it has enough data to learn. Then it outperforms
on these textures alternative methods based on Markovian

random field models. The presented model has time consuming
parameter estimation part and requires larger learning set
than the alternative simpler 3DCAR method, which is not
always available. The model synthesis is not iterative and thus
relatively fast and the model can easily parallelized. Our future
work will concentrate on optimal initialization of model’s
iterative equations.
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Fig. 3. An example of the BTF textile measurement (left) and its BTF-3DGMM synthesis.
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