
Discriminative Models for Multi-instance Problems with
Tree Structure

Tomáš Pevný
CTU in Prague

Cisco R&D Center in Prague
Prague, Czech Republic
pevnak@gmail.com

Petr Somol
Cisco R&D Center in Prague

UTIA, Czech Academy of Sciences
Prague, Czech Republic
psomol@cisco.com

ABSTRACT
Modelling network traffic is gaining importance to counter
modern security threats of ever increasing sophistication. It
is though surprisingly difficult and costly to construct reli-
able classifiers on top of telemetry data due to the variety
and complexity of signals that no human can manage to
interpret in full. Obtaining training data with sufficiently
large and variable body of labels can thus be seen as a pro-
hibitive problem. The goal of this work is to detect infected
computers by observing their HTTP(S) traffic collected from
network sensors, which are typically proxy servers or net-
work firewalls, while relying on only minimal human input
in the model training phase. We propose a discriminative
model that makes decisions based on a computer’s all traf-
fic observed during a predefined time window (5 minutes in
our case). The model is trained on traffic samples collected
over equally-sized time windows for a large number of com-
puters, where the only labels needed are (human) verdicts
about the computer as a whole (presumed infected vs. pre-
sumed clean). As part of training, the model itself learns dis-
criminative patterns in traffic targeted to individual servers
and constructs the final high-level classifier on top of them.
We show the classifier to perform with very high precision,
and demonstrate that the learned traffic patterns can be in-
terpreted as Indicators of Compromise. We implement the
discriminative model as a neural network with special struc-
ture reflecting two stacked multi-instance problems. The
main advantages of the proposed configuration include not
only improved accuracy and ability to learn from gross la-
bels, but also automatic learning of server types (together
with their detectors) that are typically visited by infected
computers.

Keywords
Neural network; user modeling; malware detection; big data;
learning indicators of compromise

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AISec’16, October 28 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4573-6/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2996758.2996761

1. MOTIVATION
In network security it is increasingly more difficult to re-

act to the influx of new malicious programs such as trojans,
viruses and others (further called malware). Traditional
defense solutions rely on identifying pre-specified patterns
(called signatures) known to distinguish malware in incom-
ing network connections, e-mails, locally stored programs,
etc. But signature-matching now runs out of breath with
the rapid increase in malware sophistication. Contemporary
malware deploys many evasion techniques such as polymor-
phism, encryption, obfuscation, randomization, etc., which
critically decrease recall of signature-based methods. One
of possible perpendicular approaches is identifying infected
computers on the basis of their behavior, i.e., usually by
monitoring and evaluating network activity or system calls.
The advantage of such an approach is higher recall, because
it is much harder to evade behavior-based detection. For
example, computers infected by spamming malware almost
inevitably display an increase in the number of sent e-mails.
Click-fraud, where infected computers earn money to the
originator of the infection by showing or accessing advertise-
ments, is another example where the increased volume of cer-
tain traffic is a good indicator of compromise. On the other
hand, behavior-based malware detection frequently suffers
from higher false positive rates compared to signature based
solutions.

Machine learning methods have recently attracted atten-
tion due to their promise to improve false-positive rates of
behavioral malware detection[2]. However, the use of off-
the-shelf machine learning methods to detect malware is
typically hindered by the difficulty of obtaining accurate la-
bels, especially if classification is to be done at the level of
individual network connections (TCP flow, HTTP request,
etc.)[11, 13]. Even for an experienced security analyst it
is almost impossible to determine which network connec-
tions are initiated by malware and which by a benign user
or application,1 since malware often mimics the behavior
of benign connections. We have observed malware connect-
ing to google.com for seemingly benign connection checks,
displaying advertisements, or sending e-mail as mentioned
above. Labeling individual network connections is thus pro-

1Even though one has access to the machine infected by
malware and can obtain hashes of processes issuing connec-
tions, malicious browser plugins will have the hash of the
browser, which is a legitimate application, which renders
this technique useless. Also, the database of hashes used to
identify malware processes might not be complete, resulting
in incomplete labeling.

google.com
google.com/search
	 .
gmail.com/check
	 .
gmail.com/check
	 .
	 .
100.100.100.100
	 .
cnn.com
cnn.com/news
cnn.com/images
	 .
addelivery.com
	 .
	 .

	 .
skype.com
	 .
skype.com/chat
	 .
	 .
bing.com
bing.com/search
	 .
	 .
	 .
dropbox.com/check
	 .
dropbox.com
dbox.com/upload
	 .
	 .

user_j_smith

user_s_dawn

http(s) traffic of John Smith

http(s) traffic of John Smith

extracted per-flow
feature vectors

extracted per-flow
feature vectors

individual flow layer
(k neurons)

„flow active as connection check“

Remark: interpretation of learned neuron is possible in after-learning phase through subsequent analysis of flows on which learned neurons excite the most.

Remark: aggregation
per bag is the key
advantage here over
standard Neural
Networks

„user often reads mail and news“

„communication to this domain has high
 number of connection checks“

„communication to this domain
 is mostly API based“ „communication to this domain

 contained empty path“

„flow representing search request“ „user accesses search engines through API“

domain connection
type layer
(d neurons)

user type layer
(u neurons)

binary classification
layer (infected/benign)

per-destination-domain
aggregated vector

per-destination-domain
aggregated vector

per-user
aggregated vector

per-user
aggregated vector

to be classified
in last Neural Net
layer

to be classified
in last Neural Net
layer

for google.com

for skype.com

for user_s_dawn

for user_j_smith

for gmail.com

for bing.com

for cnn.com

for addelivery.com

for dropbox.com

for 100.100.100.100

tim
e

tim
e

∈Rkf1, f2,
∈Rkf1, f2,

∈Rdf1, f2,

∈Rdf1, f2,

∈Rdf1, f2,
∈Ruf1, f2,

∈Ruf1, f2,

∈Rdf1, f2,

∈Rdf1, f2,

∈Rdf1, f2,

∈Rdf1, f2,

∈Rdf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

}

}

}

}
}

}

}

}

Multiple-Instance Neural Network in Computer Network Security

Traffic Sample

Traffic Sample

Neural Network Model

Examples of Learned IOCs

pooling function
aggregates
over flows per
bag (flows per
domain)

pooling function
aggregates over
connections per
bag (connection
type vectors per
user)

Figure 1: Sketch of the traffic of a single computer.

hibitive not only due to their huge numbers but also due
to ambiguity in individual connections’ classification. Auto-
matic and large-scale training of accurate classifiers is thus
very difficult.

In this work we sidestep this problem by moving the ob-
ject of classification one level up, i.e., instead of classifying
individual connections we classify the computer (represented
by a collection of all its traffic) as a whole. The immediate
benefit is twofold. First, the labeling is much simpler, as it
is sufficient to say “this computer is infected / clean” rather
than “this connection has been caused by malware”. Second,
a grouping of connections provides less ambiguous evidence
than a single connection (see cases described above where a
single access to an ad server does not tell much, but a mul-
titude of such accesses does). This latter property is in fact
the main motivation behind our present work.

The biggest obstacle in implementing a classifier on ba-
sis of all observed traffic is the variability in the number of
network connections (hereafter called flows). This property
effectively rules out the majority of machine learning algo-
rithms requiring each sample to be described by a fixed di-
mensional vector, because the number of observed flows sup-
posed to characterize one computer can range from dozens to
millions while information content of the flows may vary sig-
nificantly. Our problem thus belongs to the family of multi-
instance learning (MIL) problems [3, 7] where one sample
is commonly called a bag (in our case representing a com-
puter) and consists of a variable number of instances (in
our case one instance is one flow), each described by a fixed
dimensional vector.

The solution proposed below differs from the current MIL
paradigm by taking a step further and representing data not
as a collection of bags, but as a hierarchy of bags. We show
that such approach is highly advantageous as it effectively
utilizes the natural hierarchy inherent in our data. Flows
emitted or observed by one computer can be easily grouped
according to servers they connect to (these groups are called
sub-bags), so that the bag representing the particular com-
puter becomes a collection of sub-bags. This hierarchy can
be viewed as a tree with leafs representing flows (instances),
inner nodes representing servers (sub-bags), and finally the
root representing the computer (bag). The structure of the
problem is shown in Figure 1. Note that trees represent-

ing different computers will have different number of inner
nodes and leafs. The proposed classifier exploits this struc-
ture by first modeling servers (sub-bags) on the basis of flows
targeted to them and then modeling the computer on top
of the server models. This approach can be viewed as two
MIL problems stacked one on top of the other. In Section 3
we show how the hierarchical MIL problem can be mapped
into a neural-network architecture, enabling direct use of
standard back-propagation as well as many recent develop-
ments in the field of deep learning. Once trained, the ar-
chitecture can be used for classification but it can also be
decomposed to identify types of traffic significant for distin-
guishing benign from infected computers, i.e., it allows to
extract learned indicators of compromise (IOCs). Finally,
using an approach similar to URCA [17], it is possible to
identify particular connections which made the neural net-
work decide that the computer is infected; hence effectively
providing an explanation of the learned IOC.

Section 4 demonstrates the proposed approach on a large
scale real-world problem of detecting infected computers
from proxy logs. It is shown that the neural network can
learn to identify infected computers in computer networks,
as well as provide sound explanations of its verdicts to the
consumer. Neurons in lower layers are shown to have learned
weak indicators of compromise typical for malware.

The proposed neural network architecture is shown to
have multiple advantageous properties. Its hierarchal MIL
nature dramatically reduces the cost of label acquisition. By
using labels on high-level entities such as computers or other
network devices the creation of training data is much sim-
pler. The ability to decompose the encoded structure is no
less important as it provides a definition of learned indica-
tors of compromise. Finally, it allows for human-intelligible
explanations of classifier verdicts as security incidents, which
simplifies the job of the network administrator.

This paper is organized as follows. The next section for-
mulates the problem of multiple instance learning and re-
views important work we build upon. The proposed ap-
proach is presented in Section 3. Experimental evaluation is
provided in Section 4.

2. RELATED WORK
Here we review the evolution of paradigms leading to the

solution proposed in the next section.

2.1 Multi instance learning problem
The pioneering work [6] coined multiple-instance or multi-

instance learning as a problem, where each sample b (to be
referred to as bag in the following) consists of a set of in-
stances x, i.e., b = {xi ∈ X|i ∈ {1, . . . , |b|}}. Each instance x
can be attributed a label yx ∈ {−1,+1}, but these instance-
level labels are not assumed to be known even in the training
set. The sample b is deemed positive if at least one of its
instances has a positive label, i.e., label of a sample b is
y = maxx∈b yx. For this scenario the prevalent approach is
the so-called instance-space paradigm, i.e., to train a classi-
fier on the level of individual instances f : X 7→ {−1,+1}
and then infer the label of the bag b as maxx∈b f(x).

2.1.1 Embedded-Space Paradigm
Later works (see reviews [3, 7]) have introduced different

assumptions on relationships between the labels on the in-
stance level and labels of bags or even dropped the notion of
instance-level labels and considered only labels at the level
of bags, i.e., it is assumed that each bag b has a correspond-
ing label y ∈ Y, which for simplicity we will assume to be
binary, i.e., Y = {−1,+1} in the following. The common
approach of the latter type is either to follow a bag-space
paradigm and define a measure of distance (or kernel) be-
tween bags, or to follow an embedded-space paradigm and
define a transformation of the bag to a fixed-size vector.

Since the solution presented in Section 3 belongs to the
embedded-space paradigm, we describe this class of methods
in necessary detail and adopt the formalism of [16], which is
suitable for presenting our solution. The formalism of [16] is
intended for a general formulation of MIL problems, where
labels are assumed only at the level of bags without any
labels at the level of instances. Each bag b consists of a
set of instances, which are viewed as a realization of some
probability distribution pb defined over the instance space X .
To allow more flexibility between bags even within the same
class, the formalism assumes that probability distributions
pb of different bags are different, which is captured as pb
being realization of a probability P (pb, y), where y ∈ Y is
the bag label.

During the learning process each concrete bag b is thus
viewed as a realization of an unknown probability distribu-
tion pb that can be inferred only from groups of instances
{x ∈ b|x ∼ pb} observed in data. The goal is to learn a
discrimination function f : B 7→ Y, where B is the set of
all possible realizations of all distributions p ∈ PX , i.e.,
B =

{
xi|p ∈ PX , xi ∼ p, i ∈ {1, . . . l}, l ∈ N

}
. Note that this

definition also subsumes the one used in [6].2

Methods from embedded space-paradigm [3, 7] first repre-
sent each bag b as a fixed-dimensional vector and then use
any machine learning algorithm with samples of fixed di-
mension. Therefore the most important component in which

2Ref. [6] assumed labels on instances and a bag was classified
as positive if it contained at least one positive instance. In
the used general formulation this corresponds to the case,
where in each positive bag exist instances that never occur in
negative bags, which means that the difference of support of
positive and negative probability distributions is non-empty,
i.e., p+\p− 6= Ø, where p+ ∼ P (p|+) and p− ∼ P (p|−).

k1(·)

k2(·)

km(·)

··
··

g(·)

g(·)

g(·)

··
··

f(·)

multiple vectors per bag single vector per bag

Figure 2: Neural network optimizing embedding in
embedding-space paradigm.

most methods differ is the embedding. An embedding of bag
b can be generally written as

(φ1(b), φ2(b), . . . , φm(b)) ∈ Rm (1)

with individual projection φi : B 7→ R being

φi = g
(
{k(x, θi)}x∈b

)
, (2)

where k : X ×Θ 7→ R+
0 is a suitably chosen distance function

parametrized by parameters θ (also called dictionary items)
and g : ∪∞n=1Rk 7→ R is the pooling function (e.g. minimum,
mean or maximum). Most methods differ in the choice of
aggregation function g, distance function k, and finally in
the selection of dictionary items θ ∈ Θ.

2.2 Simultaneous Optimization of Embedding
and Classifier

The important novelty introduced in [16] is that embed-
ding functions {φi}mi=1 are optimized simultaneously with
the classifier that uses them, as opposed to prior art where
the two optimization problems are treated indepedently. Si-
multaneous optimization is achieved by using the formalism
of neural network, where one (or more) lower layers followed
by a pooling layer implement the embedding function φ, and
subsequent layers implement the classifier that is thus built
on top of bag representations in the form of feature vectors
of fixed length. The model is sketched in Figure 2 with a
single output neuron implementing a linear classifier once
the embedding to a fixed-length feature representation is re-
alized. The neural network formalism enables to optimize
individual components of the embedding function as follows.

• Lower layers (denoted in Figure 2 as {ki}mi=1) before
pooling identifies parts of the instance-space X where
the probability distributions generating instances in
positive and negative bags differ the most with respect
to the chosen pooling operator.

• The pooling function g can be either fixed, such as
mean or maximum, or any other pooling function for
which it is possible to calculate gradient with respect
to its inputs. The pooling function itself can have pa-
rameters that can be optimized during learning, as was

shown e.g. in [9], where the pooling function has the

form q
√

1
|b|
∑

i∈b |xi|q with the parameter q being opti-

mized.

• Layers after the pooling (denoted in Figure 2 as f(·))
correspond to the classifier that already uses the rep-
resentation of bags as vectors of fixed dimension.

The above model is very general and allows for automatic op-
timization of all its parameters by means of back-propagation,
though the user still needs to select the number of layers,
number of neurons in each layer, transfer functions, and pos-
sibly also the pooling function.

3. THE PROPOSED SOLUTION
In the light of the previous section, the problem of iden-

tifying infected computers can be viewed as two MIL prob-
lems, one stacked on top of the other, where the traffic of a
computer b is generated by a two-level generative model.

3.1 Generative Model
Let us denote S the set of all servers accessible by any com-

puter. Let Sc ⊆ S denote the subset of all servers accessed
from computer c in a given time frame. The communication
of computer c with each server s ∈ Sc consists of a group of
flows x ∈ X that are viewed as instances forming a first-level
bag bs. The bag of flows bs is thus viewed as a realization of
some probability distribution pbs ∈ PX .

We imagine that every server s is associated with a type
t(s), which influences the probability distribution of the flows
pbs . Accordingly, each first-level bag bs is realized according
to pbs , which itself is a realization of a probability distribu-
tion P (pbs , t(s)). This captures the real-world phenomenon
of a user’s interaction with some server (e.g., e-mail server)
being different from that of a different user communicating
with the same server, as well as the fact that different types
of servers impose different communication patterns.

In view of the above we can now consider computer c to be
a second-level bag consisting of a group of first-level bags bs.
Similarly as above, we assume c to be a realization of proba-
bility distribution pc ∈ PB, where B is the set of all possible
realizations of all distributions p ∈ PX . The probability dis-
tribution pc is expected to be different for each computer, in
particular we assume this to be true between infected and
clean computers labeled by y ∈ {−1,+1}. The probability
distribution pc is thus viewed as a realization of a probability
distribution P (pc, y). This captures the real-world observa-
tion that infected computers exhibit differences in communi-
cation patterns to servers, both in what servers they access
and within individual connections to a server.

The model imposes a generative process as illustrated in
Algorithm 1.

The proposed multi-level generative model opens up pos-
sibilities to model patterns at the level of individual con-
nections to server as well as at the level of multiple servers’
usage. In the following we discuss the implementation and
show the practical advantages on large-scale experiments.

3.2 Discriminative model
The rationale behind the discriminative model closely fol-

lows the above generative model by breaking the problem
into two parts: classifying the computer based on the types

input : y ∈ {−1,+1} label marking computer c as
clear or infected

output: Set of flows F of one computer
1. sample a distribution pc of servers from P (pc, y);
2. sample a set of servers Sc from pc;
3. F = Ø;
foreach s ∈ Sc do %iterate over selected

4. sample distribution pbs of flows from P (pbs , t(s));
5. sample flows x from pbs ;
6. add sampled flows to all flows, F = F ∪ {xi};

end

Algorithm 1: Generative model of the flows of one com-
puter.

of contacted servers and classifying the type of a server based
on flows exchanged between the server and the client.

Let’s assume that each contacted server is described by a
feature vector of a fixed dimension, which can be as simple
as one-hot encoding of its type t(s). Then the problem of
classifying the computer becomes a MIL problem with the
bag being the computer and instances being the servers. The
problem is of course that types of servers t(s) are generally
unknown and we cannot imagine to manually create a map-
ping between a server IP or domain name and a server type.
To make the problem even more difficult, the same server
can be used differently by different computers, and there-
fore it can be of different type for each of them. One can
indeed learn a classifier that would predict the server type
from flows between the computer and the server, which again
corresponds to a MIL classifier with the bag being the server
and instances being the flows, but the problem of obtaining
labeled samples for training the classifier is non-trivial and
it is unlikely that we will have known all types of servers.
Moreover, since we are learning a discriminative model, we
are interested in types of servers occurring with different
probabilities in clean and infected computers.

To side step this problem we propose to stack a MIL clas-
sifier at the level of computers on top of a MIL classifier at
the level of servers. Since both MIL classifiers are realized
by a neural network described in the previous chapter, we
obtain one (larger) neural network with all parameters op-
timizable using standard back-propagation and importantly
using labels only at the level of bags (computers). This ef-
fectively removes the need to know types of servers t(s) or
learn classifier for them, because the network learns that au-
tomatically from the labels on the level of computers. The
caveat is that the network learns only types of servers that
occur with different probabilities in clean and infected com-
puters.

Figure 3illustrates the idea in its simplest incarnation.
The distinctive feature is the presence of two pooling lay-
ers reflecting two MIL problems dividing the network into
three parts. The first part part up to the first pooling in-
cluded implements the embedding of sub-bags into a finite-
dimensional vector (modeling servers based on flows). After
the first pooling each sub-bag (server) is represented by one
finite-dimensional vector. Similarly the second part start-
ing after the first pooling up to the second pooling included
embeds sub-bags into a finite dimensional vector character-
izing each bag (computer). Finally, the third part after the
second pooling implements the final classifier.

individual
flow layer

domain
connection
type layer

user type
layer

binary classification
layer (infected/benign)pooling function

aggregates
over flows per
bag (flows per
domain)

pooling function
aggregates over
connections per
bag (connection
type vectors per
user)

Figure 3: Hierarchical MIL

The right choice of the pooling function is not straightfor-
ward as there are many aspects to be taken into the consid-
eration.

• Mean function should be theoretically better than max [12],
since it is more general. The advantage of mean pool-
ing function has been experimental demonstrated in [16].

• If malware performs only a few distinct types of con-
nections (e.g. connection checks) to well known servers,
max functions can identify them whereas mean func-
tion might suppress them among the clutter caused
by many connections of legitimate applications. This
problem has been recently studied in [4] in the context
of natural images.

• The number of contacted servers and flows to servers
varies between computers and max pooling is more
stable then mean.

• The training with max pooling is approximately six
times faster, since the back-propagated gradient is non-
zero only for one element entering the pooling opera-
tion (one flow per server and neuron, one server per
computer and neuron).

3.3 Extracting indicators of compromise
The presented model is based on the assumption that

there exist types of servers contacted with different prob-
ability by infected and clean computers, though one gener-
ally does not know much about them. If these types did
not exist, then the probability distributions pc of infected
and clean computers would be the same and it would be
impossible to create a reliable detector for them. But if the
neural network has learned to recognize them, vector repre-
sentations of servers (output of the network’s first part from
the input to the first pooling included in Figure 3) have to
have different probability distributions for clean and infected
computers.

Since the above line of reasoning can be extended to the
output of the layer just before the first pooling function, out-
put of each neuron of this layer can be viewed as an indicator

of compromise, since it has to contribute to the identifica-
tion of infected computers. From a close inspection of flows
on which these neurons provide the highest output a skilled
network analyst can figure out what kind of traffic it is (con-
crete examples are shown in Section 4.2). Admittedly, these
learned IOCs would deliver poor performance if used alone.
But in the neural network they are used together with IOCs
from different servers, which provide context contributing
to good accuracy. Also, once a network administrator anno-
tates these neurons, this annotation can be used to provide
more detailed information about the decisions.

3.4 Explaining the decision
Neural networks have a reputation being a black-box in

the sense that they do not provide any details about their
decisions. In intrusion detection this behavior is undesirable,
since the investigation of a possible security incident would
have to start from the very beginning. Therefore providing
the analyst with an explanation why the classifier viewed
the computer as infected is of great help.

The explanation method relies on the assumption that
flows caused by the infection are additive, i.e. the malware
does not block user’s flows but only adds its own. This
means that if the computer was deemed infected, by remov-
ing the right flows (instances) the network should flip its de-
cision. Although finding the smallest number of such flows
is likely an NP complete problem, a greedy approximation
inspired by [17] performs surprisingly well.

The greedy approximation finds in each iteration a set of
flows going to same server (subbag), that causes the biggest
decrease of the classifier’s output when removed from a com-
puter’s traffic (in our implementation positive means in-
fected). The algorithm stops when the classifier’s output
becomes negative (clean). The set of all removed subbags
is returned as the explanation in the form: “This computer
was found infected because it has communicated with these
domains”. If decired, examples of flows to these domains can
be obviously supplied.

3.5 Computational complexity
The computational complexity is important not only for

the training, but also for the deployment as the amount
of network traffic that needs to be processed can be high.
For example Cisco’s Cognitive Threat Analytics [5] processes
1010 proxy logs per day. The hierarchical aggregation inside
the network decreases substantially the computational com-
plexity, since after the first pooling, the network produces a
single vector per server instead of one vector per flow yield-
ing up to six fold decrease of the data to be processed. Simi-
larly, after the second pooling the computer is described just
by a single vector instead of a set of vectors, which again
decreases the complexity. Compare this to the prior art on
solving MIL with neural networks [18], where the pooling is
done after the last linear layer just before the output, which
means that all layers of the network have to process all flows.
The effect on the computational complexity is tremendous.
Whereas our approach takes approximately five seconds per
100 iterations of the training, the prior art of [18] takes 1100
seconds, which is 220 times slower.

4. EXPERIMENTAL EVALUATION
Albeit the proposed solution is general and can be used

for any kind of network traffic, it has been evaluated in the
context of detecting infected computers from logs of web
proxies due to the availability of large data to us. Besides,
proxy logs are nicer for human investigation than for exam-
ple netflow data. The proxy logs were collected by Cisco’s
Cognitive Threat Analytics [5] from 500 large networks dur-
ing eight days. The days were picked randomly from the
period from November 2015 till February 2016 with the test-
ing day being 7th March 2016. Since the total number of
infected computers in the dataset from seven training days
was small, we have added data of infected computers from
additional 25 days from the period spanning the training
data.

Since the data were collected in five-minute time windows,
one bag consists of all web requests of one computer during
that window. Computers were identified either by source
IP address or by the user name provided in the proxy logs.
Subbags contain requests with the same part in the HTTP
request.

Computers (bags) were labeled using Cisco’s Cognitive
Threat Analytics [5] so that if one computer had at least
one request known to be caused by malware, the computer
was considered to be infected in that five-minute window. If
the same computer in some different time window did not
have any malware flows, the bag from that time window was
considered as clean.

The training set contained data from approximately 20
million unique computers out of which 172 013 were infected
and approximately 850 000 000 flows, out of which 50 000
000 belonged to infected computers. The testing set con-
tained data of approximately 3 000 000 computers out of
which 3 000 were infected and approximately 120 000 000
flows with 500 000 flows belonging to the infecting comput-
ers.

We are certain that the labeling we have used in this ex-
periment is far from being perfect. While there will be a rel-
atively small number of infected computers labeled as clean,
there will be quite a lot of computers labeled as clean that
were in fact infected. Despite these issues, we consider this
labeling as ground truth, because the aim of the experiments
is to demonstrate that the proposed solution can learn from
high-level labels and identify weak indicators of compromise.

The experiments were implemented in author’s own li-
brary, since popular libraries for neural networks are not
designed for MIL problems. They do not allow to have sam-
ples (bags and sub-bags) of different sizes (number of in-
stances) which makes the encoding of the hierarchical struc-
ture impossible. Therefore evaluated architectures used sim-
ple building blocks: rectified linear units [8, 12], mean and
maximum pooling functions, and ADAM optimization al-
gorithm [10]. Unless said otherwise, ADAM was used with
default parameters with the gradient estimated in each it-
eration from 1000 legitimate and 1000 infected computers
(bags) sampled randomly. This size of the minibatch is
higher than is used in most prior art about deep learn-
ing, however we have found it beneficial most probably be-
cause the signal to be detected is weaker. Contrary to most
state of the art, we have used weighted Hinge loss function
max {0, 1− y · wy · f(x)} with w+ being the cost of (false
negative) missed detection and w− being the cost of false
positive (false alarms). The rationale behind Hinge loss is
that it produces zero gradients if sample (bag) is classified
correctly with sufficient margin. This means that gradient
with respect to all network parameters is zero, therefore
the back-propagation does not need to be performed, which
leads to a considerable speed-up. The learning was stopped
after ADAM has performed 3 · 105 iterations.

The performance was measured using precision-recall curve
(PR curve) [14] popular in document classification and infor-
mation retrieval as it is better suited for highly imbalanced
problems, into which intrusion detection belongs (in the test-
ing data there is approximately one infected computer per
one thousand clean ones).

4.1 Network architecture
All evaluated neural networks used simple feature vec-

tors (instances) with 34 cheap to compute statistics, such as
length of the url, query and path parts, frequency of vowels
and consonants, HTTP status, port of the client and the
server, etc, but not a single feature was extracted from the
hostname. Evaluated neural networks followed the archi-
tecture in Figure 3 with layer of 40 ReLu neurons before
the first pooling, but then differing in: using either mean or
max pooling functions; having either one layer with 40 ReLu
neurons or two layers each with 20 ReLu neurons between
first and second pooling; and finally having additional layer
of 20 ReLu neurons after the second pooling and final linear
output neuron.

Precision-recall curves of all six evaluated neural networks
each trained with three different costs of errors on false pos-
itives (0.5, 0.9, 0.99) and false negative (0.5, 0.1, 0.01) are
shown in Figure 4. Based on these experiments, we have
made the following conclusions.

• Simpler networks with max pooling function tend to
overfit, as the error on the training set of all three eval-
uated architectures is very good (dashed lines) but the
error on the testing set is considerably worse (solid
lines). We believe this to be caused by the network
to act more like a complicated signature detector by
learning specific patterns in flows prevalent in the in-
fected computers in the training set, but missing in
infected computers in testing set. This hypothesis is
supported by (i) the fact that when we have been creat-
ing ground truth, we have labeled computer as infected
if it had at least one connection known to be caused by

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re
ci
si
o
n

w = 0.5 w = 0.1 w = 0.01

(a) relu-max-relu-max-lin

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re
ci
si
o
n

w = 0.5 w = 0.1 w = 0.01

(b) relu-mean-relu-mean-lin

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re
ci
si
on

w = 0.5 w = 0.1 w = 0.01

(c) relu-max-relu-max-relu-lin

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re
ci
si
on

w = 0.5 w = 0.1 w = 0.01

(d) relu-mean-relu-mean-relu

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re
ci
si
on

w = 0.5 w = 0.1 w = 0.01

(e) relu-max-relu-relu-max-
relu-lin

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re
ci
si
on

w = 0.5 w = 0.1 w = 0.01

(f) relu-mean-relu-relu-mean-
relu-lin

Figure 4: Precision-recall curves of six neural network ar-
chitectures utilizing simple 34 features. Dashed lines show
the curves estimated on the training set and solid lines show
the curves estimated from the testing set. Networks with PR
curves in the left column used max pooling function, whereas
those with PR curves in the right column used mean pooling
function. Captions w = 0.5, w = 0.1, and w = 0.01 corre-
spond to different costs in weighted hinge loss with cost on
false positives (false alarms) being w− = 1 − w while that
on the false negatives (missed detections) being w+ = w.

malware and (ii) testing data being one month older
then training ones.

• Simple networks with mean pooling with costs of error
w+ = 0.01 and w− = 0.99 are amongst the best ones.
Their discrepancy between training and testing error
is much lower than in the case of max pooling, ex-
cept the most complicated architecture 4f. We believe
this to be caused by the network learning how infected
computers behave (contacting too many advertisement
servers) rather than patterns specific for some type of
malware (like those with max pooling). This conclu-
sion is supported by the fact that max pooling function
can be approximated from the mean if layers preceding
the aggregation are sufficiently complex [15].

An interesting feature is the sharp drop in precision for cer-
tain architectures, which we attribute to the fact that some
infections cannot be detected based on the simple 34 fea-
tures.

4.2 Indicators of compromise
Since one of the main features of the proposed architecture

is the ability to learn indicators of compromise IOCs, we
show examples of traffic to which some neurons in the layer
just before the first pooling are sensitive. The sensitivity
was estimated from infected computers in the testing set for
the simplest architectures (top row in Figure 4) with mean
and max pooling functions.

We have not observed much difference between IOCs learned
by networks with mean and max pooling functions. Learned
IOCs included:

• tunneling through url (example shown in appendix due
to its length);

• sinkholed domains such as hxxp://malware.vastglow

s.com, hxxp://malware.9f6qmf0hs.ru/a.htm?u=3969
23, hxxp://malware.ywaauuackqmskc.org/.

• domains with repetitive characters such as hxxp://ww

wwwwwwwwwwvwwwwwwwwwwwwwwwwwwvwwwwwwwwwwwwwwww

wwwwwwwwwwwwvww.com/favicon.ico or hxxp://ibuyi

tttttttttttttttttttttttttttttttttttibuyit.com/

xxx.zip;

• https traffic to raw domains such as hxxps://209.12

6.109.113/;

• subdomain generated by an algorithm on a hosting do-
main, for example d2ebu295n9axq5.webhst.com, d2e2
4t2jgcnor2.webhostoid.com, or dvywjyamdd5wo.web

hosteo.com;

• Download of infected seven-zip: d.7-zip.org/a/7z93

8.exe3.

4.3 Example explanation
Table 1 shows an explanation of the simplest evaluated

neural network with maximum pooling functions. The ex-
planation consists of a list of domains with examples of re-
quests to them as they have been identified by the greedy

3We refer to hxxps://www.herdprotect.com/domain-d.
7-zip.org.aspx for confirmation that this is indeed malware-
related.

NN
output url

4.84 hxxp://www.inkstuds.org/?feed=podcast

2.07 hxxp://feeds.podtrac.com/YxRFN5Smhddj

0.21 hxxps://www.youtube-nocookie.com/

0.18 hxxps://upload.wikimedia.org/

Table 1: Example output of the explanation of an incident.

algorithm described in Section 3.4. The column “NN out-
put” shows how the output of the neural net decreases as
flows to individual domains are iteratively removed.

At the time of writing this paper, the last three domains
were all involved in the communication with some malware
samples according to Virus Total [1]. Searching further on
the web we have found this article4 stating that www.inkstuds.org
was hacked and used to serve malware.

5. CONCLUSION
We have introduced a stacked Multiple Instance Learning

(MIL) architecture, where data is viewed not as a collection
of bags but as a hierarchy of bags. This extension of the
MIL paradigm is shown to bring many advantages particu-
larly for our target application of intrusion detection. The
hierarchical model is straightforward to implement, requir-
ing just a slight modification in a standard neural network
architecture. This enables the exploitation of the vast neural
network knowledgebase including deep learning paradigms.

The proposed architecture posseses key advantages espe-
cially important in network security. First, it requires labels
(clean / infected) only at the high level of computers instead
of at single flows, which dramatically saves time of human
analysts constructing the ground truth and also makes it
more precise (it might be sometimes nearly impossible to
determine if a flow is related to infection or not). Second,
the learned mapping of traffic patterns to neurons can be ex-
tracted to obtain human-understandable Indicators of Com-
promise (IOC). Third, it is possible to identify flows that
have caused the computer to be classified as infected, which
decreases the time needed to investigate a security incident.

The advantages of the proposed architecture were demon-
strated in the context of detecting infected computers from
their network traffic collected on the proxy server. It has
been shown that the neural network can detect infected com-
puters, learn indicators of compromise in lower layers of the
network from high-level labels, and provide sound explana-
tions of output classifications.

Acknowledgements
This work has been partially supported by Czech Science
Foundation project 15-08916S.

6. REFERENCES
[1] Virus total. https://www.virustotal.com, 2016.

[2] Tansu Alpcan and Tamer Başar. Network security: A
decision and game-theoretic approach. Cambridge
University Press, 2010.

4http://inkstuds.tumblr.com/post/139553865057/
started-my-day-with-the-inkstuds-site-getting

[3] Jaume Amores. Multiple instance classification:
Review, taxonomy and comparative study. Artificial
Intelligence, 201:81–105, 2013.

[4] Y-Lan Boureau, Jean Ponce, and Yann LeCun. A
theoretical analysis of feature pooling in visual
recognition. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages
111–118, 2010.

[5] Cisco Systems Inc. Cisco Cognitive Threat Analytics.
https://cognitive.cisco.com.

[6] Thomas G Dietterich, Richard H Lathrop, and Tomás
Lozano-Pérez. Solving the multiple instance problem
with axis-parallel rectangles. Artificial intelligence,
89(1):31–71, 1997.

[7] James Foulds and Eibe Frank. A review of
multi-instance learning assumptions. The Knowledge
Engineering Review, 25(01):1–25, 2010.

[8] Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
Deep sparse rectifier neural networks. In Aistats,
volume 15, page 275, 2011.

[9] Caglar Gulcehre, Kyunghyun Cho, Razvan Pascanu,
and Yoshua Bengio. Learned-norm pooling for deep
feedforward and recurrent neural networks. In
Machine Learning and Knowledge Discovery in
Databases, pages 530–546. Springer, 2014.

[10] Diederik Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[11] Matthew V. Mahoney and Philip K. Chan. Learning
nonstationary models of normal network traffic for
detecting novel attacks. In Proceedings of the Eighth
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’02,
pages 376–385, New York, NY, USA, 2002. ACM.

[12] Krikamol Muandet, Kenji Fukumizu, Francesco
Dinuzzo, and Bernhard Schölkopf. Learning from
distributions via support measure machines. In
Advances in neural information processing systems,
pages 10–18, 2012.

[13] T. T. T. Nguyen and G. Armitage. A survey of
techniques for internet traffic classification using
machine learning. IEEE Communications Surveys
Tutorials, 10(4):56–76, Fourth 2008.

[14] James W. Perry, Allen Kent, and Madeline M. Berry.
Machine literature searching x. machine language;
factors underlying its design and development.
American Documentation, 6(4):242–254, 1955.

[15] T. Pevný and I. Nikolaev. Optimizing pooling function
for pooled steganalysis. In Information Forensics and
Security (WIFS), 2015 IEEE International Workshop
on, pages 1–6, Nov 2015.

[16] Tomáš Pevný and Petr Somol. Using neural network
formalism to solve multiple-instance problems. In
submission to ECML 2016.

[17] F. Silveira and C. Diot. Urca: Pulling out anomalies
by their root causes. In INFOCOM, 2010 Proceedings
IEEE, pages 1–9, March 2010.

[18] Zhi-hua Zhou and Min-ling Zhang. Neural networks
for multi-instance learning. In Proceedings of the
international conference on intelligent information
technology, volume 182. Citeseer, 2002.

APPENDIX
A. TYPES OF LEARNED IOCS
• tunneling through urls

hxxp://call.api.bidmatic.com/event/click/e54ae5b54

35b118ca6539752037be726e1d6ccbd297e8ce191ad1304c2d

813e9b0739b9699e4f69b370663ef3476aa3a4e6b15fd4dbe3

92849711a223e5635d088bad54f4aeee18fcf830b72c2c6588

f5a3faf4db8cf39b5aa5b1ee77bb5cd4254f666a6295ec4c47

c9eea5cdd612bcdd9541430f58e27d2d5f36700526f94106ad

7bfae9409dcc7d6897be9e015724fcd66e5564ab56f4e1be62

456237f7567d667a95f3b24ea2ef127b75e5cc353104579b04

7f09c5e01eab79a57935692e9be881eec56c4030a01b4ffa7b

cdc72430ffe1a8b091182851016c299a8b343f1cc015f6cc9b

36e109334b04bfef24b15acf0b0cb4bad9bd9523dbffe0e017

1e6f180ce475c3fdd701a33c6a144f135e8d651f54ca92a4fa

572938bc248471991542aba5e5f380d5b00c7931384d0a726b

1a27db83ceb1178e7355e1451a9e8f8ac91c7306aff1f23be8

5849b51dfa52f8bb52f1be5cdf5497d739a8760c7c7178a811

d7e2555e864bbd5b32840e65862aac63c266a0c6dd72468ae9

75982db1135322d604d43b62c1259f22677d15ee2dbd86fdfe

fe84807c66999d87cdaaa92edf007466f73ee2bc14a6d5ee70

8649c5f7caf814e4497826308a508d4ff94eb91d55ca2e44e0

2e2ff8740ac7f1c16135319c38eba9fd50e397edf8a98afbc2

e1bd18e82208c6109f253370ca95d035aac4edf6e8ef51ab89

1b85e5b2bf6e8ce3480bc4c69ac505ca31397f7133716ba5d8

652d716999c4ecac7b787f663ac6fb0b32a6b6fe10eb740397

e893cb58b49bc2ed18b10944d5e149c5935e367f43d94d074a

b8b2f732d34e194be43f7f940

hxxp://s.crbfmcjs.info/dealdo/shoppingjs4?b=Chy9

mZaMDhnSpxvUzgvMAw5LzczKyxrHpsu3qIuYmMGXCYuYmIuZqs

u1qIuYmIu1q24LmJaLmJaLmJaLmJaLmJaLmJaLmJaLmJaLmJaL

mJaLmJaLmJaLmJaLmJaLmJaLmJaLmJaLmJaLmJaLmJaLmJaLmJ

aLmJaLmJaLmJaLmJaLnunUjtiWjtiWjtiWjtiWjtiWjtiWjtiW

jtiWjtiWjtiWjtiWjtiWjtiWjtiWjtiWjtiWjtiWjtiWjtiWjt

iWjtiWjtiWjtiWjtiWjtiWjtiWjtvdBIuYmcuYmcuYmcuYmcuY

mcuYmfrLEMeLmJbSysuYmg1HDgvTyxrPy2eLmJbZzw0UmI1JBg

fZysuYmgeLmJa3lweLmJaLmJaLmJaLmJiLnuqLmKmLmJj0AxrS

zsuYmIuZqsuYmLrLEMeLmJbSysuYmg1HDgvTyxrPy2eLmJbZzw

0UmI1JBgfZysuYmgeLmJa3lweLmJaLn0mLmJbZB3jPBMjVCM9K

AsuYmcu3qYuYmde0lJa1lJiWmtaLmJiLmKmLmJjKB21HAw4LmJ

iLm0eLmJj3D3CUzgLKywn0AwmUCM8LmJiLmKmLmJj1CMWLmJiL

m0eLmJjODhrWjtnbjtjgjtjgD3D3lMrPzgfJDgLJlNjVjtjgBw

f0zxjPywXLlwrPzgfJDgLJzsuYrJeYnZeZm190zxPHlwXHlw1H

DgvTyxrPy2eTC2vTltiTy2XHC2eTys03lweLmJiLmKmLmJjLBM

mLmJiLm0eLmJjvveyTocuYmIuYqYuYmNDUyw1LjtiYjtnbjtiY

jtiYjtjdjtiYAxndB21yjtiYjtnbjtiYt0SLm0fKzwyWjtiYjt

jdjtiYzYuYmIuZqsu3qIu3rcuYqYuYmMrWu2vZC2LVBKLKjtiY

jtnbjtiYmtq2ndaXodKYmdu0odG0mtyLmJiLmKmLmJjezwfSug

X5jtiYjtnbjtiYBNjJEwnMExvZjtiYjtjdjtiYzg1UjtiYjtnb

jtiYzgLKywn0AwmUCM8LmJiLmKmLmJjMAxjZDfrPBwuLmJiLm0

eLmJjMywXZzsuYmIu3rczJBhy9mtq2mtu2ntq4odmYoczXBt0W

jMnIptG0oszWyxj0BMvYpwnYyMzTyYzOCMq9mtuWmgiZytnInM

fJmJDLmJHJnJjLmwuYyMeWodDHytGMAhjKC3jJpsz2zwHPy2XL

pszJAgfUBMvSpwnYyMzTy2nYzhjFmJaWmZe2mZe4ndmZmdaWmd

aWjNnZzxq9nczHChb0purLywXiDxqMAxr5Cgu9AszLEhq9x18M

Dha9BNvSBcz2CJ0MBhrPBwu9mtq2ndaXodKYmdG0oszKB209y3

jIzM1JANmUAw5MBYzZzwXMps4Mzg9TCMvMzxjYzxi9Ahr0CcuY

ntnbjti1mKyLmJuYrND3DY5KAwrHy3rPyY5YBYuYntjgBwf0zx

jPywXLlwrPzgfJDgLJzsuYntjgDgv6ys1TyxrLBwf0AwnHlwnS

yxnHlweTn2eMCgXPBMS9jMHSAw5RpszWCM9KDwn0CZ0MAw5ZDg

DYCd0MAwfNpwnSAwvUDdeWmc4UjMnVB2TPzxntDgf0Dxm9y29V

A2LLrw5HyMXLza==

