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ABSTRACT

Canonical polyadic decomposition of tensor is to approximate

or express the tensor by sum of rank-1 tensors. When all

or almost all components of factor matrices of the tensor are

highly collinear, the decomposition becomes difficult. Algo-

rithms, e.g., the alternating algorithms, require plenty of itera-

tions, and may get stuck in false local minima. This paper pro-

poses a novel method for such decompositions. The method

injects one or a few rank-1 tensors into the data tensor in or-

der to control the decompositions of the rank-expanded data,

while still preserving the estimation accuracy of the original

tensor. To achieve this, we develop a method to automatically

generate the injected tensor which satisfies a specific estima-

tion accuracy such that this tensor should not dominate rank-

1 tensors of the data tensor, but is still able to be retrieved

with a sufficient accuracy. Simulations on tensors with highly

collinear factor matrices will illustrate efficiency of the pro-

posed injecting method.

Index Terms— CANDECOMP/PARAFAC, tensor de-

composition, tensor injection, tensor deflation, Cramér–Rao–

induced bound

1. INTRODUCTION

CANDECOMP/PARAFAC (CP) approximates multiway data

by sum of rank-1 tensors, and has found many applications,

such as in chemometrics, telecommunication, data mining,

neuroscience, separated representations and blind source sep-

aration [1–3]. There are plenty algorithms developed for CPD

since this decomposition was first rediscovered independently

by Harshman [4] and Carroll and Chang [5]. For example,

the alternating algorithms update individual factor matrices

sequentially, or all-at-once optimisation algorithms update all

parameters simultaneously [6–8]. Despite of that, the alter-

nating least squares (ALS) algorithm [4, 5, 9] is still the most

widely used algorithm, because its update scheme is sim-

ple to implement and easy to extend to decompositions with

additional constrains, e.g., non negativity [10], orthogonal-

ity [11,12], sparsity and smoothness [1], or decomposition of

This work was supported by the Czech Science Foundation through

Project No. 14-13713S.

incomplete data [15]. However, as other algorithms for CPD,

the ALS algorithm often fails for data with factors of differ-

ent magnitudes [6], or collinear loading components such as

bottlenecks and swamps [13, 14].

In order to improve performance and speed-up conver-

gence of ALS, numerous variants of this algorithm have been

proposed. For example, the ALS algorithm incorporates the

line search extrapolation methods [4,15] in which step size is

linearly decreased from a suitably chosen scalar constant. The

algorithm works more efficiently with the exact or enhanced

line search [16, 17] which finds the optimal step as root of

a polynomial of degree (2N − 1) for order-N tensors, yield-

ing the smallest approximation error. Unfortunately, this line

search is expensive for high order tensors and mostly suited

for order-3 tensors. Alternatively, one can switch between the

simple ALS update and the second-order line search [18], or

between the ALS update and the rotation method [19].

ALS and its variants are useful for some difficult tensor

decompositions. However, the main problem for ALS still

remains. More specifically, so far, there is no method to con-

trol performance of the algorithms. The estimation process

may stop before a desired result is attained, or it is still kept

running even when good estimates to the solution have been

achieved.

In this paper, we propose a novel method to control the

tensor decomposition. The basic principle is based on the

tensor deflation [20], which estimates a rank-1 tensor from a

rank-R tensor without estimating all the other components. In

Fig. 1, we illustrate the rank-1 tensor deflation from a tensor

Y of rank-(R + 1) which is on the left side. The second block

on the right side is of rank of R. Two important properties of

the rank-1 tensor deflation are exploited in this paper

• Estimation accuracy of the rank-1 tensor on the right

side in Fig. 1 is comparable to that of this tensor in the

rank-(R + 1) tensor decomposition on the left side.

• Estimation accuracies of components in the rank-R de-

composition of the second tensor on the right side are

comparable to those of the components in the rank-

(R + 1) tensor decomposition on the left side.

Following these properties, we can add one or a few rank-
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Fig. 1. Proceeding from left to right, the figure illustrates

the rank-1 tensor deflation [20] which extracts a rank-1 tensor

from the tensor Y. However, proceeding from right to left, the

rank-1 tensor injection method adds a rank-1 tensor into the

data to create a new tensor which is applicable to the tensor

deflation.

1 tensors into the data tensor to create a new tensor which is

applicable to the deflation of the added rank-1 tensors. In-

stead of decomposition of the original tensor, we decompose

the newly created tensor with rank of (R + 1). For the rank-

1 tensor injection method, the added rank-1 tensor is known

and acts as a reference tensor. Therefore, we can control and

stop the estimation process when estimated components of

the reference tensor attain their Cramér–Rao error bounds.

The idea seems relatively simple. However, there are

some technical issues which need to be resolved

• How to generate a suitable injected or reference ten-

sor?

• How to compute its error bound?

Controlling the estimation accuracy of the added tensor

is the main concern in our proposed method. We implement

an automatic method which can control the estimation accu-

racy of the reference tensor, based on our recent developed

Cramér–Rao–induced bound for CP decomposition [21] and

the Cramér–Rao–induced bound for the tensor deflation [22].

The paper is organized as follows. The CANDECOMP/-

PARAFAC tensor decomposition and the principle of the pro-

posed method are introduced in Section 2. The main tech-

nique to control the accuracy of the added (reference) rank-1

tensor is presented in sub-section 2.1, whereas implementa-

tion of the proposed method is described in sub-section 2.2.

Simulations are shown in Section 3. Section 4 concludes the

paper.

2. INJECTION METHOD FOR CPD

Throughout the paper, we shall denote tensors by bold calli-

graphic letters, e.g., A ∈ RI1×I2×···×IN , matrices by bold capital

letters, e.g., A =[a1, a2, . . . , aR] ∈ RI×R, and vectors by bold

italic letters, e.g., a j. The Kronecker, Khatri-Rao, Hadarmard

(element-wise) and outer products are denoted by ⊗, ⊙, ⊛, ◦
respectively.

The canonical polyadic decomposition or CANDECOMP/-

PARAFAC approximates an order-N data tensor Y of size

I1 × I2 × · · · × IN by a rank-R tensor Ŷ

Y = Ŷ + E, (1)

where E represents the error tensor, which is often assumed

to be Gaussian i.i.d.. The rank-R tensor Ŷ is expressed as

Ŷ =

R∑

r=1

λr a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r

= ~λ; A(1),A(2), . . . ,A(N)
�.

where λ = [λ1, . . . , λR].

When almost all loading components are nearly collinear,

as most of algorithms for CPD, the ALS algorithm does not

work efficiently. This can be seen from its update rule

A(n) ← Y(n)

(
⊙
k,n

A(k)

) (
Γ

(n)
)†
, (n = 1, 2, . . . ,N), (2)

which needs to invert ill-conditioned matrices Γ(n) = C(1)
⊛

· · ·⊛C(n−1)
⊛C(n+1)

⊛ · · ·⊛C(N), C(n) = A(n) T A(n), where “†”
denotes the pseudo-inverse, Y(n) represent mode-n matriciza-

tion of the tensor Y.

In this section, instead of decomposition of Y, we de-

compose another tensor which is generated from Y by simply

adding a rank-1 tensor X = αu(1) ◦ u(2) ◦ · · · ◦ u(N) into it,

where α > 0 and u(n)T u(n) = 1 for n = 1, . . . ,N

Ỹ = Y + αu(1) ◦ u(2) ◦ · · · ◦ u(N)

= ~[λ, α]; [A(1), u(1)], [A(2), u(2)], . . . , [A(N), u(N)]� + E .

The injection method expands the factor matrices A(n) by the

components u(n). With an appropriate choice of the tensor X,

the new tensor Ỹ will be of rank-(R+ 1), whereas the injected

tensor X can be deflated from Ỹ with a sufficient accuracy.

In general, this can be achieved when the components u(n)

are linearly independent of A(n), while its Cramér–Rao error

bound should be small and attainable.

When the reference tensor X is able to be deflated from

Ỹ, we perform a rank-(R + 1) decomposition of Ỹ to find the

factors A(n), while inspecting the estimation accuracy of the

reference components u(n). The algorithm stops only when

estimation of u(n) achieves the error bound. Next section will

detail how to generate a suitable reference tensor.

2.1. Controlling the estimation accuracy of the rank-1

tensor X

In practice, we can generate the components u(n) randomly

from a normal distribution with zero mean and unit variance,

and normalize them to have unit length. However, the most

important requirement is that the injected (added) tensor X

should not make the decomposition harder. The components

u(n) of X need to be rather easily estimated, while the in-

jected tensor X should not dominate the rank-1 tensor com-

ponents of the tensor Y. That is, its magnitude α should not

be extensively higher than λ of the decomposition of Y, be-

cause loading components are unit length vectors, otherwise,

the algorithms tend to estimate only the added components

u(n), and underestimate the loading components of the origi-

nal data A(n). On the other hand, α should not be relatively

small, otherwise, we cannot retrieve the components u(n) ac-

curately. For decomposition of tensors whose factors are of
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different magnitudes, we refer to the papers [6, 7]. Therefore,

the most challenging problem in this method is to control the

magnitudes of the injected (added) rank-1 tensors.

A naive method is that one can generate injected rank-1

tensors αu(1) ◦ u(2) ◦ · · · ◦ u(N) with different α. Based on the

estimated results λ̂r of λr, α̂ of α, together with estimation ac-

curacy of u(n), a further decomposition with lower or higher

α can be taken. This accuracy controlling method is expen-

sive, and may take plenty of trial-and-error before achieving a

desired outcome. Indeed we do not recommend this method,

but instead, we propose a more convenient method which can

automatically control the accuracy of the injected tensor.

First of all, we will assess the estimation accuracy of

injected components through the squared angular error [21],

defined as

S AE(a, â) = arccos2

(
aT â

|a||â|

)
. (3)

Cramér–Rao–induced bound (CRIB) on this error measure

between the true and estimated vectors for CPD is derived

in [21], whereas the CRIB for the tensor deflation is derived

in [22]. The two error bounds are comparable, when a rank-1

tensor is applicable to the tensor deflation. Hence, they will

be used to verify whether the tensor deflation conditions have

been met. If these two bounds are significantly different, the

rank-1 tensor X is not a good reference tensor, and should be

replaced. Instead of comparing the two CRIBs, we compare

the SAEs of components obtained by the rank-(R + 1) CPD

and the rank-1 tensor deflation.

According to Theorem 3 in [21], the CRIB between the

true and estimated vectors for CPD can be computed as

Theorem 3. [21]:

CRIB(u(n)) =
σ2

α2

{
(In − 1)gn,1 − tr

[
Bn

(
(gn gT

n ) ⊗ Tn

)]}
(4)

where gn, Bn and Tn are vectors and matrices which are com-

puted from the expanded matrices [A(n), u(n)], gn,1 is the first

entry of gn, and σ2 is the variance of the Gaussian noise. For

detail definitions of the gn, Bn and Tn, we refer to the pa-

per [21].

Since the factor matrices A(n) for n = 1, . . . ,N are un-

known, the CRIB on u(n) cannot be computed explicitly.

However, a beautiful property is that CRIBα(u
(n)) is inversely

proportional to α2 (Theorem 5 [21]). More specifically, from

(4) we have

Lemma 1. α2 CRIBα(u
(n)) = CRIBα=1(u(n)) .

This relation also holds for the SAE of u(n) when vary-

ing the weight α. Following this relation, we can adjust the

weight α to an arbitrary accuracy degree, after only one de-

composition. More specifically, we first generate an injected

rank-1 tensor X with a large magnitude α. This setting will

make the algorithm easy to estimate u(n), and the SAEs of u(n)

attain their CRIBs. We decompose the new tensor Ỹ, assess

the SAE(u(n), û(n)) between u(n) and their estimates û(n). The

interest magnitude αinterest for some SAE of interest is then

simply computed as

αinterest = α

√
SAE(u(n), û(n))

SAEinterest

. (5)

As above, SAE of u(n) should be of a reasonable level. When

the CRIB in (dB), i.e., −10 log10 CRIB(u(n)) is lower than 20

dB, implying that the standard angular deviation of the factor

exceeds 5.73 degrees, the components u(n) is hard to be esti-

mated, and the SAE often does not attain the CRIB [7, 21].

When the CRIB is of 25 dB, the estimation of u(n) becomes

easier, and its SAE often reaches the bound. In practice, we

set the SAE of interest between 25 to 30 dB in the logarithmic

scale, i.e., the angular error is about 2 or 3 degrees.

2.2. Implementation

The proposed injecting method comprises 5 steps and is sum-

marised in Algorithm 1. In Stage 1, for decomposition of

a rank-R tensor Y, we first generate a random rank-1 ten-

sor X = u(1) ◦ u(2) ◦ · · · ◦ u(N) with unit length components,

u(n)T u(n) = 1 for all n.

In Stage 2, we perform a decomposition of rank-(R + 1)

for the tensor Y+αX. Here we can simply set α = ‖Y‖F/
√

R

or α = 1 after normalizing the tensor Y to have unit Frobe-

nius norm, i.e., ‖Y‖F = 1. Note that the first round tensor

decomposition is relatively fast, since the weight α is set to a

high value, the CPD algorithm mostly estimates components

u(n) of the tensor X. Moreover, the reference components are

used to initialise the decomposition. The first decomposition

can even proceed faster, when the alternating subspace update

algorithm for tensor deflation is applied to extract the rank-1

reference tensor X [20]. Computational cost of this algorithm

is only O(R3), cheaper than those of the ALS algorithm, i.e.,

O(R4), and any other algorithms for CPD.

Conditions for tensor deflation can be verified in this

stage. Namely, we compare the SAEs of u(n) with its es-

timated by CPD and the tensor deflation. In practice, the

conditions often fulfil, and we can perform either the tensor

deflation or the rank-(R + 1) CPD with high α.

In Stage 3, the weight α of the reference tensor is then

adjusted as in (5) in which −10 log10(SAEinterest) = 30 dB,

and mean SAEs of components are used in placed of SAE for

each component u(n).

In Stage 4, a further rank-(R+1) CP decomposition of the

new rank-expanded tensor is then executed, and the reference

tensor X is used to control the estimation process. The algo-

rithm will stop when SAEs of the components of X achieve

the predefined accuracy SAE in Stage 3.

Finally, from output of the last decomposition B(n), we

select the components which are highly correlated with the

reference u(n). The rest R components of B(n) are estimates of

the factor matrices A(n).

3. SIMULATIONS

In this section, we will illustrate efficiency of the injecting

method for CP decomposition of order-3 tensors of size I×I×I

2551



Algorithm 1: Injecting Method for CPD

Input: Data tensor Y: (I1 × I2 × · · · × IN ), rank R

Output: λ ∈ RN , N matrices A(n) ∈ RIn×R

begin

% Stage 1: Generate a random rank-1 tensor-----

1 X = u(1) ◦ u(2) ◦ · · · ◦ u(N) where u(n)T u(n) = 1

% Stage 2: Decompose the rank-expanded tensor--

2 ~γ; B(1), . . . ,B(N)� = CPD(Y +X,R + 1) % Or

~γ; b(1), . . . , b(N)
� = Tensor Deflation(Y +X)

% Stage 3: Check the SAEs(u(n), û(n)) and adjust α

3 αnew =

√√√√∑

n

SAEn(u(n), û(n))

N SAEinterest

% Stage 4: Decompose the new tensor------------

4 ~γ; B(1), . . . ,B(N)� = CPD(Y + αnewX,R + 1)

% Stage 5: Set output A(n) as R columns of B(n) -

Table 1. Comparison of ALS and ALS with injection method

in decomposition of order-3 tensors. CRIB and InjCRIB show

CRIBs of components of the original tensors, and CRIBs of

the components in the rank-expanded tensors, respectively.

R = 5 R = 10

SAE

(dB)

No.

Iters

Error

(dB)

SAE

(dB)

No.

Iters

Error

(dB)

CRIB 35.46 35.93

InjCRIB 35.42 35.92

ALS 35.22 710 20.12 35.86 922 20.07

Inj-ALS 35.17 63 20.12 35.82 295 20.07

R = 15 R = 20

SAE

(dB)

No.

Iters

Error

(dB)

SAE

(dB)

No.

Iters

Error

(dB)

CRIB 36.19 36.34

InjCRIB 36.18 36.34

ALS 36.18 1066 20.05 36.18 1144 20.04

Inj-ALS 36.17 501 20.05 36.10 639 20.04

and rank-R, where I = 3R and R = 5, 10, 15 and 20. Com-

ponents of the second and third factor matrices were highly

collinear, with a
(2)T
r a

(2)
s = a

(3)T
r a

(3)
s = 0.98 for all r , s,

whereas a
(1)T
r a

(1)
s = 0.2 and a

(n)T
r a

(n)
r = 1 for all n. The coeffi-

cients λr were set to 1. Gaussian noise was added into the ten-

sor Y with Signal-Noise-Ratio SNR = 40 dB. The noise level

was kept to relatively low in order to preserve the structure of

loading components u(n). The mean CRIBs on components

when SNR = 40 dB were around 35 dB as shown in Table 1.

For higher noise, e.g., SNR = 10 or even 20 dB, the CRIBs

of the components were only 5 or 15 dB, and it was nearly

impossible to retrieve A(n) accurately.

We compare performances of the ALS algorithm for CPD

and CPD with injection (Inj+ALS). Initial values were gen-

erated using the leading singular vectors, and passed through

the fLM algorithm [7] in only 10 iterations. This is just to

generate good initial points for both algorithms ALS and

Inj+ALS. The algorithms stopped when the relative errors
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Fig. 2. Illustration of relative errors of the ALS in decompo-

sition of a tensor of rank-20 (CPD) and its rank-1 expanding

tensor (InjCPD).

ε =
‖Y − Ŷ‖F
‖Y‖F

were lower than 10−8, or until the maximum

number of iterations (2000) was achieved. In addition, for

the Inj+ALS algorithm, the reference was tracked until its

estimate achieved a predefined SAE of 30 dB.

There were 100 independent runs for each setting of rank

R. The mean squared angular error over all components, the

number of iterations and relative errors (in dB) are compared

in Table 1. While the two algorithms achieved similar results

confirmed by the MSAEs and the relative approximation er-

rors, the ALS needs approximately 600 more iterations than

ALS with injection. This is because the injection method con-

trolled the estimation process. In Fig. 2, we compare relative

errors ε of CPD and CPD with injecting method as function

of iterations, when R = 20. The decomposition with injected

tensor was stopped earlier when SAEs of the reference com-

ponents were achieved.

4. CONCLUSIONS

We have presented an application of the tensor deflation to

control the estimation process for CPD by adding rank-1 ten-

sor into the analysed data. The proposed method is based on

our newly developed Cramér–Rao–induced bounds for CPD

and the tensor deflation, and can automatically adjust the ref-

erence tensor to achieve a predefined estimation accuracy.

The rank-1 tensor injection procedure is useful to many other

algorithms not only to ALS. The method mainly can control

the estimation accuracy of the CP decomposition. However,

since the factor matrices A(n) are expanded by linearly inde-

pendent vectors u(n), the new factor matrices do not comprise

all highly collinear vectors, and the new tensor Ỹ tends to be

easier to decompose than Y. The injection method is also use-

ful to choose a good result among many possible outcomes by

different initial values. The proposed method can be used to

inspect rank of a tensor. These further applications will be

presented in a forthcoming extension of this paper.
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