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Abstract: Traditional decision theory dealing with uncertainty is usually considering criteria based on expected values, 

or, variantly, on selected quantiles of objective function. Both, however, take into account just rather small part of 

available information, in particular not counting with possible variability of involved random variables. That is why 

the criteria based simultaneously on a set of reasonable characteristics should be preferred. This leads to a multi-

objective problem and solution based on an appropriate utility function. In the present paper we propose quantitative 

characteristics measuring information loss caused by reduction of information used in decision. Such measures can 

help us to find a trade-off between the decision problem complexity and its reasonable simplified re-formulation. This 

concept is illustrated on examples. 
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1. Introduction 

The decision problem under uncertainty, e.g. a stochastic optimization problem, is, as a rule, formulated in terms of expected 

cost function (c.f. Dupacova, Wets, 1984). Alternatives can be based on other, sometimes more convenient, characteristics of 

uncertain objective function. For instance, the Value-at-Risk, used in the area of risk management in finance or insurance, is 

defined as a quantile of the distribution of losses. Thus, criteria based on quantiles are often used in many applications, 

economic (for instance Kim and Powell, 2011) as well as engineering (Volf, 2013). The main advantage of such approach to a 

decision problem under uncertainty is the improved robustness to heavy tails and to influence of possible outliers in analyzed 

data, as well as in overcoming the problem of theoretical infiniteness of the mean. 

 
 However, the question of proper quantile (and other characteristics) selection arises immediately. Moreover, a criterion based 

on just one characteristic does not take in account possible variability of involved random variables, it uses just very narrow 

part of information available. In order to improve this limitation, we cannot avoid considering a kind of multiobjective 

decision problem taking into account both an optimal „mean“ level as well as an uncertainty of decision result. When 

comparing possible consequences of different decisions, we are actually interested in ordering (ranking) of possible results 

along their „utility“. It leads to formulation of a weighted joint criterion based on more or less subjective user’s preferences, 

i.e. on his utility (or preference) function (c.f. Anand, 1993). This is actually the most standard approach to the multi-objective 

optimization problem solution. In the present contribution, except exploring the problems formulated above, we are mainly 

interested in quantification of how much information we neglect when building our decision on just one or a small set of 

characteristics of future scenario. It is actually one of objectives of the paper. Consequences of consideration just a reduced 

information instead the full scenario distribution will be studied and illustrated on several examples, either simple artificial or 

with a real origin.  

 

 In the case of complex future scenarios and dense space of them, the problem of decision is better formulated as a problem of 

stochastic optimization with appropriate objective function.  As a rule, the objective function depends on a set of parameters 

we are able to specify and in such a way to determine resulting scenario. Hence, even in such a case it is desirable to be able 

to quantify the information loss caused by reduction of complete scenario characterization (e.g. in terms of probability 

distribution) to a small set of selected characteristics (the mean and selected quantiles, for instance).  Again, reasonable 

quantitative measures of the information loss will be proposed. 

The paper is organized as follows:   In the next part a simple case of discrete-valued „game“ is considered. Even here it could 

be shown how subjective preferences can influence the decision. Standard deviation and Gini index are used as the decision 

supporting characteristics and, simultaneously, as the measures of information loss. In Section 3 a more complex problem of 

stochastic optimization is studied, again from the point of view of optimal decision on the basis of selected criteria and 

preference function. Simultaneously, the measures of information loss are generalized, distances in L1 and L 2 functional 
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spaces are utilized. Illustration deals with the newsvendor problem, we again explore properties of solutions optimal with 

respect to different preference functions. 

 

2. Decision Rule and Loss of Information 

As it has already been said, in an ideal case we can try to find a uniformly best scenario and to decide to follow it. However, 

as a rule, such a scenario does not exist. Instead, we have to base our decision on one or more characteristics of the objective 

function. Then, in order to obtain an ordered scale of scenarios, possible values of selected criteria have to be combined in a 

convenient way corresponding to our (user’s) preference. Naturally, in such an approach (which is reasonable) only a part of 

information is utilized. Hence, our concern is also to quantify, with the aid of a properly selected measure, how much 

information was neglected when applying certain decision rule. This question is actually the main interest of the present 

paper, in the next parts and examples we shall try to propose such ,,information loss” measures and illustrate their use.  

 

2.1    Measuring information loss 
 

 Theory of information offers a number of information measures (or, rather, measures of uncertainty), for instance the entropy 

or a set of more general diversity indices, see for instance Jost (2006). To quantify a relative loss of information caused by a 

misspecified distribution of probability, the Kullback-Leibler or other divergences are available (c.f. Vajda, 1989). All 

mentioned measures, however, have one disadvantage (from our point of view). They are based solely on probabilities 

assuming that the domain of values is fixed. Therefore, we shall prefer here the standard deviation and the Gini coefficient 

(index), two well known measures of variability. Non-standardized Gini index of a random variable X equals the mean 

absolute deviation, GI*=E|X-EX|, while the standard deviation std(X) equals the square root from the variance E[(X-EX)2]. 

For non-negative variables both indices can be standardized (relativized), to GI=GI*/EX or to the coefficient of variation 

CV=std(X)/EX. As we shall work with both positive and negative values (gain, loss), non-standardized versions will be 

employed. In fact, we shall use them as a measure of information loss caused by a reduction of the whole distribution of a 

scenario to just one representative characteristic, EX. Their application will be specified in examples. 
 

Let us remark here that while mina E[(X-a)2] is reached at a=EX, while mina E|X-a| is attained at the median of X. From this 

point of view, it is interesting that Gini index was defined with respect to EX instead to median. Such an alternative definition 

can have also certain practical advantages in cases of strongly non-symmetric distribution of X or of distribution with heavy 

tails. 
 

     2.2      Example I 

 

Let us imagine a simple game consisting of two possible scenarios. In one, we shall loose -1 (unit) for sure, in the second we 

can either gain +5 or loose -5, both with probability 0.5. Hence, when deciding on the basis of the expected value, we should 

prefer the second one, as its EX=0. However, both measures of variability, std(X) and Gini index, are 0 in the first case and 

equal 5 in the second, indicating that the decision based only on EX may not be satisfactory. Which other decision rules could 

be reasonable in such a case? Let us first consider two extremal criteria, namely max(max(gain)) and max(min(loss)). In other 

words, the former prefers high gain, neglecting the risk of loss (no matter how large). In our „game“ described above it will 

prefer the second scenario. On the contrary, the latter criterion wishes to minimize possible losses, not taking into account 

chances to gain, hence the first scenario will be preferred. From this example it is seen that some approaches correspond to 

behavior which could be called „the inclination to risk“, while others correspond rather to „the aversion to risk“. We may see 

here that even in such a simple case the decision is not easy. Decision rule could be based on some a-priory selected 

(formulated) strategy. Let us recall here the notion of utility function, U(x), say. It is nothing else than a model function giving 

different weights to possible results in scenario, expressing actually our preferences. Essentially, we may restrict ourselves to 

either concave or convex functions. Naturally, both are assumed to be non-decreasing and having U(0)=0 (i.e. there is no 

utility from nonthing). Final criterion can then be based on the expected utility of a scenario, i.e. on its weighted mean 

E(U(X)). This is again in accordance with the fact that each multicriterial decision rule corresponds to a decision based on 

certain combination (i.e. weighted mean) of single criteria. In this context, the rule based on simple EX corresponds to 

expected utility under linear utility function.  

 

In fact, people commonly do not solve problems on the basis of a-priory formulated utility function. This is rather an ex-post 

construction, a model of prevailing behavior, attemting to explain it (and to predict it for the future). A natural question arises 

how an appropriate utility function should be constructed. As a rule, it can be derived from results of observation or survey 

mapping people's behaviour, its quantification could be rather interesting and challenging problem of (statistical) modeling. 

Our aim here is just to show possible consequences of certain ordering of preferences, though in the real people’s decision 

making this ordering may be just implicite and intuitive. 
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Let us return to the example. Figure 1 shows two examples of utility functions, one concave and the second convex, and their 

values at -5, 5 and -1. Expected utility of the first scenario equals U(-1), while the second yields (U(-5)+U(5))/2. Expected 

utilities for both functions are denoted by stars, it is seen that conveniently chosen concave function leads to preference of the 

first scenario, i.e. also corresponds to the aversion to risk behavior. 

      

 
Figure 1. Example of two utility functions (concave and convex) and corresponding expected utilities 

 

3. Relation to Stochastic Optimization Problem 

In the sequel we shall deal with a more complex (and more interesting, too) situation than in the preceding part and example. 

Let us imagine a case with a large set of possible scenarios and correspondingly large, in many instances even "dense", 

continuous, scale of possible decisions. Optimization problems are then as a rule formulated in terms of the stochastic 

optimization. In such a situations it is even more important to take into account all aspects af solutions. Typically, a slightly 

sub-optimal solution (with respect to one attribute, e.g. expectation) could be much better as regards another characteristic 

(e.g. range, uncertainty, variability) of chosen scenario. 

 
 Hence, let us consider an optimization problem with objective function Φ(y; v); where v are input variables from certain 

feasibility set V and values y are random, results of a random variable (or vector) Y with distribution function F. Standardly, 

corresponding stochastic optimization problem is formulated as supv EF Φ(Y; v), where EF stands for the expectation w.r. to F. 

If F is known, we actually deal with a „deterministic" optimization case. It has been said already that the criterion based on 

averaging does not take in account possible variability of r.v. Y. That is why alternatives may consider optimization of other 

characteristics, for instance the quantiles of random criterion Z(v) =Φ(Y; v). As there arises a problem of which quantile 

should be selected, it is reasonable to utilize a kind of multi-objective optimization procedure considering simultaneously 

several characteristics, and also the variability of solution (measured by variance or by certain inter-quantile range). It is well 

known that a multi-objective optimization task can be re-formulated as a task to optimize certain wighted sum of particular 

criteria. We are then facing again to the question how the weights should be selected. It is again a matter of individual 

preferences. Simultaneously, we are also interested in quantification of amount of information neglected by reducing the 

whole scenarion distribution to its several characteristics. Illustration of these ideas is the sense of the following example. 

 

3.1 Example II 

 

We shall consider a very simple case of the newsvendor model. Let D be a random variable with known probability 

distribution representing the demand (of units of certain commodity), further let each unit be sold for price q and purchased 

for price c,  and S be the number of units stocked, i.e. purchased to be sold. In the simplest case c and q are fixed, we search 

the solution to the optimal stocking quantity S which maximizes profit Z=q*min(S,D)-c*S. As both D and therefore Z are 

random, we have a choice which criterion to maximize. It is well known and can be shown easily that to get maxs EZ, optimal 

solution is S=SE=((q-c)/q)-quantile of distribution of D, while for maximization of the α-quantile of Z optimal stock equals 

S=Sα = α-quantile of D. Computation of resulting distribution of profit Z, hence also of achieved values of EZ and of quantiles 
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of Z, is then rather easy task. See for instance Petruzzi, Dada (1999) and also Kim, Powell (2011). Hence, it is possible and 

interesting to study dependence of distribution of Z and values of its characteristics, including its variance, on chosen stock 

amount S. This is actually purpose of the example, and, in particular, of Figure 2.  

 
In the numerical example of the newsvendor model, we have selected the normal distribution for D, D~N (μ=150, σ=20), 

prices were set to c=10, q=15. Then 0.1, 0.25, 0.5, 0.75, and 0.9 quantiles of this normal distribution equal 124.3690, 

136.5102, 150.0000, 163.4898, and 175.6310, respectively. It means that these values are also levels of stock Sα maximizing 

corresponding α-quantiles of profit Z. Further, the ratio (q-c)/q=1/3, hence the optimal stock level maximizig EZ equals SE = 

141.3855, corresponding to 1/3 quantile of distribution of D. 

    

Figure 2 shows dependence of considered five quantiles of profit Z on S. It contains also the graph of mean values EZ and 

curves EZ-2σZ , EZ+2σZ , where σZ  denotes standard deviation of Z. Though the value SE= 141.3855 guarantees maximal 

possible expected profit, simultaneously it is seen that the variance (and therefore uncertainty) of profit really achieved is 

rather large. However, let us consider just slightly sub-optimal S, for instance S=130. Expected profit is then just slightly 

smaller, approximately from 600 decreasing to 580, simultaneously standard deviation of distribution of Z is smaller 

significantly (approximately twice). It is also seen how for even smaller levels of stock (less than 120, say) the distribution of 

possible profit becomes to be rather narrow, but, naturally, all considered distribution characteristics are already lower. 

 

 
Figure 2. Dependence of characteristics of profit Z on purchased stock amount S 

 

Figure 2 shows main characteristics of probability distribution of profit under different possible scenarios corresponding to 

different selections of S. The example itself again indicates how nonsatisfactory can be decision based only on one, though 

representative, characteristics. However, in the end it is necessary to reach some decision, i.e. to formulate a reasonable 

decision rule. Again, a quite natural way consists in a trade-of among several criteria, in other words in formulation of a multi-

criterial problem expressed with the aid of weighted combination of single criteria.  Consequently, we are facing once more 

the question of convenient choice of weights. As the objective of the present study is not to propose one “best” choice (which 

actually does not exists), the aim is the exploration of different cases and possibilities, and we shall study and compare 

consequences of several different solutions. That is why four different sets of weights, combining single criteria based on 0.1, 

0.25, 0.5, 0.75, and 0.9 quantiles of Z to one complex criterion, were taken into account, namely: 
  W1: 0.1, 0.15, 0.2, 0.25, 0.3.    

  W2: 0.3, 0.25, 0.2, 0.15, 0.1.  

  W3 uniform, i.e. all weights equal to 0.2.    

  W4: 0.1, 0.2, 0.4, 0.2, 0.1. 

Figure 3 displays shapes of these four combined characteristics in dependence on S, hence we can trace also values of 

S maximizing each of them. As regards optimal stocks S for these combinations, from the form of quantile curves (broken 

linear, see Figure 2) it follows that extremal point has to be at one from Sα. As indicated also by Figure 3, they are at S1=150, 

S2=136.5, S3=136.5, S4= 150, respectively. The first combination with weights W1 prefers higher gain with small respect to 

uncertainty of the result. Priority of the second combination, on the contrary, is smaller variability and suficiently sure lower 
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bounds. Weights W3 does not prefer any from considered single criteria and means a „golden mean“, while the last 

combination is closest to the median criterion, taking into account also other characteristics od profit distribution. 

After such a simplification of the decision problem reducing the set of characteristics to just several composite critera, e.g. the 

four defined above, we are still facing the question which of them to apply. However, each criterion reflects certain 

preferences and should be used in accordance with them. In fact the set of weights substitutes here the instrument of utility 

function. The choice of weights is without doubt related to user’s inclination or aversion to risk, instead of utility function 

such a construction could be called „the preference score“. 
 

 
Figure 3. Four combinations of quantiles of profit Z and their dependence on S 

 

 

3.2 Generalized measures of information loss 

 
In section 2.1 we have recalled two  indices convenient for measuring amount of information lost by reducing our knowledge 

on objective variable (scenario) X to only one, though representative, characteristics (as a rule, to EX).  Now we deal with a 

more complex case. It can be described as a reduction of a full probability distribution (which can be of continuous type) of 

the objective variable to a subset of (characteristic) values. In terms of distribution function, initial „true“ distribution function 

F1 is reduced to (substituted by) a distribution function F2. To quantify the size of such reduction, we propose to utilize two 

following measures,       
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actually representing distances in L1 and L2 functional spaces. Simultaneously, the first can be regarded as a generalization of 

the Gini index, because in the case that F2 is degenerated to one point EX, G coincides with GI*. The second, however, equals 

std(X) only in particular cases, for instance when we deal just with Bernoulli random variable X. Then X=1 with probability p 

and X=0 with 1-p, its F1 jumps from 0 to 1-p at x=0 and then jumps from 1-p to 1 at x=1. Further, let us reduce X to its 

expectation EX=p, hence corresponding F2(x) =0 for x<p and =1 for x≥p. It is easy to compute that C 2 from (1) really equals 

var(X) = p(1-p). G then equals corresponding Gini index E|X-EX| = 2p(1-p). 

 

    3.3  Example II continued 
 

Our intention is now to apply both distances defined above to situation of Example II, in order to quantify an information loss 

caused by reduction of the whole distribution F1 of variable Z, at different S, to just five quantiles (0.1, 0.25, 0.5, 0.75, 0.9). 

Hence, we shall consider four variants of distribution F2 given by four sets of weights. Let us recall that Z=q*min(S,D)-c*S, 

where D~N (μ=150, σ=20), parameters (prices) c=10, q=15. Plots on Figures 4 and 5 display both distances G and C as 

functions of S, for all four sets of weights (here taken as probabilities of five values corresponding to five quantiles of 
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distribution of Z, thus forming distribution function  F2). Further, in both figures, the highest curve shows indices G and C 

computed along (1) and quantifying information loss when F2 is concentrated at only one value, EZ. 

 

 
Figure 4. G – measures of information loss 

 

 
Figure 5. C – measures of information loss 

 

Both graphs demonstrate that the reduction has larger consequences at larger S, i.e. in regions where the distribution of Z is 

richer, implying larger uncertainty of result of decision. It is also seen how the simultaneous use of several characteristics 

(here five quantiles) leads to much smaller information loss than when the decision is based on only one value (EZ). Both 

measures of lost information are smallest for the case with equal weights, W3. Quite different scales of both indices then 

follow from their different definitions.  

 

4.  Concluding Remarks 

The main objective of the paper was to propose measures quantifying how much information is in fact neglected when 

decision (in a stochastic decision problem) is based just on one or several (though representative) characteristics of future 

scenario. The concept of measures was based on Gini index and standard deviation expresing the uncertainty, variability. of 

values of objective function after a decision is chosen. As the generalization of these measures, we proposed to use distances 

in L1 and L2 functional spaces and to employ them for quantifying distance between distribution function of full scenario and 
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its reduction to just several characteristics. The performance of proposed criteria was studied. With the aid of examples, 

including a simple version of the newsvendor model, applicability and usefulness of presented information loss measures was 

demonstrated.  
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