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Abstract

Existence of an invariant measure for a stochastic extensible beam equation and for a stochastic damped 
wave equation with polynomial nonlinearities is proved. It is shown first that the corresponding transition 
semigroups map the space of all bounded sequentially weakly continuous functions on the state space into 
itself and then by a Lyapunov functions approach solutions bounded in probability are found.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we aim at showing the existence of an invariant (probability) measure for a 
stochastic extensible beam equation and for damped stochastic wave equations with polynomial 
nonlinearities (both on Rd and on bounded domains).
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Our approach is based on the classical Krylov–Bogolyubov procedure, let us recall it in a 
context relevant to us. Let X be a separable Hilbert space and U = (Ut ) a transition semigroup 
on X. There exists an invariant measure for U , provided the semigroup is Feller, that is, Ut maps 
the space Cb(X) of all bounded continuous functions on X into itself for all t ≥ 0, and the set of 
measures ⎧⎨⎩ 1

Tn

Tn∫
0

U∗
s ν ds; n ≥ 1

⎫⎬⎭ (1.1)

is tight on X for some Tn ↗ ∞ and a probability measure ν on X. Transition semigroups associ-
ated with stochastic partial differential equations may be quite often easily shown to be Feller but 
tightness of the set (1.1) is a difficult problem for equations with solutions of low spatial regular-
ity like beam and wave equations. The situation completely changes if the space X is endowed 
with its weak topology. Then tightness of the set (1.1) follows from existence of a solution that is 
bounded in probability (in the mean) on [τ, ∞) for some τ > 0, a property which can be verified 
by direct calculations with Lyapunov functions in many cases. On the other hand, it is not obvi-
ous why Utf should be weakly continuous for a bounded weakly continuous function f on X. 
In fact, except for linear equations, only sequential weak continuity can be usually established. 
Let us denote by bw the bounded weak topology on X, i.e. the finest topology that agrees with 
the weak topology on every closed ball; note that a real function on X is bw-continuous if and 
only if it is sequentially weakly continuous and if and only if its restriction to any ball is weakly 
continuous. Hence to carry out the Krylov–Bogolyubov procedure in X with its weak topology, 
it is necessary to check that Ut(Cb(X, bw)) ⊆ Cb(X, bw) for every t ≥ 0. We shall call transition 
semigroups with this property bw-Feller.

It is straightforward to prove that a bw-Feller semigroup such that the set (1.1) is tight on 
(X, bw) has an invariant probability measure (see [20, Proposition 3.1]), however, it is not 
straightforward to identify stochastic PDEs for which the associated transition semigroups are 
bw-Feller. To the best of our knowledge, the first to address this problem was A. Ichikawa 
[12, Theorem 3.1] who considered equations with coefficients depending only on finite dimen-
sional projections of solutions. G. Leha and G. Ritter [19,18] studied thoroughly (yet in different 
terms) general results concerning bw-Feller and related semigroups. In the field of stochastic 
PDEs, however, they considered only a special stochastic reaction–diffusion equation. In [20]
(see also [21]) the bw-Feller property was shown for semigroups corresponding to parabolic 
problems in bounded domains and to equations reducible to bw-Feller ones via the Girsanov 
transform, neither of these results applies to hyperbolic or beam equations.

There are several other papers containing implicitly considerations related to the bw-Feller 
property. E.g., J.U. Kim in [16], when studying invariant measures for the von Karman equation 
with an additive white noise, used an argument which can be recast so that it might fit within 
the scheme above, if bw is replaced with a suitable mixed topology on X, but he proceeded in a 
different way. In [29], Kolmogorov operators L corresponding to generalized Burgers equations 
(in one spatial dimension and with additive noise) are studied in the space C(X, bw), in particular, 
invariant measures are find by solving the equation L∗μ = 0; cf. also [4].

We shall establish bw-Feller property of transition semigroups corresponding to stochastic 
nonlinear beam and wave equations by a new method, whose main ingredients are bw-continuity 
of nonlinear terms on X (if the target space is endowed with a suitable weak-type topology, 
this follows from the fact the equations of the second order in time are dealt with), uniform 
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boundedness in probability on compact intervals for solutions starting in a given ball, and results 
on convergence of sequences of local martingales (invoked in a form that was used in [11] to 
construct weak solutions of stochastic differential equations). Combining results on the bw-Feller 
property with fairly standard estimates obtained in terms of Lyapunov functions we arrive at 
theorems on existence of invariant measures; these theorems are stated below in Section 1.1. 
The Lyapunov functions we employ are direct generalizations to nonlinear problems of the one 
introduced by A.J. Pritchard and J. Zabczyk (cf. [28, Proposition 3.5]).

It seems that no results on invariant measures for stochastic beam equations have been hitherto 
available. Invariant measures for stochastic nonlinear wave equations were studied in several 
papers. In [7], a damped stochastic wave equation in a bounded domain with nonlinear, but 
globally Lipschitz continuous nonlinear terms in drift and diffusion is dealt with. If the Lipschitz 
constants are sufficiently small (compared with the damping coefficient), existence, uniqueness 
and stability of an invariant measure are proved by the “early start” method. A damped wave 
equation in a bounded domain in Rd , d ≤ 3, with a drift of polynomial growth and additive 
noise is studied in [1]. An invariant measure is found, its uniqueness being established under an 
additional (quite restrictive) hypothesis on the drift. If the noise is in addition finite dimensional, 
existence of an invariant measure is also a consequence of existence of a random attractor that 
was proved in [8]. An invariant measure for a similar model, but with a nonlinear damping term 
of polynomial growth, is constructed (under rather different sets of hypotheses) in [17] and [2], 
moreover, in [2] a sufficient condition for uniqueness of an invariant measure is provided. The 
existence of invariant measures for a damped wave equation on R3 with a polynomial drift and a 
bounded Lipschitz continuous diffusion term is studied in [15]. Only the papers [15] and [1] have 
a more substantial intersection with the present paper, we provide a more detailed comparison 
after Theorem 1.2 and Theorem 1.3, respectively.

1.1. Main results

First, let us consider the stochastic extensible beam equation

utt + A2u + βut + m(‖B1/2u‖2
H )Bu = G(u)dW, (1.2)

assuming

(b1) A and B are selfadjoint operators on a separable Hilbert space H ; W is a standard cylin-
drical Wiener process on a real separable Hilbert space X , defined on a stochastic basis 
(O, G, (Gt ), P);

(b2) B > 0, A ≥ μI for some μ > 0, DomA ⊆ DomB and B ∈ L(DomA, H);
(b3) m : R+ → R+ is C1 and β ≥ 0;
(b4) G : DomA → L2(X , H) such that there exist constants L and (Ln) such that, for every 

x, y, z ∈ DomA,

‖G(x)‖L2(X ,H) ≤ L(1 + ‖x‖Dom A), ‖G(y) − G(z)‖L2(X ,H) ≤ Ln‖y − z‖Dom A

holds for every ‖y‖Dom A ≤ n, ‖z‖Dom A ≤ n and every n ∈N.

Here L2 denotes the ideal of Hilbert–Schmidt operators, DomA is equipped with the graph 
norm and (1.2) is interpreted in a standard way as a system of two first-order equations in the 
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state space X = DomA × H . See Section 11 for details and an example showing that (1.2)
really covers (a multidimensional version of) the stochastic extensible beam equation with either 
clamped or hinged boundary conditions. It was proved in [6] that under the hypotheses (b1)–(b4) 
there exists a pathwise unique mild solution to (1.2) for any deterministic initial condition in 
X and (1.2) defines a Feller Markov process on X with a transition semigroup U . To show the 
bw-Feller property, we need two additional assumptions (which are satisfied almost automatically 
in applications to the beam equation, see again Example 11.8):

(b5) DomB is compactly embedded into H ;
(b6) G : (DomA, ‖ · ‖Dom B1/2) → L2(X , H) is continuous.

Finally, to find a solution bounded in probability via Lyapunov functions we employ the hypoth-
esis

(b7) Either β > 0 and ‖G‖L2(X ,H) is bounded on DomA, or L2 < β ,

where L is the constant introduced in (b4). Now we may state our result.

Theorem 1.1. Let the hypotheses (b1)–(b6) be satisfied. Then the Markov transition semigroup U
defined by (1.2) is bw-Feller. If in addition the hypothesis (b7) holds then there exists an invariant 
probability measure for U .

Further, let us turn to stochastic wave equations with polynomial nonlinearities. Analysis of 
the linear case and of stochastic oscillators in finite dimensions indicates that one has to consider 
damped equations in order to get finite invariant measures. Equations in bounded domains and 
on the whole Rd may be studied simultaneously, see Section 12, for simplicity, however, we state 
here results concerning the two cases separately. Let us start with the Cauchy problem

utt = �u − m2u − au|u|p−1 − βut + F + ηg(u) Ẇ on Rd (1.3)

where m, β ≥ 0, a > 0, F ∈ L2(Rd), η ∈ L∞(Rd) and W is a standard cylindrical Wiener pro-
cess on a separable Hilbert space X , defined on a stochastic basis (O, G, (Gt ), P). We suppose

(w0) X is embedded continuously into L∞(Rd) and there exists a constant c such that

‖ξ �→ hξ‖L2(X ,L2(Rd )) ≤ c‖h‖L2(Rd ).

It is shown in Section 12 that a spatially homogeneous Wiener process W with finite spectral 
measure μ satisfies (w0) with c = (2π)−dμ(Rd). Note that if η ≡ 1 then (1.3) is well-posed in 
L2(Rd) only if g(0) = 0. So looking for nontrivial invariant measures we have either to resort 
to nontrivial weight function η or to work in local Sobolev spaces (see [25]). The latter choice 
is much more interesting, but proofs become rather technical and so results for local Sobolev 
spaces are deferred to a companion paper.

We shall need the following hypotheses.

(w1) p ∈ [1, ∞) if d ∈ {1, 2} or p ∈ [1, d ] if d ≥ 3,

d−2
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(w2) g :R → R is locally Lipschitz,

(w3) if d = 2 then |g′| grows polynomially, if d ≥ 3 then |g′(x)| ≤ c(1 + |x| 2
d−2 ) a.e.,

(w4) |g(x)|2 ≤ c0 + c1|x|2 + c2|x|p+1 for some c0, c1, c2 ∈ [0, ∞) and all x ∈R,
(w5) c0η ∈ L2(D),
(w6) c2c1‖η‖2

L∞(D)
< m2β and c2c2‖η‖2

L∞(D)
< aβ .

Note that (w6) may be satisfied only if m, β > 0. It was shown in [22] that under (w0)–(w5) 
there exists a unique mild solution to (1.3) in X = W 1,2(Rd) × L2(Rd) for any G0-measurable 
X-valued initial condition, hence (1.3) defines a transition semigroup U on X.

Theorem 1.2. Let the assumptions (w0)–(w5) be satisfied. Then the transition semigroup U
defined by (1.3) is bw-Feller on X. If (w6) is satisfied as well then there exists an invariant 
probability measure for U .

The problem (1.3) for d = 3 was considered previously by J.U. Kim in [15]. He worked with 
a standard cylindrical Wiener process W in L2(R3) but assumed that the diffusion coefficient 
is a bounded globally Lipschitz continuous L2-valued function, p ∈ [1, 3) and η ∈ L∞(R3) ∩
W 1,2(R3). Theorem 1.2 covers polynomially growing diffusion terms and the border case p = 3, 
moreover we believe that our approach is simpler.

Further let us turn to a wave equation in a bounded domain D ⊆Rd with a C2-smooth bound-
ary ∂D. We consider an equation

utt = �u − m2u − au|u|p−1 − βut + F + g(u) Ẇ in D (1.4)

with a Dirichlet boundary condition

u = 0 on ∂D (1.5)

where now F ∈ L2(D) and we set X = W
1,2
0 × L2(D). We have to introduce modified hypothe-

ses:

(d0) X is embedded continuously into L∞(D) and there exists a constant c such that

‖ξ �→ hξ‖L2(X ,L2(D)) ≤ c‖h‖L2(D).

(d6) c2c1 < (m2 − λ)β and c2c2 < aβ , where λ is the first eigenvalue of the Dirichlet Laplacian 
� in D.

The assumption (d6) still requires β > 0 but is compatible with m = 0.

Theorem 1.3. Suppose that (d0) and (w1)–(w4) hold then the transition semigroup U defined by 
(1.4), (1.5) is bw-Feller on X. If (d6) is also satisfied then there exists an invariant probability 
measure for U .

Equation (1.4) with a Neumann boundary condition may be studied analogously, see again 
Section 12.
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If g is constant then existence of an invariant measure for (1.4), (1.5) is shown in [1], under a 
hypothesis upon X less stringent than (d0). Slightly more general assumptions on the drifts are 
considered, which however coincide with (w1) for polynomial drifts.

2. Notation and conventions

• T ∈ (0, ∞).
• If Y is a topological space equipped with a σ -algebra Y and with a probability measure μ

on Y then we say that μ is Radon provided that

μ(A) = sup{μ(K) : K compact, K ⊆ A, K ∈ Y }, ∀A ∈ Y .

• If Y is a topological space then B(Y ) denotes the Borel σ -algebra over Y and B∗(Y ) =
{V ⊆ Y : V ∩ K ∈ B(Y ), ∀K ⊆ Y compact}.

• If Y is a topological space then Cb(Y ) denotes the space of real bounded continuous func-
tions on Y .

• Denote by P∗(Y ) the space of Radon probability measures on B∗(Y ) and equip it with the 
topology generated by the maps μ �→ ∫

Y
f dμ for f ∈ Cb(Y ).

• If Y is a Hilbert space then we denote by Yw = (Y, weak).
• If ξ : � → Y is a mapping to a topological space Y then we denote by σ(ξ) the σ -algebra 

{ξ−1[B] : B ∈ B(Y )}, i.e. the σ -algebra generated by ξ .
• If X and Y are linear topological spaces then we denote by L(X, Y) the space of linear 

continuous operators from X to Y .
• If X and Y are Hilbert spaces then we denote by L2(X, Y) the space of Hilbert–Schmidt 

operators from X to Y .
• C0([0, T ]) denotes the space {h ∈ C([0, T ]) : h(0) = 0}.
• If Y is a topological space and t ∈ [0, T ] then we denote by Bt (C([0, T ]; Y)) the smallest 

σ -algebra on C([0, T ]; Y) for which the mappings C(R+; Y) → Y : h �→ h(s), s ∈ [0, t] are 
B(Y )-measurable.

• All measures in this paper are σ -additive.

3. Quasi-Polish spaces

Let P be a topological space such that there exist a sequence of real continuous functions (ξn)

on P that separates points of P (such spaces will be called quasi-Polish in the sequel for their 
similarity with Polish spaces, as far as many properties of which some are listed below). Then P
has many properties of Polish spaces. Considering the embedding ξ = (ξn) : P → RN, we can 
easily prove that

(1) every compact in P is metrizable,
(2) a set in P is compact iff it is sequentially compact,
(3) the σ -algebra σ(ξ) contains σ -compact subsets of P , i.e. σ(compacts in P) ⊆ σ(ξ),
(4) if B ∈ B∗(P ) and S is σ -compact then B ∩ S ∈ σ(ξ) and ξ [B ∩ S] ∈ B(RN),
(5) every probability measure on σ(ξ) sitting on a σ -compact has a unique extension to a prob-

ability measure on B∗(P ),
(6) every probability measure on B∗(P ) sitting on a σ -compact is Radon,
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(7) if (μn) is a tight sequence of probability measures on B∗(P ) then there exists a subsequence 
nk and μ ∈ P∗(P ) such that μnk

→ μ in P∗(P ).

Remark 3.1. The claim (7) is an application of the Prokhorov theorem on RN. In fact, by a 
straightforward generalization of the Mapping Theorem [3, Theorem 2.7] to sequences of func-
tions, we obtain the following result.

Proposition 3.2. Let P be a quasi-Polish space, let (μn) be a tight sequence of probability 
measures converging to some μ in P∗(P ). Then the following holds: If hn, h : P → R are 
uniformly bounded, B∗(P )-measurable and μ∗(D) = 0 where

D = {x ∈ P : ∃xn ∈ P, xn → x, lim sup
n→∞

|hn(xn) − h(x)| > 0}

and μ∗ is the outer measure associated with μ then∫
P

hn dμn →
∫
P

hdμ.

4. The path space C([0, T ]; Xw)

These considerations lead us to formulate the following general conventions:

• X is a separable Hilbert space and we denote by Xw = (X, weak),
• we equip C([0, T ]; Xw) with a locally convex topology generated by the system of 

pseudonorms ‖h‖ϕ = supt∈[0,T ] |〈ϕ, h(t)〉X| where ϕ ∈ X,
• we recall that BT (C([0, T ]; Xw)) is the σ -algebra on C([0, T ]; Xw) generated by the map-

pings C([0, T ]; Xw) → X : h �→ h(s) for s ∈ [0, T ].

Remark 4.1. Observe that if ϕn ∈ X are such that

‖x‖X = sup{|〈ϕn, x〉| : n ∈N}
then ξn,q : C([0, T ]; Xw) → R : f �→ ϕn(f (q)) for q ∈ Q+ ∩ [0, T ] and n ∈ N constitutes a 
countable family of continuous functions separating points of C([0, T ]; Xw) for which σ(ξn,q) =
BT (C([0, T ]; Xw)). In particular, C([0, T ]; Xw) is a quasi-Polish space and all conclusions of 
Section 3 are valid and applicable to the σ -algebra BT (C([0, T ]; Xw)).

Remark 4.2. Fix a ≥ 0. The rational span of {ϕn} is dense in X and Ba = {x ∈ X : ‖x‖X ≤ a}
equipped with the weak topology is a compact space metrizable by a metric induced by 
the pseudonorms x �→ |〈ϕn, x〉|. The topology on C([0, T ]; Xw) generated by the metric ζ
induced by the pseudonorms ‖ · ‖ϕn is weaker than that of C([0, T ]; Xw) defined above, 
B(C([0, T ]; Xw), ζ ) = BT (C([0, T ]; Xw)), the traces of the topologies of C([0, T ]; Xw) and 
(C([0, T ]; Xw), ζ ) coincide on the ζ -closed set

Ka = {u ∈ C([0, T ];Xw) : sup
t≤T

‖u(t)‖X ≤ a}.

Since ζ is complete on Ka , it is a Polish space.
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Corollary 4.3. Every probability measure on BT (C([0, T ]; Xw)) is Radon.

In the following, define the modulus of continuity

δ(f, ε) = sup{|f (a) − f (b)| : a, b ∈ [0, T ], |a − b| ≤ ε}.

Proposition 4.4. If α ≥ 0, β = (βk
n)k,n∈N, limn→∞ βk

n = 0 for every k ∈ N, {φk}k∈N ⊆ X∗ sepa-
rate points of X and Kα,β,φ is the set of all h ∈ C([0, T ]; Xw) such that

• sup{‖h(t)‖X : t ≤ T } ≤ α

• δ(φk ◦ h, 1/n) ≤ βk
n for every k, n ∈N

then Kα,β,φ is compact in C([0, T ]; Xw). If K ⊆ C([0, T ]; Xw) is compact and {φk}k∈N separate 
points of X then there exist α, β such that K ⊆ Kα,β,φ .

Proof. The demonstration follows the proof of the Arzela–Ascoli theorem relying on the fact 
that bounded sets in X are sequentially weakly compact. �
Remark 4.5. The sets Kα,β,φ will be called maximal compacts.

5. The stochastic equation

5.1. Solution

Let I = [0, T ] or I = R+. We consider a separable Hilbert space X , an infinitesimal gen-
erator A of a C0-semigroup (eAt )t≥0 on X, Borel mappings F : X → X, G : X → L2(X , X), 
a stochastic basis (O, G, (Gt ), ν), a standard cylindrical (Gt )-Wiener process W on X and an 
equation

du = (Au + F(u)) dt + G(u) dW. (5.1)

We impose a boundedness condition that will be assumed throughout the paper:

F : X → X and G : X → L2(X ,X) are bounded on bounded sets of X. (5.2)

A (Gt )-adapted X-valued process u with weakly continuous trajectories is called a mild solu-
tion of (5.1) provided that

u(t) = eAt u(0) +
t∫

0

eA(t−s)F(u(s)) ds +
t∫

0

eA(t−s)G(u(s)) dW (5.3)

holds ν-a.e. for every t ∈ I .
A (Gt )-adapted X-valued process u with weakly continuous trajectories is called a weak so-

lution of (5.1) provided that
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〈ϕ,u(t)〉 = 〈ϕ,u(0)〉 +
t∫

0

〈A∗ϕ,u(s)〉ds +
t∫

0

〈ϕ,F(u(s))〉ds +
t∫

0

〈ϕ,G(u(s)) dW 〉 (5.4)

holds P-a.e. for every t ∈ I and every ϕ ∈ Dom(A∗).

Proposition 5.1. Let (5.2) hold. A (Gt )-adapted X-valued process u with weakly continuous 
trajectories is a weak solution of (5.1) iff u is a mild solution of (5.1).

Proof. See [23, Theorem 13]. �
Remark 5.2. Since X is assumed to be a separable Hilbert space, there always exists a countable 
set H ⊆ Dom(A∗) which is dense in the graph norm of Dom(A∗). If H is any such set then a 
(Gt )-adapted X-valued process u with weakly continuous trajectories is a weak solution of (5.1)
iff (5.4) holds P-a.e. for every t ∈ I and every ϕ ∈ H . In particular, the infinite dimensional 
equation (5.1) is reduced to a countable number of real stochastic equations (5.4).

In view of the above remark, we fix a suitable countable set {ϕγ }γ∈N ⊆ Dom(A∗) which is 
dense in the graph norm of Dom(A∗) and plays the role of regular “test functions”, we also fix an 
orthonormal basis (ξi) in X and we define nonlinearities fγ : X → R and gγ = (gγ,i) : X → �2
by

fγ (x) = 〈A∗ϕγ , x〉 + 〈ϕγ ,F(x)〉, gγ,i(x) = 〈ϕγ ,G(x)ξi〉, x ∈ X, γ, i ∈ N

and we consider a system of real-valued equations

dϕγ (u(t)) = fγ (u(t)) dt +
∞∑
i=1

gγ,i(u(t)) dWi, t ∈ I, γ ∈N (5.5)

where W = {W1, W2, W3 . . .} is a family of independent standard (Gt )-Wiener processes defined 
by Wi = W(ξi).

Remark 5.3. A (Gt )-adapted X-valued process u with weakly continuous trajectories satisfies 
(5.5) iff u is a mild or weak solution of (5.1). We will therefore speak about a solution of (5.1)
from now on.

Remark 5.4. Let (G0
t ) denote the augmentation of (Gt ) by ν-zero sets in G. Then a family (Wi)

of independent standard (Gt )-Wiener processes defines a unique cylindrical (G0
t )-Wiener process 

W on X such that W(ξi) = Wi for every i ∈N.

Remark 5.5. The law of u under ν is always defined on the σ -algebra BT (C([0, T ]; Xw)).

Theorem 5.6. Let (5.2) hold, let (O, G, (Gt ), ν) be a stochastic basis, u an X-valued (Gt )-
adapted process on [0, T ] with weakly continuous paths, assume that there exist continuous 
local (Gt )-martingales (wi) such that wi(0) = 0, the process
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Mγ (t) = ϕγ (u(t)) − ϕγ (u(0)) −
t∫

0

fγ (u(s)) ds

is a local (Gt )-martingale and 〈wi, wj 〉t = tδij ,

〈Mγ 〉t =
t∫

0

‖gγ (u(s))‖2
�2

ds, 〈Mγ ,wi〉t =
t∫

0

gγ,i(u(s)) ds

hold for every γ, i, j ∈ N and t ∈ [0, T ]. Then w1, w2, w3, . . . are independent standard 
(Gt )-Wiener processes and (O, G, (Gt ), ν, (wi), u) is a solution of (5.1) on [0, T ].

Proof. The processes (wi) are independent standard (Gt )-Wiener processes by the Lévy charac-
terization theorem and

〈Mγ −
·∫

0

gγ (u(s)) dw〉t = 〈Mγ 〉t − 2
∑

i

t∫
0

gγ,i(u(s)) d〈Mγ ,wi〉t +
t∫

0

‖gγ (u(s))‖2
�2

ds.

Since the right hand side equals 0 a.s., (5.5) holds. �
6. The working set-up

• Define a quasi-Polish space � = C([0, T ]; Xw) × C0([0, T ]; RN) with the filtration (Ft )

where Ft = Bt (C([0, T ]; Xw)) ⊗ Bt (C0([0, T ]; RN)) and
• processes z : [0, T ] × � → X and Bj : [0, T ] × � →R

z(t, a, b) = a(t), Bj (t, a, b) = (b(t))j . (6.1)

All the statements in Section 3 hold for the quasi-Polish space �, especially the σ -algebra 
FT contains all σ -compact subsets of �.

Definition 6.1. Introduce systems of stopping times τ, τ+ : (0, ∞) × C0([0, T ]) → (0, ∞]

τr(h) = inf{t ∈ [0, T ] : |h(t)| = r}, τ+
r (h) = lim

ε→0+ τr+ε(h),

a set J = {(r, h) : τr (h) < τ+
r (h)} and a mapping

Lr
t : C0([0, T ]) → [−r, r] : h �→ h(t ∧ τr (h)), t ≥ 0, r > 0.

Remark 6.2. See [11] for the following observations:

• τ is lower-semicontinuous,
• r �→ τr (h) is nondecreasing and left-continuous for every h ∈ C0([0, T ]),
• if τr (h) = τ+

r (h) then τr and Lr are continuous at h,
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• J ∈ B(0, ∞) ⊗ B(C0([0, T ])),
• the cut-set J h is at most countable for every h ∈ C0([0, T ]),
• Lr

t is Bt (C0([0, T ]))-measurable for every t ≥ 0 and r > 0.

Proposition 6.3. Let (μn) be a tight sequence of probability measures on B∗(�) converging 
to some μ in P∗(�). Let M be a continuous (Ft )-adapted process on [0, T ] with M(0) = 0
and, for every n ∈ N, M is a continuous local (Ft )-martingale for μn. Let M(ωn) → M(ω) in 
C0([0, T ]) whenever ωn → ω in �. Then M is a local (Ft )-martingale for μ.

Proof. Consider the sets

Dr,p = {ω : ∃ωn, ωn → ω, lim sup
n→∞

|Lr
p(M(ωn)) − Lr

p(M(ω))| > 0}.

Then Dr,p ⊆ {ω : M(ω) ∈ J r} so, for almost every r > 0, μ(Dr,p) = 0 holds for every p ∈ [0, T ]
by the Fubini theorem and, in particular,∫

�

GLr
p(M)dμn →

∫
�

GLr
p(M)dμ, ∀p ∈ [0, T ]

holds for every sequentially continuous G : � → [0, 1] by Proposition 3.2. If 0 ≤ s < t ≤ T and 
G is also Fs -measurable then∫

�

[GLr
t (M) − GLr

s(M)]dμ = 0. �

Lemma 6.4. Let M be a real (Ft )-adapted process on [0, T ] with continuous paths, M(0) = 0, 
let (O, G, (Gt ), ν, W, u) be a solution of (5.1) on [0, T ], denote by μ the law of (u, W) on FT and 
assume that (M(t, (u, W)))t∈[0,T ] is a local (Gt )-martingale. Then M is a local (Ft )-martingale 
for μ.

Proof. The result follows from the equality∫
O

[Lr
t (M(u,W)) − Lr

s(M(u,W))]1A(u,W)dν =
∫
A

[Lr
t (M) − Lr

t (M)]dμ

which holds for every 0 ≤ s < t ≤ T , A ∈ Fs and r > 0. �
Theorem 6.5. Let (5.2) hold, let (O, G, (Gt ), ν, W, u) be a solution of (5.1) on [0, T ] and μ is 
the law of (u, W) on FT . Then (�, FT , (Ft ), μ, B, z) is a solution of (5.1) on [0, T ].

Proof. We may apply Lemma 6.4 to

Mγ (t,ω) = ϕγ (z(t,ω)) − ϕγ (z(0,ω)) −
t∫
fγ (z(s,ω)) ds (6.2)
0
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M2
γ (t,ω) −

t∫
0

‖gγ (s, z(s,ω))‖2
�2

ds, Bi, BiBj − δij t (6.3)

Mγ (t,ω)Bi(t,ω) −
t∫

0

gγ,i(s, z(s,ω)) ds (6.4)

and then Theorem 5.6. �
7. A tightness criterion

Here we prove that under (5.2), tightness of a set of laws of solutions on BT (C([0, T ]; Xw)) is 
implied by mere uniform boundedness in probability of these solutions (which is also a necessary 
condition for tightness, see Proposition 4.4). It is usually known whether solutions are uniformly 
bounded in probability or not so, in this way, we can conclude immediately tightness. For, if 
α ≥ 0, we define the closed set in C([0, T ]; Xw)

Kα = {h ∈ C([0, T ];Xw) : sup
t≤T

‖h(t)‖X ≤ α} ∈ BT (C([0, T ];Xw)). (7.1)

Observe also that {ϕγ }γ∈N separates points of X as {ϕγ }γ∈N is assumed to be dense in 
Dom(A∗) and Dom(A∗) is dense in X.

Proposition 7.1. Let α ≥ 0, ε > 0 and let (5.2) hold. Then there exists a maximal compact K in 
C([0, T ]; Xw) such that ν [u /∈ K, u ∈ Kα] ≤ ε holds for every solution (O, G, (Gt ), ν, W, u) of 
(5.1) on [0, T ].

Proof. Let λ and p be positive numbers such that p−1 < λ and λ + p−1 < 1
2 . Fix 0 <

ρ < λ − p−1, γ ∈ N and define B = {x ∈ X : ‖x‖X ≤ α}. Define the (Gt+)-stopping time 
τ = inf{t ∈ [0, T ] : u(t) /∈ B} and the process ũ(t) = u(t ∧ τ). Then, by the Garsia–Rodemich–
Rumsey lemma [10], there exists Cγ such that the modulus of continuity satisfies

E [δ(〈ϕγ , ũ〉, θ)]p ≤ Cγ θλp, ∀θ ∈ [0,1].

So, since [u ∈ Kα] ⊆ [τ ≥ T ], we get by the Tchebyschev inequality,

ν

(
[u ∈ Kα] ∩

∞⋃
n=1

[δ(〈ϕγ ,u〉, n−1) > βn(ϑ)]
)

≤ cγ ϑ, ∀ϑ > 0

where βn(ϑ) = ϑ
− 1

p n−ρ . Choosing ϑγ > 0 so that 
∑∞

γ=1 cγ ϑγ ≤ ε, we can set K =
Kα,{βn(ϑγ )},{ϕγ }. �
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8. bw-continuous dependence

Let us introduce a bw-continuity assumption:

fγ , gγ,i , ‖gγ ‖�2 are sequentially weakly continuous on X for every γ, i ∈N. (8.1)

We are going to study continuous dependence of solutions on the coefficients.

(a) Let (�n, F n, (F n
t ), Pn, Wn, un) be solutions of (5.1) on [0, T ] such that the laws of un on 

BT (C([0, T ]; Xw)) are tight and denote by μn the laws of (un, Wn) on FT and extend them 
to B∗(�) (see Section 3).

(b) Let nk be some subsequence and μ ∈ P∗(�) such that μnk
→ μ in P∗(�).

Theorem 8.1. Let (a), (b), (5.2) and (8.1) hold. Then (�, FT , (Ft ), μ, (Bi), z) is a solution of 
(5.1) on [0, T ].

Proof. By Theorem 6.5 and Proposition 6.3, the assumptions on Theorem 5.6 are satisfied. �
9. bw-Feller semigroup

(1) Let (5.1) have global solution (Ox, Gx, (Gx
t ), Px, Wx, ux) on R+ with ux(0) = x for every 

x ∈ X.
(2) Let weak uniqueness hold for (5.1) in the class of solutions with the initial law δx , whenever 

x ∈ X.
(3) Let for ∀ε > 0 ∀τ > 0 ∀r > 0 ∃ R > 0 such that Px [supt∈[0,τ ] ‖ux(t)‖X ≥ R] ≤ ε holds for 

every ‖x‖X ≤ r .

Define the Markov operators for bounded Borel functions ψ : X →R

(Utψ)(x) =
∫

Ox

ψ(ux(t)) dPx, t ∈R+ (9.1)

and denote by μx the law of (ux |[0,T ], Wx |[0,T ]) on FT and extend it to B∗(�).

Remark 9.1. It is well known that (Ut)t≥0 is a well-defined semigroup of operators on bounded 
Borel functions on X under (1) and (2) above, see e.g. [24].

Remark 9.2 (Joint uniqueness in law). If (�, FT , (Ft ), μi, B, z) are solutions of (5.1) for i =
1, 2 and μ1 [z(0) = x] = μ2 [z(0) = x] = 1 for some x ∈ X then the condition (2) above on weak 
uniqueness implies that μ1 = μ2 on FT by the Cherny theorem [23, Theorem 4].

Remark 9.3. Pathwise uniqueness of (5.1) implies the condition (2) above by the Yamada–
Watanabe theorem [23].

Theorem 9.4. Let (1)–(3) above hold, let (5.2) and (8.1) be satisfied and let tn → t in R+, 
xn → x weakly in X and ψ : X → R is a bounded sequentially weakly continuous function. 
Then Utnψ(xn) → Utψ(x).
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Proof. We may assume that tn ≤ T holds for every n ∈ N. Then (�, FT , (Ft ), μx, B, z) is a 
solution of (5.1) on [0, T ] by Theorem 6.5. The measures μxn are tight on FT by Proposition 7.1
and μxn → μx in P∗(�) by Theorem 8.1 and Remark 9.2. Now apply Proposition 3.2. �
10. Invariant measure

Let us recall a consequence of Proposition 3.1 in [20].

Theorem 10.1. Under the assumptions of Theorem 9.4, let there exist a global solution 
(O, G, (Gt ), ν, u, W) of (5.1) such that, for every ε > 0, there exists R > 0 and

lim sup
t→∞

1

t

t∫
0

ν [‖u(s)‖X ≥ R]ds ≤ ε. (10.1)

Then there exists an invariant measure for (Ut)t≥0 defined in (9.1).

11. Stochastic beam equation

Consider the equation

utt + A2u + βut + m(‖B1/2u‖2
H )Bu = G(u)dW, (11.1)

with the hypotheses (b1)–(b4) set up in Section 1.1 and define X = DomA × H .

Remark 11.1. If C is a closed operator on H then we consider DomC as a Hilbert space with 
‖x‖2

Dom C = ‖x‖2
X + ‖Cx‖2

X for x ∈ DomC.

Remark 11.2. We may also define Dom A = DomA2 × DomA,

A =
(

0 I

−A2 0

)
, F(u, v) =

(
0

−m(‖B1/2u‖2
H )Bu − βv

)
, G(u, v)ξ =

(
0

G(u)ξ

)
and rewrite (11.1) as a stochastic evolution equation

dφ = (Aφ + F(φ)) dt + G(φ)dW (11.2)

in the Hilbert space X. On the other hand, let (hγ )γ∈N be some dense subset in DomA2, (ξi) an 
orthonormal basis in X and define, for γ, i ∈N and (u, v) ∈ X,

fγ (u, v) = −〈u,A2hγ 〉H − 〈m(‖B1/2u‖2
H )Bu + βv,hγ 〉H , f−γ (u, v) = 〈v,hγ 〉H

gγ,i(u, v) = 〈G(u)ξi, hγ 〉H , g−γ (u, v) = 0,

ϕ−γ (u, v) = 〈u,hγ 〉H , ϕγ (u, v) = 〈v,hγ 〉H .
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Now, according to Remark 5.3, the equation (11.2) is equivalent to

dϕγ (u(t)) = fγ (u(t)) dt +
∞∑
i=1

gγ,i(u(t)) dWi, t ∈ I, γ ∈N (11.3)

where Wi = W(ξi).

Remark 11.3. By [6], the equation (11.1) has a global solution for every (G0)-measurable 
X-valued initial condition, pathwise uniqueness holds and every solution has X-continuous paths 
almost surely.

11.1. Weak sequential continuity

Let us consider the additional hypotheses (b5) and (b6) introduced in Section 1.1.

Lemma 11.4. Let (b1), (b2), (b5) and (b6) hold. Then fγ , gγ,i and ‖gγ ‖2
�2

are sequentially 
weakly continuous for every γ ∈ Z \ {0} and i ∈ N.

Proof. The claim is obvious as

‖B1/2x‖2
H = 〈Bx,x〉H ≤ ‖Bx‖H ‖x‖H , ∀x ∈ DomA

and DomB is compactly embedded in H . In particular, if xn → x weakly in DomA then xn → x

in DomB1/2. �
11.2. Weak tightness

Under (b1)–(b4), define M(r) = ∫ r

0 m(s) ds for r ≥ 0,

V (w) = 1

2
‖w‖2

X + M(‖B1/2w1‖2), w = (w1,w2) ∈ X,

qk = inf{V (w) : ‖w‖X ≥ k}, let φx be the unique global mild solution of (11.2) with 
P [φx(0) = x] = 1 and τx

k = inf{t ≥ 0 : ‖φx(t)‖X ≥ k} for x ∈ X.
In the course of the proof of Theorem 1.1 in [6], it is shown that

EV (φx(t ∧ τx
k )) ≤ V (x) + 2L2

t∫
0

(1 +EV (φx(s ∧ τx
k ))) ds, t ≥ 0

hence

P [τx
k ≤ t] ≤ e2L2t

qk

(1 + V (x)), t ≥ 0, (11.4)

by the Gronwall inequality. In particular, if ε > 0 and R > 0 are given, there exists α ≥ 0 such 
that P [φx /∈ Kα] ≤ ε holds for every ‖x‖X ≤ R where Kα was defined in (7.1). Now, as a 
consequence of Proposition 7.1, we get the following tightness result:
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Lemma 11.5. Let R > 0 and ε > 0. Then there exists a maximal compact K in C([0, T ]; Xw)

(see Remark 4.5) such that P [φx ∈ K] > 1 − ε holds whenever ‖x‖X ≤ R.

11.3. Weak sequential Feller property

Under (b1)–(b6), φx denotes the unique mild solution of (11.2) starting from x ∈ X and we 
define UtF (x) = EF(φx(t)) for (t, x) ∈ R+ × X.

Theorem 11.6. Let (b1)–(b6) hold. Then (Ut)t≥0 is a semigroup on bounded Borel measurable 
functions on X and if tn → t in R+ and xn → x weakly in X and F is a bounded sequentially 
weakly continuous function on X then UtnF (xn) → UtF (x).

Proof. The assumptions of Theorem 9.4 are satisfied. �
11.4. Boundedness in probability

Assuming (b1)–(b4) hold, set

P =
(

β2A−2 + 2I βA−2

βI 2I

)
∈ L(X,X), M(r) =

r∫
0

m(s)ds, r ≥ 0

and

V (w) = 1

2
〈w,Pw〉X + M(‖B1/2w1‖2), w = (w1,w2) ∈ X.

Then V ≥ 0, V ∈ C2(X) and, for w ∈ DomA2 × DomA,

LV (w) = 〈Aw + F(w),V ′(w)〉X + 1

2

∞∑
i=1

〈V ′′(w)Gi (w1),Gi (w1)〉

≤ −β‖w‖2
X + ‖G(w1)‖2

L2(�2,H).

Therefore

lim
R→∞[sup{LV (w) : w ∈ DomA2 × DomA, ‖w‖X ≥ R}}] = −∞

provided the hypothesis (b7) in Section 1.1 holds.
Formal calculations following [14, Theorem 3.7] show that any solution u to (11.1) with u(0)

deterministic is bounded in probability in the mean on the interval [1, ∞), that is, (10.1) holds. 
These calculations may be justified in a straightforward manner by invoking the approximations 
used in [6, Section 3].

Altogether, we have obtained the following result as a consequence of Theorem 10.1:

Theorem 11.7. Let (b1)–(b7) hold. Then there exists an invariant measure for (11.1).
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Plainly, Theorem 1.1 follows from Theorems 11.6 and 11.7.

Example 11.8. (See Section 4 in [6].) Let D ⊆ Rn be a bounded domain with a C∞-boundary 
and � : D × R × Rn → R a Borel function. Let us consider a multidimensional version of the 
extensible beam equation

∂2u

∂t2
− m

⎛⎝∫
D

|∇u|2 dx

⎞⎠�u + γ�2u + β
∂u

∂t
= �(x,u,∇u)Q1/2 Ẇ

with either the clamped boundary condition

u = ∂u

∂ν
= 0 on ∂D (11.5)

or the hinged boundary condition

u = �u = 0 on ∂D (11.6)

where Q ≥ 0 is a selfadjoint bounded trace class operator on L2(D) and W is a cylindri-
cal Wiener process on L2(D). This equation may be rewritten in the form (11.1), a fortiori 
(5.5). Set γ = 1 without loss of generality and define H = X = L2(D), let B = −� be the 
Dirichlet Laplacian on D with DomB = W

1,2
0 (D) ∩ W 2,2(D). Further, set A = B for the 

boundary condition (11.6) and A = C1/2 for the boundary condition (11.5) where C = �2 and 
DomC = {ψ ∈ W 4,2(D) : ψ = ∂u

∂ν
= 0 on ∂D}. Then (b1), (b2) and (b5) are satisfied.

Now let us turn to the stochastic term. It was shown in [6] that if � is bounded, does not 
depend on the last variable, 1 ≤ n ≤ 3 and |�(x, r) − �(x, ̃r)| ≤ L|r − r̃| for almost every 
x ∈ D and every r, ̃r ∈ R and G(ψ) = �(·, ψ)Q1/2 then G : DomA → L2(X , H) is a Lipschitz 
map and (b4) holds. If, moreover, n = 1 then

‖G(ψ) − G(ψ̃)‖L2(X ,H) ≤ c‖ψ − ψ̃‖W 1,2(D) (11.7)

owing to the embedding W 1,2(D) ↪→ L∞(D). Consequently, (b6) is satisfied since the norm of 
DomB1/2 is equivalent to the W 1,2(D)-norm.

The hypotheses upon � may be relaxed considerably provided that H has a basis {ẽi}i∈N of 
eigenvectors of Q satisfying supi∈N ‖ẽi‖L∞(D) < ∞. Suppose that |�(x, r, s) − �(x, ̃r, ̃s)| ≤
c(|r − r̃| + |s − s̃|) for almost every x ∈ D and every r, ̃r ∈ R and s, ̃s ∈ Rn. Setting G(ψ) =
�(·, ψ, ∇ψ)Q1/2 then, as shown in [6], G : DomA → L2(X , H) satisfies (11.7) as well.

12. Stochastic wave equation

In [22], existence of global mild solutions to stochastic wave equations was proved in general 
domains for coefficients of polynomial growth. [22, Example 10] can be seen as a stochastic 
generalization of classical by now papers by K. Jörgens [13], F. Browder [5], I. Segal [30] and 
W. Strauss [31]. Below we will show that a damped version of that equation has an invariant 
measure. Let us begin by stating the corresponding result from [22].
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Let us consider an equation

utt = −A2u − au|u|p−1 − βut + F + ηg(u) Ẇ on D (12.1)

where either D =Rd or D is a bounded domain in Rd and A is a positive selfadjoint operator on 
L2(D) with 0 ∈ �(A) and with DomA being a closed subspace in W 1,2(D), a > 0, p ≥ 1, β ≥ 0, 
F ∈ L2(D), η ∈ L∞(Rd). The equation is considered on some stochastic basis (O, G, (Gt ), P)

with a cylindrical (Gt )-Wiener process on a separable Hilbert space X embedded continuously 
in L∞(D) such that there exists a constant c for which

‖ξ �→ hξ‖L2(X ,L2(D)) ≤ c‖h‖L2(D) (12.2)

holds for every h ∈ L2(D). If D =Rd then we also assume that

{ϕ ∈ DomA2 : ess-suppϕ is compact} is dense in DomA2. (12.3)

Remark 12.1. We can consider the operator A = √−� + m2I for some m > 0 if D = Rd or 
D ⊆ Rd is bounded with a C2-smooth boundary and � is the Neumann Laplace operator, or 
with m ≥ 0 if D is bounded with a C2-smooth boundary and � is the Dirichlet Laplace operator.

Remark 12.2. If D =Rd then spatially homogeneous (Gt )-Wiener processes W with finite spec-
tral measures μ satisfy (12.2). In other words, W can be an S ′(Rd)-valued process where 
S (Rd) denotes the Schwartz space of smooth rapidly decreasing real functions on Rd and Ŝ
the Fourier transform of a tempered distribution S, such that

• Wtϕ is a real (Gt )-Wiener process for every ϕ ∈ S (Rd),
• Wt(cϕ1 + ϕ2) = cWt(ϕ1) + Wt(ϕ2) a.s. for ∀c ∈R, ∀t ∈R+ and ∀ϕ1, ϕ2 ∈ S (Rd),
• E {Wtϕ1Wtϕ2} = t〈ϕ̂1, ̂ϕ2〉L2(μ) for all t ≥ 0 and ϕ1, ϕ2 ∈ S (Rd),

see [26,27] for further details and examples of spatially homogeneous Wiener processes. Let X ⊆
S ′(Rd) be the reproducing kernel Hilbert space of the S ′(Rd)-valued random vector W(1), see 
e.g. [9]. Then W is a cylindrical Wiener process on X , i.e. if we fix an orthonormal basis (ξi) in 
X then there exist standard real-valued (Gt )-Wiener processes (Wi) such that

Wt(ϕ) =
∑

i

Wi(t)〈ϕ, ξi〉, t ≥ 0, ϕ ∈ S (Rd). (12.4)

Moreover, see [26,27], if we denote by L2
s (R

d , μ) the complex subspace of L2
C
(Rd , μ) of all ψ

such that ψ = ψs where ψs(x) = ψ(−x), then

X = {ψ̂μ : ψ ∈ L2
s (R

d ,μ)}, 〈ψ̂μ, ϕ̂μ〉X = 〈ψ,ϕ〉L2(μ), ψ,ϕ ∈ L2
s (R

d ,μ).

In fact, according to [22], X is continuously embedded in Cb(R
d) and if h ∈ L2(Rd) then 

the multiplication operator ξ �→ hξ is Hilbert–Schmidt from X to L2(Rd) and (12.2) holds with 
c2 = (2π)−dμ(Rd) even as an equality.
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Remark 12.3. If D ⊆ Rd is bounded then the restriction of spatially homogeneous (Gt )-Wiener 
process with finite spectral measure on D satisfies (12.2).

Remark 12.4. Stochastic integration with respect to a spatially homogeneous Wiener process is 
understood in the standard way, see e.g. [9,27] or [26].

We define the state space X := DomA × L2(D) which we equip with the Hilbert norm 
‖(u, v)‖2

X = ‖Au‖2
2 + ‖v‖2

2. Then the equation (12.1) can be written in an equivalent form as 
a first order in time evolution equation

dz = Az dt + F(z) dt + G(z) dW (12.5)

on X where, for z = (u, v) ∈ X, ξ ∈ X and with Dom A = DomA2 × DomA,

A =
(

0 I

−A2 0

)
, F(z) =

(
0

−au|u|p−1 − βv + F

)
, G(z)ξ =

(
0

ηg(u)ξ

)
.

Let us consider the following hypotheses:

(w1) p ∈ [1, ∞) if d ∈ {1, 2} or p ∈ [1, d
d−2 ] if d ≥ 3,

(w2) g :R → R is locally Lipschitz,

(w3) if d = 2 then |g′| grows polynomially, if d ≥ 3 then |g′(x)| ≤ c(1 + |x| 2
d−2 ) a.e.,

(w4) |g(x)|2 ≤ c0 + c1|x|2 + c2|x|p+1 for some c0, c1, c2 ∈ [0, ∞) and all x ∈R,
(w5) c0η ∈ L2(D),
(w6) c2c1‖η‖2

L∞(D)‖A−1‖2
L(L2(D))

< β and c2c2‖η‖2
L∞(D) < aβ .

The following was proved in [22].

Theorem 12.5. Let (w1)–(w5) hold. Then the equation (12.5) has a unique X-valued continuous 
mild solution for every G0-measurable X-valued initial condition.

To be precise only the case β = 0, F = 0, η = 1 was considered in [22] but the same proof 
literally applies to the general case as it was later showed in a much more general setting in [25]. 
In the next two results (with a joint proof) we will show that solutions to the equation (12.1) are 
locally uniformly bounded in probability and globally bounded in probability under some natural 
assumptions.

Theorem 12.6. Let (w1)–(w5) hold and fix r > 0 and t > 0. Then there exists a number Cr,t such 
that

P [sup
s≤t

‖z(s)‖X ≥ R,‖z(0)‖X ≤ r] ≤ R−2Cr,t , ∀R > 0

holds for every solution z of (12.1).
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Theorem 12.7. Let (w1)–(w6) hold and r > 0 is fixed. Then there exists a constant Cr such that

P [‖z(t)‖X ≥ R,‖z(0)‖X ≤ r] ≤ R−2Cr, ∀R > 0, ∀t ≥ 0

holds for every solution z of (12.1).

Proof. As in the case of the beam equation, the proof of this result will be based on the Pritchard–
Zabczyk trick. Consider the operator P from Section 11.4. Then 

√〈Pz, z〉X is an equivalent norm 
on X. With the notation ‖ · ‖r = ‖ · ‖Lr(D), define next the Lyapunov functional for z = (u, v) ∈ X

by

�(z) = 〈Pz, z〉X
2

+ 2a

p + 1
‖u‖p+1

p+1 = ‖Au‖2
2 + 1

2
‖v‖2

2 + 1

2
‖βu + v‖2

2 + 2a

p + 1
‖u‖p+1

p+1.

The map � is of C2-class on X and, analogously to [22] and [6] we have

�(z(t)) = �(z(0)) + M(t) −
t∫

0

V (z(s)) ds, M(t) =
t∫

0

〈βu(s) + 2v(s), ηg(u(s)) dW 〉2

where, for a splitting β = β1 + β2 to some β1, β2 > 0,

V (z) = β‖z‖2
X + aβ‖u‖p+1

p+1 − 〈βu + 2v,F 〉2 − ‖ηg(u)‖2
L2(X ,L2(D))

≥ β1‖Au‖2 + [(β2‖A−1‖−2
L(L2(D))

− c2c1‖η‖2∞)‖u‖2
2 − β‖F‖2‖u‖2]

+ (aβ − c2c2‖η‖2∞)‖u‖p+1
p+1 + [β‖v‖2

2 − 2‖F‖2‖v‖2] − c2c0‖η‖2
2

≥ δ�(z) − κ (12.6)

for some δ > 0 and κ > 0 by (w6). If (w6) is not assumed or β = 0 then V (z) ≥ δ‖z‖2
X − κ holds 

for some δ ∈ R and κ > 0. Assume that ‖z(0)‖X ≤ r holds, without imposing (w6). Since there 
exists γ > 0 such that

d〈M〉
dt

≤ γ (1 + �(z(t)))2, ∀t ≥ 0

we conclude by the Itô formula that there exist constants Ck, Kr and Kk,r

E [�(z(t))]k ≤ eCkt (1 +E [�(z(0))]k) ≤ Kk
r eCkt , t ≥ 0

for every k ∈ N and, consequently, by the Doob maximal inequality, for some ϑk > 0,

E sup
t∈[0,T ]

[�(z(t))]k ≤ Kk,re
tϑk , t > 0, k ∈N.

In particular, E [�(z)]k is continuous on R+ for every k ∈ N. Now, assuming (w6), we may 
conclude from (12.6) that
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E�(z(t2)) ≤ E�(z(t1)) +
t2∫

t1

[κ − δE�(z(s))]ds

holds for every 0 ≤ t1 ≤ t2. Hence, by the comparison theorem for ODEs,

E�(z(t)) ≤ e−δtE�(z(0)) + κ

δ
(1 − e−δt ), t ≥ 0. �

We fix a countable dense subset {hγ } of DomA2 assuming additionally, only if D = Rd , that 
each hγ has a compact support, and an orthonormal basis {ξi} in X . Now define, for γ, i ∈N and 
z = (u, v) ∈ X,

fγ (z) = −〈u,A2hγ 〉L2(D) + 〈F − au|u|p−1 − βv,hγ 〉L2(D), f−γ (z) = 〈v,hγ 〉L2(D)

gγ,i(z) = 〈ηg(u)ξi, hγ 〉L2(D), g−γ (z) = 0,

ϕ−γ (z) = 〈u,hγ 〉L2(D), ϕγ (z) = 〈v,hγ 〉L2(D). (12.7)

According to Remark 5.3, the equation (12.5) is equivalent to

dϕγ (u(t)) = fγ (u(t)) dt +
∞∑
i=1

gγ,i(u(t)) dWi, t ∈ I, γ ∈N (12.8)

where (Wi) were defined in (12.4).

Remark 12.8. Denote by φx the unique mild solution of (12.5) for a deterministic initial condi-
tion x ∈ X and UtF (x) = EF(φx) for (t, x) ∈ R+ ×X and F : X → R bounded and measurable.

Corollary 12.9. The laws of φx |[0,T ] for ‖x‖X ≤ r are tight in BT (C([0, T ]; Xw)), for every 
r > 0.

Proof. Apply Theorem 12.6 and the tightness criterion Proposition 7.1 which is applicable as 
(5.2) holds. �
Lemma 12.10. Let (w1)–(w3) hold. Then fγ , gγ,i and ‖gγ ‖2

�2
are sequentially weakly continuous 

for every γ ∈ Z \ {0} and i ∈ N.

Proof. We use the Sobolev and the Rellich embedding theorems here. Indeed, if un → u weakly 
in W 1,2(D) and l : R → R satisfies (w2) and (w3) then l(un) converges to l(u) in Lr(D), resp. 
Lr

loc(R
d) if D = Rd , for every r ∈ [1, 2), and l(un) is bounded in L2(D), resp. L2

loc(R
d) if 

D =Rd . Setting l(x) = ax|x|p−1 and l(x) = g(x), this is sufficient to conclude bw-continuity of 
fγ and gγ,i as (hγ ) belong to L2+ε(D) by the Sobolev embedding and are compactly supported 
if D =Rd . Concerning the term ‖gγ ‖2

�2
, if zn → z weakly in X, we have a majorant |gγ,i(zn)| ≤

κ‖ηξihγ ‖L2(D). So ‖gγ ‖2
�2

is bw-continuous by the Lebesgue dominated convergence theorem 
as (12.2) holds. �
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Theorem 12.11. Let (w1)–(w5) hold. Then (Ut )t≥0 is a semigroup on bounded Borel measurable 
functions on X and if tn → t in R+ and xn → x weakly in X and F is a bounded sequentially 
weakly continuous function on X then UtnF (xn) → UtF (x).

Proof. The assumptions of Theorem 9.4 are satisfied. �
Finally, we have obtained the following result as a corollary of Theorem 10.1:

Theorem 12.12. Let (w1)–(w6) hold. Then there exists an invariant measure for (12.5).
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