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Abstract—Visualization helps us to understand single-label
and multi-label classification problems. In this paper, we show
several standard techniques for simultaneous visualization of sam-
ples, features and multi-classes on the basis of linear regression
and matrix factorization. The experiment with two real-life multi-
label datasets showed that such techniques are effective to know
how labels are correlated to each other and how features are
related to labels in a given multi-label classification problem.

I. INTRODUCTION AND RELATED WORKS

Dimension reduction including visualization, as a special
case, is important in processing time reduction, precision
improvement, and problem understanding. The algorithms are
divided into two categories of unsupervised approaches such
as PCA and ICA, and supervised approaches such as Fisher
LDA (for example, see [1]). Recently, in the viewpoint of
sparse coding and matrix factorization, some novel dimension
reduction techniques have been studied such as LLE and S-
Isomap [2], [3], [4], [5], [6]. It also turns out that they are
closely related to traditional statistical techniques above and to
each other as shown in [7]. In this paper, therefore, returning
to the original standing point, we discuss what information is
available for dimension reduction, and then propose several
fundamental ways for dimension reduction.

We concentrate on visualization with dimension two in this
paper. In multi-label classification, it is important to know how
single labels are related to multi-labels in addition to how
samples are related to those labels. Visualization is one of
strong tools for these goals. Nevertheless, such studies are a
very few, e.g., [4], We propose three algorithms for simulta-
neous visualization of samples and multi-labels, and one more
algorithm for simultaneous visualization of features and labels.
Some of these algorithms are based on the relationship between
regression with sparsity and low-rank matrix factorization.
The sparsity is one of key aspects in regression, as seen in
ridge regression and lasso [1], and is useful for dimension
reduction. The matrix factorization with a low-rank constraint
also contributes for dimension reduction as seen in [5], [6].

II. FUNDAMENTAL RELATIONSHIP

A. Notation

Let us firstly summarize necessary notations and basic
relationships.

We consider n data x1, x2, . . . , xn ∈ Rd with class multi-
labels y1, y2, . . . , yn ∈ {0, 1}ℓ. Their matrix expression is
given by

X = (x1 x2 · · · xn)=


x11 · · · xn1

x12 · · · xn2

...
. . .

...
x1d · · · xnd

 ∈ Rd×n

Y = (y1 y2 · · · yn)=

y11 · · · yn1
... · · ·

...
y1ℓ · · · ynℓ

 ∈ {0, 1}ℓ×n

Z = (z1 z2 · · · zn)=

(
X
Y

)
∈ {R ∪ {0, 1}}(d+ℓ)×n

We use superscript T for denoting the transpose of a matrix.

B. Regression and Matrix Approximation

We assume that X is already centered and sphered 1 such
as

µx =
1

n
X1 = 0, Σx =

1

n
XXT = Id,

where 1 and 0 are the column vectors of all one’s and all
zero’s of an appropriate dimension, respectively, and Id is
the identity matrix of dimension d. In classification, such a
standardization is essential and necessary because the problems
should be invariant for any affine transformation.

Especially, we notice the importance of sphering from the
following relationship between a linear regression of Y on X
and a matrix approximation of XY T /n.

Theorem 1. If X ∈ Rd×n is sphered, then the linear
regression of Y ∈ Rℓ×n on X is equivalent to a matrix
approximation problem of XY T /n in the sense of

arg min
A∈Rd×ℓ

∥Y −ATX∥2F = arg min
A∈Rd×ℓ

∥ 1
n
XY T −A∥2F , (1)

where ∥ · ∥F is the Frobenius norm of a matrix.

1Centering is made by X ← X(I − 1
n
11T ) and, sphering is made by

X ← Λ−1/2UTX using the spectral decomposition XXT /n = UΛUT .
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Proof: This equation is derived as follows.

∥Y −ATX∥2F
= Tr(Y −ATX)T (Y −ATX)

= Tr(Y TY − 2Y TATX +XTAATX)

= Tr(Y TY − 2ATXY T +ATXXTA)

= Tr(Y TY − 2ATXY T + nATA) (XXT = nId)

= c− 2Tr(ATXY T ) + n∥A∥2F (c = ∥Y ∥2F ),

while

∥ 1
n
XY T − A∥2F

= Tr(
1

n
XY T −A)T (

1

n
XY T −A)

= Tr(
1

n2
Y XTXY T − 2

n
ATXY T +ATA)

= c′ +
1

n
(−2Tr(ATXY T ) + n∥A∥2F )

(c′ =
1

n2
Tr(Y XTXY T )).

This comparison completes the proof.

Note that this proof shows a monotonic relationship be-
tween these two terms in addition to the fact that the same A
minimizes them at the same time.

This theorem is important in the following sense: 1) the
regression (LHS) gives a direct way of predicting ŷ from x,
2) the approximation (RHS) shows how we can approximate
the relationship between features and labels (classes), and 3)
this theorem bridges above two different concepts and make
it possible to find the best low-rank representation as will
be shown below. Without such a low-rank requirement, the
solution is obviously A = (XY T )/n from RHS of (1), thus,
LHS of (1) becomes ∥Y −ATX∥2F = ∥Y − (1/n)Y XTX∥2F .

On the other hand, the importance of centering is shown
as

Corollary 2. If X ∈ Rd×n is sphered and centered, then the
solution A for RHS of (1) is invariant to any shift of y, that
is, the solution A is the same even for Y − y01

T with any
y0 ∈ Rℓ. While, LHS of (1) is minimized at y0 = µ0. Thus,
with centered Y , Ȳ = Y − µy1

T , we have

arg min
A∈Rd×ℓ

∥Ȳ −ATX∥2F = arg min
A∈Rd×ℓ

∥ 1
n
XY T −A∥2F . (2)

Proof: The shift invariance property is shown as, for any
y0,

∥ 1
n
X(Y − y01

T )T −A∥2F

= ∥ 1
n
XY T − 1

n
X1yT0 −A∥2F

= ∥ 1
n
XY T −A∥2F (µx = (1/n)X1 = 0)

This means that if Y changes to Y − y01
T , only the norm

in the LHS changes. It is easy to show that the norm is
minimized with y0 = µy , which is the best for regression.
From Theorem 1 and y0 = µy , (2) is obtained.

In the viewpoint of regression, we should add an extra
dimension with value one to each xi for allowing the regression
to have a constant term. However, from Corollary 2, we see
that the same thing is possible by ŷ = ATx + µy with the
solution A of (2).

C. Low-Rank Approximation

In this study, we are interested in when A has a low
rank k (≤ min{d, ℓ}). Under this low-rank requirement, the
approximation problem has a clear solution. From Schmidt’s
theorem [10] (Chap. 6.3), when (1/n)XY T is singular value
decomposed into UΛV T , the solution is given by

A = U(k)Λ(k)V
T
(k), s.t. UT

(k)U(k) = V T
(k)V(k) = Ik, (3)

where the matrices with suffix (k) correspond to those of
the largest k eigenvalues. With this solution, the regression
criterion gives us a way of prediction:

ẏ = ATx = V(k)Λ(k)U
T
(k)x (4)

ŷ = Bin(ẏ + µy). (5)

where operation Bin(·) binalizes each component value to zero
or one by threshold 1/2 and µy is added from Corollary 2.

D. Training Information

Let us examine how many different ways are possible in
dealing with training information. Basically there are three
ways as follows.

From the combined training information ZT =
(XT Y T ) ∈ {R ∪ {0, 1}}n×(d+ℓ), we can consider the
first two of the three ways as

ZZT =

(
XXT XY T

Y XT Y Y T

)
∈ R(d+ℓ)×(d+ℓ) (6)

ZTZ = XTX + Y TY ∈ Rn×n, (7)

When X and Y are both centered, the first formula (6) is
essentially equivalent to the covariance matrix ΣZ = ZZT /n.
The third way is to use the connection between individual
sample and its labels that is just given by

Y ∈ {0, 1}n×ℓ. (8)

III. VISUALIZATION TECHNIQUES

On the basis of low-rank solution (3) and three kinds of
information (6), (7) and (8), we propose several simultaneous
visualization techniques.

A. Sample-Label Visualization

For visualization (k = 2, 3), the solution (3) gives a way
to map the samples and labels into a same low-dimensional
(k-dimensional) Euclidean space Rk as

(Visualization SL-A)

x̃ = Λ(k)U
T
(k)x ∈ Rk, ỹ = V T

(k)(y − µy) ∈ Rk,

where
1

n
XY T = UΛV T .
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Note that in single-label cases

1

n
XY T = (

n1

n
µ1,

n2

n
µ2, . . . ,

nℓ

n
µℓ), (9)

where ni is the appearance number of labels i and µi is the
mean of samples of label i. Thus, the SVD of XY T /n is that
of the class means weighted by the estimated priors. Therefore,
rank(XY T /n) ≤ ℓ−1. For multi-label classification, the rank
is less than the number ℓ′ of distinct label subsets seen in Y .

(An example) In two-class cases (ℓ = 2) with centered
X , since n2µ2 = −n1µ1, we have

1

n
XY T =

1

n
(n1µ1,−n1µ1) =

n1

n
µ1(1,−1) ∈ Rd×2.

Hence, 1
nXY T has rank 1 and is decomposed into

U(1)Λ(1)V
T
(1) =

(
1

∥µ1∥µ1

) (
n1

n

√
2∥µ1∥

) ( 1√
2

− 1√
2

)
.

The simultaneous low-dimensional mappings with k = 1 are
given by

x̃ = Λ(1)U
T
(1)x =

n1

n

√
2∥µ1∥

1

∥µ1∥
µT
1 x =

n1

n

√
2µT

1 x

and

ỹ = V T
(1)(y − µy) =

{√
2(1− n1/n) (y = (1, 0)T )

−
√
2n1/n (y = (0, 1)T )

.

The prediction ŷ is, from (4) and (5), given by

ŷ = ẏ + µy =

(
n1/n
−n1/n

)
µT
1 x+

(
n1/n

1− n1/n

)
.

B. Sample-Label Visualization Using Laplacian Eigenmap

According to the way of Laplacian eigenmap [9], we
can have another technique for simultaneous low-dimensional
mapping of samples and labels. Suppose that we are given
three kinds of similarity at once: sample-sample similarity wij ,
label-label similarity wmo and sample-label similarity wim.
Then the k-dimensional representation gi of sample i and
the k-dimensional representation hm of label m are given by
minimizing, under some normalization constraint,∑
ij

wij∥gi−gj∥2+
∑
mo

wmo∥hm−ho∥2+2
∑
im

wim∥gi−hm∥2,

where i and j run over {1, 2, . . . , n}, m and o run over
{1, 2, . . . , ℓ}, and gi, hm ∈ Rk. From the well-known equiva-
lence of this sum and the objective function of Graph Lapla-
cian, we can solve this problem by finding U = ((gi) (hm)) ∈
Rk×(n+ℓ) minimizing

Tr(U(D −W )UT ) subject to UDUT = Ik, (10)

for

W =

(
(wij) (wim)
(wmi) (wmo)

)
∈ R(n+ℓ)×(n+ℓ)

and
D = diag(

∑
j

w1j , . . . ,
∑
j

w(n+ℓ)j).

In this paper, from (7) and (8), we propose their realization
as

(wij) = (XTX + Y TY )ij ∈ Rn×n,

(wmo) = (Y Y T )mo ∈ Rℓ×ℓ, and
(wim) = (Y )im ∈ {0, 1}n×ℓ.

Solving (10) as a generalized eigenvalue problem, we have
the next visualization. Here, since one is the trivial largest
eigenvalue, we use the largest k eigenvalues less than one.

(Visualization SL-B)

x̃i = ui ∈ Rk, ỹm = un+m ∈ Rk,

where, ui is ith column of U(k) ∈ Rk×(n+ℓ) satisfying

D−1WUT
(k) = UT

(k)Λ(k) for W =

(
XTX + Y TY Y T

Y Y Y T

)
.

It should be noted that, unlike SL-A method, this mapping
is nonlinear and the transformation from a feature vector or a
label vector to the corresponding points are not functionally
realized. Therefore, we cannot map a newly arrived sample
or label vector without a special treatment. Such a treatment
is seen in the authors’ another study [4]. In [4], to avoid the
duplicating usage of Y TY and Y Y T , we proposed to use

W =

(
αXTX Y T

Y βY Y T

)
, α, β > 0.

We also introduced locality as seen in LLE [2]: one binary
relation is calculated from the neighborhood relationship be-
tween two samples, another binary relationship from the neigh-
borhood relationship between two labels. For the mapping of
an unseen sample, we proposed one linear mapping and one
nonlinear mapping [4].

One problem of this approach is the common normalization
applied for different kinds of source. The solution U(k) of
this optimization is given by the largest k eigenvectors of
D−1W . The multiplication of D−1 affects row by row because
D is diagonal. This means that the first n elements and
the following ℓ elements in a row of W are divided by a
same element of D. This is not always appropriate. Another
problem is the unbalanced sizes of XTX and Y Y T . As
the sample number n increases, the former size of XTX
increases too, but the latter size of Y Y T stays as a constant.
Accordingly, the effect of label-label relationship vanishes and
the sample-label connection Y is weaken as well. As a result,
the sample similarity, thus the positions of gi’s, dominate this
optimization.

C. Feature-Label Visualization

In a similar way, we can have another technique for
simultaneous low-dimensional representations of features and
labels. We consider (6) and assume that X and Y are both
centered and “norm-to-one” standardized (X1 = 0, Y 1 =
0, diag(XXT ) = Id, diag(Y Y T ) = Iℓ), where operator diag(·)
chooses the diagonal elements only. Thus, we use the following
matrix including feature-feature, feature-label, and label-label
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similarities:

W = (wij) = abs

(
1
nXXT 1

nXY T

1
nY XT 1

nY Y T

)
∈ R(d+ℓ)×(d+ℓ),

Here, the (i, j)th element is equal to the correlation coefficient
ρij . We took the absolute value of ρij because the sign is
irrelevant to the degree of functional relationship.

We minimize∑
ab

wab∥fa−fb∥2+2
∑
am

wam∥fa−hm∥2+
∑
mo

wmo∥hm−ho∥2

to find low-dimensional representations fa of feature a and
hm of label m.

(Visualization FL-A)

f̃a = ua ∈ Rk, ỹm = ud+m ∈ Rk,

where, ua is ath column of U(k) ∈ Rk×(d+ℓ) satisfying

D−1WUT
(k) = UT

(k)Λ(k) for W = abs

(
1
nXXT 1

nXY T

1
nY XT 1

nY Y T

)
.

Note that in this visualization the number of samples n affects
evenly on features and labels, unlike SL-B.

IV. PROPOSED VISUALIZATION METHODS

A. Normalization

We consider two cases of continuous variables and binary
variables in either X or Y , or both.

When X (or Y ) is of continuous variables, the most natural
normalization is centering such that µx = (1/n)X1 = 0.
The following sphering guarantees the invariance for affine
transformations.

When Y (or X) is of binary variables, one of the natural
normalization ways is “sum-to-one” normalization such that
Y 1 = 1. In this case, the following sphering does not have
a special meaning. In multi-label cases, each output/column
yi can have many one’s (labels). Then this normalization
guarantees that every label has the same number of samples.
Note that the variance and covariance of random variables
taking a value in [0, 1] is at most one.

B. Proposed methods

In summary, we propose the following two visualization
methods:

1) (For simultaneous visualization of samples and la-
bels) Use SL-A with centered and sphered X (X1 =
0, XXT = nIn) and unprocessed Y . For binary
features in X , sum-to-one normalization could be
applied instead of centering, with forcibly set µy = 0
(without actual centering).

2) (For simultaneous visualization of features and la-
bels) Use FL-A with centered and norm-to-one stan-
dardized X (X1 = 0, diag(XXT ) = Id) and Y
(Y 1 = 0, diag(Y Y T ) = Iℓ).

Note that the same information 1
nXY T plays an important role

in both methods.

V. EXPERIMENTS

We dealt with two multi-label datasets taken from Mulan
dataset 2: Scene and Medical. Among them, Scene is a
collection of scene images with multi-labels such as “urban”,
“beach” and “sunset.” It has parameters n = 2407, d =
294, ℓ = 6, ℓ′ = 15. All the features are continuous. On the
other hand, Medical is a collection of clinical texts multi-
annotated. All the features are binary/nominal according to if
a certain word exists or not. It has parameters n = 333, d =
1449, ℓ = 45, ℓ′ = 94.

The result for Scene dataset is shown in Fig. 1. We can
see the following: 1) six leading classes can be well classified
as a single-label problem in the feature space (Fig. 1(a) with
the Volonoi diagram on single labels), 2) the composite classes
with two labels (smaller filled circles) are shifted from their
component (leading) classes (larger filled circles) (Fig. 1(b)),
3) there is no feature sharing a high correlation with any
label (Fig. 1(c)), and 4) some features are redundant (closer-
numbered features are indeed closely located) (Fig. 1(d)).
The high value of 45.8% in SL-A in the contribution rate 3

indicates the reliability of this low-dimensional visualization.

In multi-label classification problems, it is important to
know how composite classes are related to their component
classes with single labels. In Fig. 1(b), composite classes
moves right from the convex hull of the six component classes.
It implies that we need a different classification rule for them,
such as to classify them after a constant shift of features. As an
analysis of feature-label relationship, we can see in Fig. 1(c)(d)
that there are some clusters of features, and some of them are
strongly correlated to each other, such as #85 and #92. They
can be combined for classification.

The result for Medical dataset is shown in Fig. 2. We
can see the following: 1) many labels are difficult to be
distinguished (Fig. 2(a) with the Volonoi diagram on single
labels), 2) all features are correlated to some labels to some
extent (Fig. 2(b)), but not so strong. We also observed that two
features associated with words “medical” and “measuring” are
located far outside Fig. 2(b),

VI. KERNELIZED VISUALIZATION

These linear methods are easily extended to nonlinear
methods by a kernel trick. When we consider the case in which
X is mapped into a higher dimensional sample set ϕ(X). Then,
the condition by which the linear regression is equivalent to a
matrix approximation problem as follows.

Theorem 3. Let Φ(X) ∈ Rq×n be n samples of X mapped
by ϕ(·). If G = Φ(X)TΦ(X) = (K(xi, xj)) = nIn

4 and a
coefficient matrix A is of linear combinations of ϕ(xi) (i =
1, 2, . . . , n), that is, A = Φ(X)B for some B ∈ Rn×ℓ, then
the linear regression of Y ∈ Rℓ×n on Φ(X) is equivalent to

2http://mulan.sourceforge.net/datasets-mlc.html
3the ratio of the sum of used singular values to the total sum.
4Centering is possible by G ← G − n−1G − Gn−1 + n−1Gn−1,

where n−1 is the n × n matrix of all 1/n’s [11]. Sphering is also
possible by transformation ϕ(x) ←

√
n(Λg)−1(V g)TΦ(X)Tϕ(x), where

G = V gΛg(V g)T , (V g)TV g = V g(V g)T = In, and rank(G) = n is
assumed.
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Fig. 1. Visualization of “Scene” data (n = 2407, d = 294, ℓ = 6, ℓ′ = 15) by SL-A and FL-A. C.R. denotes the contribution rate.

an approximation problem in the sense of

arg min
A∈Rq×ℓ

∥Y −ATΦ(X)∥2F = arg min
B∈Rn×ℓ

∥ 1
n
Y T −B∥2F .

(11)

From SVD: Y T = UΛV T , we have the best k-rank
approximation

B = U(k)Λ(k)V
T
(k), A = Φ(X)U(k)Λ(k)V

T
(k). (12)

Using notation K(X,x) = (K(x1, x), . . . ,K(xn, x))
T , we

have

(Visualization SL-AK)

x̃ = Λ(k)U
T
(k)Φ(X)Tϕ(x) = Λ(k)U

T
(k)K(X,x) ∈ Rk

ỹ = V T
(k)y ∈ Rk,

where Y T = UΛV T .

VII. DISCUSSION

This paper is closely related to Canonical Correlation
Analysis (CCA) in which two different kinds of source, X and
Y , are considered at the same time, and two low-dimensional
mappings Ψx : Rd → Rk and Ψy : {0, 1}ℓ → Rk are realized
by finding two projections so as to maximize the correlation of

them. Indeed, SL-A is identical to a low-rank CCA if X and
Y are both sphered, and FL-A is one of embeddings using the
two mappings of CCA. Nevertheless, many studies have shown
either Ψx or Ψy only. This is because it is meaningless to use
the two mappings at the same time without considering under
which condition the regression and CCA are identified. Sun et
al. [12] showed already an important theorem on it, but ours is
more understandable because we have given a necessary and
sufficient condition, XXT = nId. Some papers carried out a
simultaneous mapping under stronger conditions such as both
X and Y are centered and sphered, but they have not paid a
special attention to such conditions.

Returning to Theorem 1, let us examine the significance of
amount XY T /n. It is related to many standard technologies
under the sphered condition on X . First, it is the coefficient
matrix of a linear regression of Y on X 5 because

ŷT = xTA = xT
(
(XXT )−1XY T

)
= xT

(
1

n
XY T

)
.

Next, suppose that both X and Y are centered to µx =
µy = 0. Then this amount is the expected mean of y given x,

5This is the proof that XXT = nId is a necessary condition.
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(b) Single-label some classes and features by FL-A

Fig. 2. Visualization of “Medical” data (n = 333, d = 1449, ℓ = 45, ℓ′ = 94) by SL-A and FL-A. C.R. denotes the contribution rate.

assuming (xT , yT )T obeys a Gaussian. This can be shown as

E y|x = µy +ΣyxΣ
−1
xx (x− µx)

= (
1

n
Y XT )(

1

n
XXT )−1x =

1

n
Y XTx.

In the viewpoint of partial least square techniques, this
amount appears in the orthonormal partial least square [5] and
its two-stage implementation [6] because

min
U,V

∥(XXT )−1/2XY T − UΛ(k)V
T ∥

= min
U,V

∥ 1√
n
XY T − UΛ(k)V

T ∥.

In addition, it can be shown that above U gives the solution
of Fisher’s LDA in single-label cases.

Another viewpoint on this amount is possible. We have
already pointed out that

∥Y −ATX∥2F = ∥Y − (1/n)Y XTX∥2F
without low-rank restriction. Here term XTX can be kernel-
ized to G = (K(xi, xj)). Then our requirement G = nIn in
Theorem 3 derives

∥Y −ATΦ(X)∥2F = ∥Y − (1/n)Y G∥2F = 0.

That is, term XTX and its kernelized version (K(xi, xj))
show how individual samples are mutually independent of
others, and in the extreme case of (K(xi, xj)) = (nδij), the
perfect reconstruction is realized. In that case, every training
sample xi is mapped on one of ỹm(m = 1, 2, . . . , ℓ′) where
ℓ′ is the number of distinct label subsets in Y .

VIII. CONCLUSION

We have shown three algorithms for simultaneous visual-
ization of samples and labels and one algorithm for simul-
taneous visualization of features and labels. The proposed
visualization methods allow fast visual assessment of fea-
ture’s information content and their discriminability in addition
to assessment of multi-labels. In addition, we showed that
XY T /n plays a central role in these algorithms. Unfortunately
their practical usefulness has confirmed only partially. We will
deepen the potential and explore their applications.
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