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ABSTRACT

With the increased importance of the CPdecomposition(CAN-
DECOMP / PARAFACdecomposition), efficient methods for its
calculation are necessary. In this paper we present an extension of
the SECSI (SEmi-algebraic framework for approximate CP decom-
position via SImultaneous matrix diagonalization)that is based on
new non-symmetric SMDs (Simultaneous Matrix Diagonalizations).
Moreover, two different algorithmsto calculate non-symmetric
SMDs arepresented as examples, the TEDIA (TEnsor DIAgonal-
ization) algorithm and the IDIEM-NS (Improved DIagonalization
using Equivalent Matrices-Non Symmetric) algorithm.The SECSI-
TEDIA framework has an increased computational complexity but
often achieves a better performance than the original SECSI frame-
work. On the other hand, the SECSI-IDIEM framework offers
a lower computational complexity while sacrificing some perfor-
mance accuracy.

Index Terms— CP decomposition, semi-algebraic framework,
non-symmetric simultaneous matrix diagonalization, PARAFAC

1. INTRODUCTION

Tensorsprovide auseful tool forthe analysis of multidimensional
data. A comprehensivereview of tensorconceptsis provided in
[1]. Tensors have a very broad range of applications especially in
signal processing such as compressed sensing, processing of big
data, blind source separation and many more [2].Often atensor
should be decomposedinto the minimum number ofrank one com-
ponents. This decomposition is know as PARAFAC (PARallel FAC-
tors) , CANDECOMP (Canonical Decomposition), or CP (CANDE-
COMP/PARAFAC).

The CP decompositionis often calculated viathe iterative
multilinear-ALS (Alternating Least Square) algorithm [1]. ALS
based algorithms requirea lot of iterationsto calculatethe CP de-
composition andthere is no convergence guarantee. Moreover, ALS
based algorithms perform less accurate for ill-conditioned scenarios,
for instance, if the columns of thefactor matrices are correlated.

There are alreadymanyALS based algorithms for calculating
the CP decomposition such asthe ones presented in[3] that either
introduce constraints to reduce the number of iterations or are based
on line search. Alternatively, semi-algebraic solutionshave been
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proposedin the literature based onSMDs (Simultaneous Matrix Di-
agonalizations), that are also called JMDs (Joint Matrix Diagonaliza-
tions). Such examplesinclude[4], [5], [6], [7], and [8].The SECSI
framework [7] calculates all possible SMDs, and then selects the
best available solution in a final step via appropriate heuristics. All
of thesealgorithms consider symmetric SMDs [9], whereas in this
paper we propose a semi-algebraic framework for approximate CP
decompositions via non-symmetric SMDs. Moreover, we consider
two different algorithmsto calculatethe non-symmetric SMDs, the
TEDIA algorithm [10] and an extended version of the IDIEM al-
gorithm [11], [12]that providesa closed-formsolution for the non-
symmetric SMD problem.In this paper we consider the computation
of a three-way tensor. It is easy to generalize this concept to higher
order tensors by combining the presented SECSI framework with
generalized unfoldings as discussed in [8].

In this paper the following notationis used. Scalars are denoted
either as capitals or lower-case italic letters,A, a. Vectors and matri-
ces, are denoted as bold-face capitalandlower-case letters,a,A, re-
spectively. Finally, tensors are represented by bold-face calligraphic
letterA. The following superscripts,T , H ,−1, and+ denote transpo-
sition,Hermitiantransposition, matrix inversion and Moore-Penrose
pseudo matrix inversion, respectively. The outer product, Kronecker
product and Khatri-Rao product are denoted as◦, ⊗, and⋄, respec-
tively. The operators||.||2F and||.||2H denote the Frobenius norm and
the Higher order norm, respectively.

Moreover, for the tensors operations we use the following nota-
tion. An n-mode product between a tensorA ∈ C

I1×I2...×IN and
a matrixB ∈ C

J×In is defined asA ×n B, for n = 1, 2, . . . N
[13]. A super-diagonal or identityN -way tensorof dimensionsR×
R . . .×R is denoted asIN,R.

2. TENSOR DECOMPOSITIONS

The CP decomposition of alow rank tensorX 0 ∈ C
I×J×K is de-

fined as [1], [2]

X 0 =

R∑

r=1

f
(r)
1 ◦ f

(r)
2 ◦ f

(r)
3 (1)

= I3,R ×1 F 1 ×2 F 2 ×3 F 3. (2)

The CPdecompositiondecomposes a given tensor intothe sumof
the minimum numberof rank one tensors. According to equation (1)
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the tensor rank is equal toR. The vectorsf (r)
n are the corresponding

columns of the factormatricesF n, for n = 1, 2, 3.
The CP decomposition is essentially unique under mild condi-

tions,which means that the factor matricesF n can be identified up
to a permutation and scaling ambiguity.

In practice we can only observe a noise corrupted version of the
low rank tensorX = X 0 + N , whereN contains uncorrelated
zero mean circularly symmetric Gaussian noise. Hence, we have to
calculate a rankR approximation ofX ,

X ≈ I3,R ×1 F 1 ×2 F 2 ×3 F 3. (3)

Another, multilinear extension of the SVD (Singular Value De-
composition) is the HOSVD (Higher Order Singular Value Decom-
position) which is much easier to calculate than the CP decomposi-
tion. The HOSVD of the rankR tensorX 0 ∈ C

I×J×K is given by
[13],

X 0 = S ×1 U1 ×2 U2 ×3 U3 (4)

whereS ∈ C
I×J×K is the core tensor. The matricesU1 ∈ C

I×I ,
U2 ∈ C

J×J andU3 ∈ C
K×K are unitary matrices which span

the column space of then-mode unfolding ofX 0, for n = 1, 2, 3
respectively. Accordingly, the truncated HOSVD is defined as

X
[s]
0 = S

[s] ×1 U
[s]
1 ×2 U

[s]
2 ×3 U

[s]
3 (5)

whereS [s] ∈ C
R×R×R is a truncated core tensor and the matrices

U1 ∈ C
I×R, U2 ∈ C

J×R andU3 ∈ C
K×R have unitary columns.

3. SEMI-ALGEBRAIC FRAMEWORK FOR
APPROXIMATE CP DECOMPOSITION VIA

NON-SYMMETRIC SIMULTANEOUS MATRIX
DIAGONALIZATION

Within this section we will point out the differences between the
original SECSI framework [5],[7], and the modified framework
which is a point of interest in this paper. The whole derivation
will not be provided, because it follows the derivationof the orig-
inal SECSI framework.

The SECSI frameworkstarts by computingthe truncated
HOSVD of the noise corrupted tensorX in order to calculate an
approximate low rank CP decomposition. textcolormycl3Thereby
we get an approximation of

X 0 =
(

S
[s] ×3 U

[s]
3

)

×1 U
[s]
1 ×2 U

[s]
2 (6)

=






I3,R ×3 (U

[s]
3 · T 3)

︸ ︷︷ ︸

F 3






×1 (U

[s]
1 · T 1

︸ ︷︷ ︸

F 1

)×2 (U
[s]
2 · T 2

︸ ︷︷ ︸

F 2

)

(7)

where equations (6) and (7) represent the truncated HOSVD and the
CP decompositionof the noiseless tensor, respectively.The invert-
ible matricesT 1, T 2 andT 3 of dimensionsR × R diagonalize the
truncated core tensorS [s] as shown in [5].

Therefore, it follows that

S
[s] = (I3,R ×3 T 3)×1 T 1 ×2 T 2. (8)

In contrast to the original SECSI framework, we do not calculate 6
sets of symmetric SMDs but only 3 sets of non-symmetric SMDs,
for a smaller number of matrices. To this end, we define the tensor

T 3 = (I3,R ×3 T 3), as depicted in Fig. 1(c). Notice thatT 3

contains diagonal slices along the third mode. Hence,we need to
diagonalize the truncated core tensorS [s], or in other words we need
to estimate the matricesT 1 andT 2 thatdiagonalizethe tensorS [s].

S
[s] ×1 T

−1
1 ×2 T

−1
2 = T 3 (9)

In order to generate the set of matrices that we can use for non-
symmetric SMD, the truncated core tensor has to be sliced. When we
use the third mode of the tensor as presented up to now, the diagonal
matrices arealignedalong the 3-mode slices of the tensor. In order
to selecttheslicesfrom the 3-mode of the tensor we multiply along
the 3-mode with a transpose ofa vectorek that is thek-th column of
aR×R identity matrix.Therefore, each of the corresponding slices
is defined asS[s]

k = S [s] ×3 e
T
k andT 3,k = T 3 ×3 e

T
k for the left

andright hand side of equation (9).

(a) 1-mode (b) 2-mode (c) 3-mode

Fig. 1. Diagonalized core tensor for mode 1, 2 and 3.

The described slicing of the truncated core tensor results in the
following set of equations,

T
−1
1 · S

[s]
k · T

−1
2 = T 3,k, k = 1, 2, . . . R. (10)

Equation (10) represents a non-symmetric SMD problem. Note that
we havea set ofR equations instead of theK (K ≥ R) equations
of the original SECSI framework, which reducesthecomputational
complexity of the non-symmetric SMD. Therefore, in this frame-
work we usenewalgorithms forthenon-symmetric SMD, which are
presented in the following subsections. Thereby, an estimateof the
matricesT 1, T 2, andT 3 is achieved, while T 3 is calculated from
T 3, as depicted in Fig. 1(c).

Finally, from the knowledge ofthese three matrices, the factor
matricesof the CP decomposition can be estimated, which is our
final goal. From equation (7) it follows that

F̂ 1,I = U
[S]
1 · T 1 (11)

F̂ 2,I = U
[S]
2 · T 2 (12)

F̂ 3,I = U
[S]
3 · T 3. (13)

The two additional tensor modes can be exploitedsuch that 2
more sets of factor matrices are estimated,see Fig. 1. Accordingly,
the core tensor should be sliced along its 1-mode and 2-mode, and
then diagonalized via non-symmetric SMDs.Therefore, we geta set
of estimated factor matriceŝF 1,I , F̂ 1,II , F̂ 1,III , F̂ 2,I , F̂ 2,II , F̂ 2,III ,
F̂ 3,I , F̂ 3,II , and F̂ 3,III . From this set of estimated factor matri-
ces different combinations can be selected, while searching for the
best available solution. The different combinations lead to different
heuristics, such as BM (Best Matching) and RES (Residuals) [7].
The BM solves all the SMDs and the final estimate is the one that
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leads to the lowest reconstruction error.The reconstruction error is
calculated according to

RSE =

∣
∣
∣

∣
∣
∣X̂ −X

∣
∣
∣

∣
∣
∣

2

H

||X ||2H
. (14)

On the other hand, RES also solves all SMDs, but as a final estimate
we choose the resulting factor matrices ofthe non-symmetric SMD
that has the smallest residual error.Note that the original SECSI
framework has 6 estimates of the factor matrices due to the6 sym-
metric SMDs, whereas we only have 3 non-symmetric SMDs.

3.1. TEDIA

TEDIA is an algorithmthat solves thenon-symmetric SMD problem
[10], and we propose it as an option for solving the non-symmetric
diagonalization problem within the SECSI framework. The goal of
TEDIA is to find non-orthogonal matricesAL ∈ C

R×R andAR ∈
C

R×R thatdiagonalize the set of matricesMk ∈ C
R×R, resulting

in a set of diagonal matricesDk ∈ C
R×R, for k = 1, 2, . . .K.

Dk = A
−1
L ·Mk ·A

−1
R , k = 1, 2, . . .K. (15)

Note that,AL, AR, Dk andMk, correspond toT 1, T 2, T 3,k and
S

[s]
k

in equation (10), respectively.TEDIA does not try to minimize
the off diagonal elements but rather to achieve a block-revealing con-
dition, ideally leading toa diagonalized tensor. The algorithm is
based ona search for elementary rotations that are applied to the
matricesAL andAR and minimize the off diagonal elementsof
Mk based onadamped Gauss-Newton method.

The TEDIA algorithm can be implemented in eitherasequential
or a parallel fashion and its main computational complexity comes
from the different sweeps and the calculation of the Hessian matrix.

3.2. IDIEM-NS

Although the IDIEM algorithm [11] was initially proposed for
symmetric approximate diagonalization, it can deal with the non-
symmetrical problem as well [12]. IDIEM provides an approximate
closed form solution for the minimization of the following so-called
direct LS (Least Squares) cost function

K∑

k=1

||Mk −ALDkAR||
2
F (16)

where the matricesAL andAR of sizeR×R are the left and right-
diagonalizer, respectively. These two matrices diagonalize the set of
matricesMk, resulting in a set of diagonal matricesDk, for k =
1, 2, ..., K. Since IDIEM does not assume any explicit link between
the two diagonalizers, the right-diagonalizer is simply obtained by
using the rows of theR matricesR̃m instead of columns in Step
4 of Table I in [11]. Where, the matrix̃Rm represents them-th
eigenvector ofM̃ =

∑K

k=1 vec(Mk)vec(Mk)
H by the means of

inverse vector operation.
We propose this algorithm, which is called IDIEM-NS (IDIEM

Non-Symmetric), because it is not iterative and therefore very fast
and computationally efficient. Its closed form solution is a very prac-
tical choice for the non-symmetric SECSI framework.

4. SIMULATION RESULTS

In this section the non-symmetric extension of SECSI with its two
implementations based on the TEDIA and the IDIEM-NS algorithm
is compared to the original framework. For this reason, we have
computed Monte Carlo simulation using 1000 realizations.

For simulation purposes two different, real-valued tensors, of
size4× 7× 3 with tensor rankR = 3 have been designed. Each of
the tensors is designed according to the CP decomposition.

X 0 = I3,3 ×1 F 1 ×2 F 2 ×3 F 3 (17)

where the factor matricesF 1, F 2, andF 3 have i.i.d.zero mean
Gaussian distributed randomentrieswith variance one. Moreover,
we want one of the tensors to have correlated factor matrices, there-
forewe add correlation via

F n ← F n ·R(ρn) (18)

R(ρ) = (1− ρ) · IR,R +
ρ

R
· 1R×R, (19)

whereR(ρ) is the correlation matrix with correlation factorρ and
1R×R denotes a matrix of ones. The second tensor has correlated
factor matrices, with correlationcoefficientsρ1 = 0.9, ρ2 = 0.1
andρ3 = 0.1 for F 1, F 2, andF 3, respectively.

Finally, the synthetic datais generated by adding i.i.d. zero mean
Gaussian noise with varianceσ2

n. The resulting SNR (Signal to
Noise Ratio) for the noisy tensorX = X 0 +N is SNR= σ−2

n .
In the simulation results the TMSFE (Total relative Mean Square

Factor Error)

TMSFE = E







N∑

n=1

min
P n∈MPD(R)

∣
∣
∣

∣
∣
∣F̂ n · P n − F n

∣
∣
∣

∣
∣
∣

2

F

||F n||
2
F







(20)

is used as an accuracy measure, whereMPD(R) is a set of permuted
diagonal matricesthatresolvesthepermutation ambiguityof the CP
decomposition.

Since the SECSI framework has already been compared to the
state of the art algorithms for various scenarios, we only compare our
proposed framework to the original SECSI framework in [7], [5]. In
the simulation resultsan accuracy and computational time compar-
ison of the SECSI-IDIEM-NS, SECSI-TEDIA, SECSI, and SECSI
Truncated is provided. SECSI-IDIEM-NS and SECSI-TEDIA de-
note the new proposed extension of the SECSI framework with non-
symmetric SMDs based on IDIEM-NS and TEDIA, respectively.
SECSI denotes the original framework, and SECSI Truncated de-
notes the framework when only the new truncation step is included
usingsymmetric SMDs. Moreover, two sets of curves are presented
for each algorithm, each of them representing the BM and RES
heuristics to choose the final solutions. The verticaldotedlines, cor-
respond to the mean value of the estimates.

In Fig. 2 the CCDF (Complementary Cumulative Distribution
Function)of theTMSFE for the tensor with uncorrelated factor ma-
trices is presented,for SNR = 30 dB. Noticethat the SECSI-TEDIA
algorithm isthemost accurate. The BM version for all of the algo-
rithms is more accuratethanthe RES. The SECSI-IDIEM-NS BM is
as accurate as the SECSI RES. With the truncation step we sacrifice
accuracybut reduces thecomputational complexity. However, the
non-symmetric SMD compensates this loss of accuracy.

In Fig. 3 the simulation results for the tensor with correlated fac-
tor matricesarevisualized,for SNR = 30 dB. The SECSI-IDIEM-
NS framework is the least accurate. On the other hand, the SECSI-
TEDIA framework still performs accurate for ill-conditioned scenar-
ios.
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SECSI-IDIEM-NS BM
SECSI-IDIEM-NS RES
SECSI-TEDIA BM
SECSI-TEDIA RES
SECSI BM
SECSI RES
SECSI Truncated BM

Fig. 2. Complementary cumulative distribution function of the total
relative mean square factor error for real-valued tensor with dimen-
sions4× 7× 3 and tensor rankR = 3, SNR = 30 dB.
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0.6

0.8

1 SECSI-IDIEM-NS BM
SECSI-IDIEM-NS RES
SECSI-TEDIA BM
SECSI-TEDIA RES
SECSI BM
SECSI RES
SECSI Truncated BM

Fig. 3. Complementary cumulative distribution function of the total
relative mean square factor error for real-valued tensor with dimen-
sions4×7×3, tensor rankR = 3 and factor matriceswith mutually
correlated columns, SNR = 30 dB.

In Table 1 a summary of the average computational time in sec-
onds isprovided for the different algorithms. The SECSI-IDIEM-NS
outperforms the rest of the algorithmswith respect to thecomputa-
tional time, while the TEDIA extension requiresmorecomputational
time.

5. CONCLUSIONS

In this paper we have presented an extension of the SECSI frame-
work, by solving non-symmetric SDMs based onthe TEDIA and
the IDIEM-NS algorithm. The SECSI-TEDIA framework offers a
high accuracy, while the SECSI-IDIEM-NSalgorithmoffersa very
fastapproximationfor the CP decomposition with a reasonable ac-
curacy. Notice that SECSI-IDIEM-NS provides a closed-form so-
lution for CP decomposition, since the non-symmetric SMDs can
be calculated in closed form [12], [10]. In contrast to the original
framework we calculate 3 sets of non-symmetric SMDs instead of 6
sets of symmetric SMDs for a smaller number of matrices (R ≤ K).
The computational advantages provided by the truncations become

No correlation Correlation

SECSI-IDIEM-NS BM 0.0831 s 0.0145 s
SECSI-IDIEM-NS RES 0.0290 s 0.0042 s
SECSI-TEDIA BM 4.8274 s 0.8912 s
SECSI-TEDIA RES 5.5233 s 0.8916 s
SECSI BM 0.3480 s 0.1164 s
SECSI RES 0.0721 s 0.0442 s
SECSI TruncatedBM 0.3290 s 0.1105 s

Table 1. Average computational time in [s].

more pronounced as the tensor size increases.
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