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ABSTRACT proposedn the literature based d®BMDs (Simultaneous Matrix Di-
agonalizations), that are also called IMDs (Joint Matrix Diagonaliza-
tions). Such examplemclude[4], [5], [6], [7], and [8]. The SECSI
f(l_')?mework [7] calculates all possible SMDs, and then selects the
best available solution in a final step via appropriate heurisfdis

With the increased importance of the @Rcomposition(CAN-
DECOMP / PARAFACdecompositiopy efficient methods for its
calculation are necessary. In this paper we present an extension

the .S.ECS.I (SEmi-algebraic framewprk for gpproxmgte cP decoméf thesealgorithms consider symmetric SMDs [9], whereas in this
position via Simultaneous matrix diagonalizatighat is based on

new non-symmetric SMDs (Simultaneous Matrix Diagonalizations).paper \We propose a Seml—algeb_ralc framework for approximate cp
: : . ’'decompositios via non-symmetric SMDs. Moreover, we consider
Moreover, two different algorithmgo calculate non-symmetric

two different algorithmgo calculatethe non-symmetric SMDs, the
SMDs are presented as examplethe TEDIA (TEnsor DIAgonal- . ) )
ization) algorithm and the IDIEM-NS (Improved Dlagonalization TEDIA algorithm [10] and an extended version of the IDIEM al

using Equivalent Matrices-Non Symmetric) algorithithe SECSI- gorithm [11], [12]that providesa closed-formsolution for the non-

TEDIA framework has an increased computational complexity buéymmetric SMD problemin this paper we consider the computation

often achieves a better performance than the original SECSI frameg-lf, C?etrh{:s;ggyéenf;;t:itr:isnea;étorgzgﬁiggzgggssf?rn;rﬁgwgr&' I\?vri]tir
work. On the other hand, the SECSI-IDIEM framework offers Y 9 P

a lower computational complexity while sacrificing some perfor-generah.Zed unfoldings as _d|scusse_d_m [8].
In this paper the following notatiois used. Scalars are denoted
mance accuracy. . ! o .
either as capitals or lower-case italic lettesa. Vectors and matri-

Index Terms— CP decomposition, semi-algebraic framework, ces, are denoted as bold-face capitadlower-case lettersy, A, re-

non-symmetric simultaneous matrix diagonalization, PARAFAC  spectively. Finally, tensors are represented by bold-face calligraphic
letter.A. The following superscript€,, 7,1, and™ denote transpo-
1. INTRODUCTION sition, Hermitiantransposition, matrix inversion and Moore-Penrose
pseudo matrix inversion, respectively. The outer product, Kromecke
Tensorsprovide auseful tool forthe analysis of multidimensional product and Khatri-Rao product are denoted a8, ando, respec-
data. Acomprehensiveeview of tensorconceptsis provided in  tively. The operators|.||Z and||.||f; denote the Frobenius norm and
[1]. Tensors have a very broad range of applicatiespecially in  the Higher order norm, respectively.
signal processing such as compressed sensing, processing of big Moreover, for the tensors operations we use the following nota-
data, blind source separation and many more [@ften atensor  tion. Ann-mode product between a tensdr € C’1*72--*I~ gnd
should be decomposéuto the minimum number afank one com- a matrix B € C’*’» is defined asd x,, B, forn = 1,2,...N
ponents. This decomposition is know as PARAFAC (PARallel FAC-[13]. A super-diagonal or identityv-way tensonf dimensionsi x
tors) , CANDECOMP (Canonical Decomposition), or CP (CANDE- R. .. x R is denoted aZ n, r.
COMP/PARAFAC).

The CP decompositionis often calculated viathe iterative
multilinear-ALS (Alternating Least Square) algorithm [1]. ALS
based algorithms requir lot of iterationsto calculatethe CP de-
composition andhere is no convergence guarant®®reover, ALS
based algorithms perform less accurate for ill-conditioned scenario
for instanceif the columns of thdactor matrices are correlated. R

There are alreadyany ALS based algorithms for calculating _ (r) (r) ()
the CP decomposition such #e ones presented [8] that either Xo= Z Fiiefatefs @
introduce constraints to reduce the number of iterations or are based
on line search Alternatively, semi-algebraic solutionsave been

2. TENSOR DECOMPOSITIONS

The CP decomposition of law ranktensorX’y € C'*7*¥ is de-
gned as [1], [2]

r=1

=1Z3,r X1 F1 X2 Fa x3 F3. )

The work of P. Tichavskwas supported by the Czech Science Founda-The CPdecompositiordecomposes a given tensor irttee sum of
tion through Project No. 14-13713S. the minimum numbeof rank one tensors. According to equation (1)
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the tensor rank is equal . The vectorsf("”) are the corresponding T3 = (Zs,r x3 T'3), as depicted in Fig. 1(c)Notice that7 s
columns of the factomatricesF',,, forn = 1,2, 3. contains diagonal slices along the third mode. Hemeeneed to

The CP decomposition is essentially unique under mild condidiagonalize the truncated core tensd#, or in other words we need
tions,which means that the factor matricés, can be identified up  to estimate the matricéE, andT'» thatdiagonalizethe tensos .
to a permutation and scaling ambiguity.

In practice we can only observe a noise corrupted version of the Skl T %o T3 =T 9)
low rank tensorX = X, + N, where N contains uncorrelated
zero mean circularly symmetric Gaussian noise. Hence, we have to

" _ In order to generate the set of matrices that we can use for non-
calculate a ranl approximation ofx’,

symmetric SMD, the truncated core tensor has to be slidéten we
- use the third mode of the tensor as presented up tq thewdiagonal
X ~Tar X1 F1x2 Faxs Fa. ®) matrices aralignedalong the 3-m0dpe slices of tﬂe tensor. %n order
Another, multilinear extension of the SVD (Singular Value De- to selecttheslicesfrom the 3-mode of the tensor we multiply along
composition) is the HOSVD (Higher Order Singular Value Decom-the 3-mode with a transpose atectorey, that is thek-th column of
position) which is much easier to calculate than the CP decomposf 12 x 12 identity matrix. Therefore, each of the correspondlng slices
tion. The HOSVD of the rank? tensorX, € C/*7*X isgiven by  is defined asSt”! = 81 x5 el andT's, = T3 x5 €] for the left

[13], andright hand side of equation (9).
Xo=8x1U1 x2U32 x3U3 (4)
v >0 ¢
06 :
whereS € C'*7*X is the core tensor. The matricks, € C'*7, > °' .‘-" % % % © :i
U, € C7*7 andU;s € CEXE are unitary matrices which span e % % ,g ; g
the column space of the-mode unfolding ofX o, forn = 1,2,3 o: o: ‘i?m : g & 1
respectively. Accordingly, the truncated HOSVD is defined as v ‘ T _ 7. T
To=Tzrnx>T 3=I3prx3T3
2 Z S o Ul U s, 5 I3R x1Th 2R
o= X1 X2 Ue Xs Uy ®) (a) 1-mode (b) 2-mode (c) 3-mode
whereS®! ¢ C#*#x% s a truncated core tensor and the matrices
U, € C"*F, U, € C7*F andUs € C**F have unitary columns. Fig. 1. Diagonalized core tensor for mode 1, 2 and 3.
3. SEMI-ALGEBRAIC FRAMEWORK FOR The described slicing of the truncated core tensor results in the
APPROXIMATE CP DECOMPOSITION VIA following set of equations
NON-SYMMETRIC SIMULTANEOUS MATRIX

Within this section we will point out the differences between the
original SECSI framework [5][7], and the modified framework
which is a point of interest in this paper. The whole derivation
will not be provided, because it follows the derivatiohthe orig-
inal SECSI framework

The SECSI frameworkstarts by computingthe truncated
HOSVD of the noise corrupted tensé in order to calculate an
approximate low rank CP decompositiotextcolormycl3Thereby
we get an approximation of

Equation (10) represents a non-symmetric SMD problem. Note that
we havea set of R equations instead of th& (K > R) equations
of the original SECSI frameworkvhich reduceshe computational
complexity of the non-symmetric SMDTherefore, in this frame-
work we usenewalgorithms forthenon-symmetric SMD, which are
presented in the following subsections. Thereby, an estiofate
matricesT':, T'», andT's is achievedwhile T's is calculated from
T s, as depicted in Fig. 1(c)

Finally, from the knowledge othese three matrice¢he factor

- [s] [s] [s] [s] matricesof the CP decomposition can be estimated, which is our
Xo = (8 X3 Uy ) X1 Uy X2 Uy ©®  final goal. From equation (7) it follows that

e
Tan xs (UL -T) | <1 (UF-T0) <o (UL T) lfu =U; - T (11)
— — — Py =Ul .1, (12)

Fg F1 FQ ~ : ¥
(1) F3 = U[f] - Ts. (13)

where equatio|(6) and (7) represent the truncated HOSVD and the
CP decompositionf the noiseless tensarespectively. The invert-
ible matricesT'1, T'» andT's of dimensionsk x R diagonalize the
truncated core tensa@!®! as shown in [5].

Therefore it follows that

The two additional tensor modes can be explogedh that 2
more sets of factor matrices are estimatek Fig. 1 Accordingly,
the core tensor should be sliced along its 1-mode and 2-mode, and
then diagonalized via non-symmetric SMOherefore, we ged set
of estimated factor matriceE'u, F1,||, F1,||| y F2,|, F2,||, F2,||| s

S = (Tsp x5 Ts) x1 T x2 T @  Fai, Fyu, and Fsu. From this set of estimated factor matri-
' ces different combinations can be selected, while searching for the

In contrast to the original SECSI framework, we do not calculate @est available solution. The different combinations lead to different
sets of symmetric SMDs but only 3 sets of non-symmetric SMDsheuristics, such as BM (Best Matching) and RES (Residuals) [7].
for a smaller number of matrices. To this emee define the tensor The BM solves all the SMDs and the final estimate is the one that
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leads to the lowest reconstruction errdhe reconstruction error is 4. SIMULATION RESULTS

calculated according to
In this section the non-symmetric extension of SECSI with its two

. 2 implementations based on the TEDIA and the IDIEM-NS algorithm
xX-x " is compared to the original framework. For this reason, we have
RSE = IIXIIE : 14) computed Monte Carlo simulation using 1000 realizations.

For simulation purposes two different, real-valued tensors, of

On the other hand, RES also solves all SMDs, but as a final estimafézeé:sgr: ii \gggi;gzogéigﬁr; f’ohti\éecbszrégsﬂggggaﬁam of

we choose the resulting factor matricesioé non-symmetric SMD
that has the smallest residual errdvote that the original SECSI Xo =T33 x1 F1 x2 Fy x3F3 a7
framework has 6 estimates of the factor matrices due t® then-

metric SMDs, whereas we only have 3 non-symmetric SMDs where the factor matrice#’;, F'», and F's have i.i.d.zero mean

Gaussian distributed randoemtrieswith variance one. Moreover,

we want one of the tensors to have correlated factor matrices, there-
3.1. TEDIA fore we add correlation via

TEDIA is an algorithnthat solves theon-symmetric SMD problem Fr = o Ripn) (18

[10], and we propose it as an option for solving the non-symmetric R(p)=1—p)-Irr+ L 1rxg, (19)
diagonalization problem within the SECSI framework. The goal of R

TEDIA is to find non-orthogonal matriced, € C®*F and Ay € where R(p) is the correlation matrix with correlation factprand
CR*R thatdiagonalize the set of matriceel;, € C**, resulting 1rxr denotes a matrix of ones. The second tensor has correlated

in a set of diagonal matrice®;, € C**® fork =1,2,... K. factor matrices, with correlationoefficientsp; = 0.9, po = 0.1
andps = 0.1 for F'1, F'5, andF's, respectively.
Di=A;' M, A7, k=1,2 K (15) Finally, the synthetic datia generated by adding i.i.d. zero mean
< L ) Bt Bt .

Gaussian noise with varianeg’.. The resulting SNR (Signal to
Noise Ratio) for the noisy tensdt = X’y + A is SNR= ¢, 2.

N([)St]e_ that,A ., Ar, Dy and My, correspond td's, Tz, T's,» and In the simulation results the TMSFE (Total relative Mean Square
Sy, in equation (10), respectivelJEDIA does not try to minimize  Factor Error)

the off diagonal elements but rather to achieve a block-revealing con-

dition, ideally leading toa diagonalized tensor. The algorithm is N HF” .P, —F, ‘2
based ora search for elementary rotations that are applied to the TMSFE =E Z min 5 F (20)
matricesA; and Ar and minimize the off diagonal elementsf a1 PreMen(R) 1F |l

M, based oradamped Gauss-Newton method. ) )
The TEDIA algorithm can be implemented in eitisequential IS Used as an accuracy measure, whietep (12) is a set of permuted
or a parallel fashion and its main computaticomplexity comes ~ diagonal matricethatresolveshe permutation ambiguitgf the CP

from the different sweeps and the calculation of tressian matrix. ~ decomposition.
Since the SECSI framework has already been compared to the

state of the art algorithms for various scenarios, we only compare our
3.2. IDIEM-NS proposed framework to the original SECSI framework in [7], |8]

the simulation resultan accuracy and computational time compar-
Although the IDIEM algorithm [11] was initially proposed for json of the SECSI-IDIEM-NS, SECSI-TEDIA, SECSI, and SECSI
symmetric approximate diagonalization, it can deal with the non-Truncated is provided. SECSI-IDIEM-NS and SECSI-TEDIA de-
symmetrical problem as well [12]. IDIEM provides an approximatenote the new proposed extension of the SECSI framework with non-
closed form solution for the minimization of the following so-called symmetric SMB® based on IDIEM-NS and TEDIArespectively.

direct LS (Least Squares) cost function SECSI denotes the original framework, and SECSI Truncated de-
notes the framework when only the new truncation step is included
K ) usingsymmetric SMB. Moreover, two sets of curves are presented
Z |IMy — AL Dy Ag||? (16)  for each algorithm, each of them representing the BM and RES
k=1 heuristics to choose the final solutions. The vertdmtedlines, cor-
respond to the mean value of the estimates.
where the matricesd;, and A r of size R x R are the left and right- In Fig. 2 the CCDF (Complementary Cumulative Distribution
diagonalizer, respectively. These two matrices diagonalize the set @unction)of the TMSFE for the tensor with uncorrelated factor ma-
matricesM , resulting in a set of diagonal matricé3;, for k = trices is presentedior SNR = 30 dB Noticethat the SECSI-TEDIA

1,2,..., K. Since IDIEM does not assume any explicit link betweenalgorithm isthe most accurate. The BM version for all of the algo-
the two diagonalizers, the right-diagonalizer is simply obtained bytithms is more accurathanthe RES. The SECSI-IDIEM-NS BM is
using the rows of the? matricesR.,, instead of columns in Step as accurate as the SECSI RES. With the truncation step we sacrifice
4 of Table | in [11]. Where, the matriR., represents then-th  accuracybut reduces theomputational complexity. However, the
eigenvector oV = >°1 | veq( M )veq M )" by the means of non-symmetric SMD compensates this loss of accuracy.
inverse vector operation. In Fig. 3 the simulation results for the tensor with correlated fac-
We propose this algorithm, which is called IDIEM-NS (IDIEM tor matricesarevisualized,for SNR = 30 dB The SECSI-IDIEM-
Non-Symmetric), because it is not iterative and therefore very fasNS framework is the least accurate. On the other hand, the SECSI-
and computationally efficient. Its closed form solution is a very prac-TEDIA framework still performs accurate for ill-conditioned scenar-
tical choice for the non-symmetric SECSI framework ios.
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[ No correlation] Correlation |

0
10 e DS B SECSHDIEM-NSBM [ 0.0831s 0.0145s
o SECSLTEDIA BM SECSHDIEM-NS RES | 0.0290 s 0.0042 s
— e - SECSI-TEDIA RES SECSITEDIA BM 4.8274 s 0.8912s
+§Eg§: g’\E/'S SECSITEDIA RES 5.5233 s 0.8916 s
s
N a SECSl Truncated BM SECSIBM 0.3480 s 0.1164 s
3 N SECSI RES 0.0721s 0.0442 s
© *\* SECSI Truncate®M 0.3290 s 0.1105s
10? \ ]
*\\ Table 1. Average computational time in [s].
*
S more pronounced as the tensor size increases.
103 10 107

TMSFE

Fig. 2. Complementary cumulative distribution function of the total
relative mean square factor error for real-valued tensor with dimen-
sions4 x 7 x 3 and tensor rankk = 3, SNR =30 dB
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Fig. 3. Complementary cumulative distribution function of the total
relative mean square factor error for real-valued tensor with dimen-
sions4 x 7 x 3, tensor rankk? = 3 and factor matricewith mutually
correlated columns, SNR =30 dB

In Table 1 a summary of the average computational time in sec-
onds isprovided for the different algorithm3he SECSI-IDIEM-NS
outperforms the rest of the algorithméth respect to theomputa-
tional time, while the TEDIA extension requiregrecomputational
time.

5. CONCLUSIONS

In this paper we have presented an extension of the SECSI frame-
work, by solving non-symmetric SDMs based tive TEDIA and

the IDIEM-NS algorithm. The SECSI-TEDIA framework offers a
high accuracy, while the SECSI-IDIEM-N&gorithmoffersavery
fastapproximationfor the CP decomposition with a reasonable ac-
curacy. Notice that SECSI-IDIEM-NS provides a closed-form so-
lution for CP decomposition, since the non-symmetric SMDs can
be calculated in closed form [12], [10]. In contrast to the original
framework we calculate 3 sets of non-symmetric SMDs instead of 6
sets of symmetric SMDs for a smaller number of matrides{ K).

The computational advantages provided by the truncations become
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