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The aim of this paper is to present the application of the analytical series technique to study
properties of the nonlinear chaotic dynamical systems. More specifically, Laplace–Adomian
decomposition method is applied to Rössler system and the so-called generalized Lorenz system.
Some advantages and possible applications of this approach are discussed. Results are illustrated
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1. Introduction

A common approach to solve a particular problem
for a given dynamical system is to transform this
system from its original space of definition into an
alternative space, where the corresponding solution
is more easily achieved. Such a transformation has
to be a homeomorphism in order to get the inverse
transformation to be able to reinterpret the solution
in the original space.

The well-known example of that approach is
Laplace transform. Laplace transform is the use-
ful tool to solve both ordinary and partial differen-
tial equations and it has enjoyed much success in
this realm. This transform belongs to the class of
integral transforms. Integral transforms date back
to the work of Léonard Euler (1763 and 1769),
who considered them essentially in the form of the
inverse Laplace transform in solving the second-
order class of linear ordinary differential equations.
Even Laplace in his great work “Théorie analytique
des probabilités” (1812) credits Euler with intro-
ducing integral transforms. Actually, it was Spitzer
(1878) who attached the name of Laplace to this

famous transform. In the late 19th century, the
Laplace transform was extended to its complex form
by Poincaré and Pincherle, rediscovered by Petz-
val and extended to two variables by Picard with
further investigations conducted by Abel and many
others. The first application of the modern Laplace
transform occurs in the work of Bateman (1910),
who transforms equations arising from Rutherfords
work on radioactive decay. The modern approach
was given particular impetus by Doetsch in the
1920s and 1930s; he applied the Laplace trans-
form to differential, integral, and integro-differential
equations. This body of work culminated in his
fundamental 1937 text “Theorie und Anwendun-
gen der Laplace Transformation”. No account of the
Laplace transformation would be complete with-
out mentioning the work of Oliver Heaviside, who
produced (mainly in the context of electrical engi-
neering) a vast body of what is now termed as
operational calculus. This material is scattered
throughout his three volumes “Electromagnetic
Theory” (1894, 1899, 1912) and bears many simi-
larities to the Laplace transform method. Although
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Heaviside’s calculus was not entirely rigorous, it
did find favor with electrical engineers as a useful
technique for solving their problems. Considerable
research went into trying to make the Heaviside cal-
culus rigorous and to connect it with the Laplace
transform. One such effort was that of Thomas John
I’Anson Bromwich (1875–1929), who, among oth-
ers, discovered and used the inverse transform.

Perhaps the most useful purpose of Laplace
transform is to replace the problem of solving lin-
ear differential equations by the problem of solv-
ing a system of algebraic equations which belongs,
indeed, to a substantially more explored area. The
most utilized area of that approach is control the-
ory. On the other hand, the main disadvantage here
is that Laplace transform based approach addresses
linear problems only. To proceed also with nonlinear
problems, several new approaches were elaborated
during the last decades.

Among them, a prominent role is played by the
approach developed by Adomian [1994] who discov-
ered new approximation polynomials, named Ado-
mian polynomials later, that allow together with
Laplace transform to obtain a kind of decomposi-
tion of the nonlinear system according to its non-
linearities. Such an approach results in the iterative
scheme that embodies the fast convergence. Ado-
mian’s discovery started a very fruitful research in
a broad area of applications. The equations model-
ing these applications range over algebraic polyno-
mial equations, transcendental equations, ordinary
differential equations, partial differential equations,
difference equations and delay differential equa-
tions, among others. The coefficients of the cor-
responding differential equations may be time and
space dependent, moreover, they may represent ran-
dom processes as well. Finally, the equations may
be nonlinear. Summarizing, the combination of the
Adomian approach with Laplace transform enabled
to engage the latter to investigate the nonlinear
problems, too. The amount of applications grew
very soon, the interested reader is referred to the
following literature and references within there:

biology: [Abbaoui, 1995; Cherruault, 1994; Sen,
1998],

economy: [Wazwaz, 2004],

physics: [Alabdullatif et al., 2007; Ismail et al.,
2004a; Ismail et al., 2004b; Kaya, 2004; Khuri,
1998],

engineering: [Biazar et al., 2006; Bokhari et al.,
2009; Olawanle & Ade, 2008; Serdal, 2005;
Wazwaz, 2004],

integral equations: [Wazwaz, 2011].

The purpose of this paper is to develop
Adomian method to treat the nonlinear part of
the system to be used to study properties of
chaotic systems, namely, the well-known Rössler
system, [Gaspard, 2005], and the so-called gener-
alized Lorenz system introduced in [Čelikovský &
Vaněček, 1994; Čelikovský & Chen, 2002, 2005].
Using these examples, one can see that even a rel-
atively low number of Adomian terms provide a
good precision of approximation. Moreover, compu-
tations are performed time-pointwise and therefore
they need not respect the time flow as in the case
of classical numerical difference schemes, like the
Runge–Kutta one. Last, but not least, differential
equation can be effectively replaced by an algebraic
expression which in our opinion opens new possibil-
ities, e.g. in using chaotic continuous-time systems
in encryption algorithms [Čelikovský & Lynnyk,
2012], avoiding usual problems caused by poten-
tial numerical instabilities in difference numerical
schemes. Note, that these computations also show
yet another advantage of the so-called generalized
Lorenz canonical form [Čelikovský & Chen, 2002,
2005], namely, the diagonality of the linear approx-
imation of this canonical form enables efficient use
of the Adomian decomposition method combined
with Laplace transform.

The rest of the paper is organized as follows.
The next section compiles the preliminaries and
necessary definitions including some useful results
needed later on. Section 3 presents the main results
of the paper — the analytical expression of the solu-
tion of famous Rössler system and the above men-
tioned generalized Lorenz system. Computational
applications of these expressions are presented here
as well. Some conclusions and outlooks are drawn
in the final section.

2. Definitions and Preliminary
Results

The well-known concepts from Laplace transform
theory and Adomian decomposition method will
be repeated here. Furthermore, three algorithms to
implement them will be suggested.
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Let R,N be the space of real and positive
integers, correspondingly. Consider the autonomous
dynamical system

ẋ(t) = f(x(t)) (1)

where x(t) = [x1(t), . . . , xn(t)]T , f : Rn → Rn,
f(x(t)) = [f1(x(t)), . . . , fn(x(t))]T , and presume
that initial conditions x(0) = [x1(0), x2(0), . . . ,
xn(0)]T are given. Decompose the right-hand side
of (1) as follows:

fi(x(t)) = gi(x1(t), . . . , xn(t))

+ Fi(x1(t), . . . , xn(t)), i = 1, . . . , n,

(2)

where gi(x1(t), . . . , xn(t)) and Fi(x1(t), . . . , xn(t))
are the linear and the nonlinear parts of fi(x1(t),
. . . , xn(t)), respectively. The possible decomposi-
tion (2) is not unique and its selection may be used
to facilitate the analysis described later on. Fur-
ther, let L{φ(t)} stand for the image of a smooth
function φ(t) under Laplace transform and recall,
that L{φ̇(t)} = sL{φ(t)} − φ(0). Therefore, for all
i = 1, . . . , n,

L{ẋi(t)} = sXi(s) − xi(0), Xi(s) := L{xi}.
Applying Laplace transform to both sides of (1)
and (2) gives by linearity of gi’s for all i = 1, . . . , n
the following equality

sXi(s) − xi(0) = gi(X1(s), . . . ,Xn(s))

+L{Fi(x1, . . . , xn)},
which, in turn, leads by straightforward computa-
tions to

Xi(s) =
xi(0)

s
+

1
s
gi(X1(s), . . . ,Xn(s))

+
1
s
L{Fi(x1, . . . , xn)},

Xi(s) := L{xi}.

(3)

Now, the Adomian decomposition method to handle
the nonlinear terms in (1) and (2) can be described
as follows. First, represent each xi(t), i = 1, . . . , n,
as the following expansion

xi(t) =
∞∑

k=0

xik(t). (4)

Further, introduce a parameter λ into expansion (4)
and write

xi(t) =
∞∑

k=0

λkxik(t), i = 1, . . . , n. (5)

Parameter λ ∈ R is the so-called “formal group-
ing parameter” [Cherruault & Adomian, 1993] help-
ing to obtain the expansion of the nonlinear terms
Fi(x), i = 1, . . . , n, having favorable homogeneity
properties. More specifically, the aim is to define the
so-called Adomian polynomials Aik, i = 1, . . . , n,
k = 0, 1, . . . , such that

Fi

( ∞∑
k=0

λkx1k,

∞∑
k=0

λkx2k, . . . ,

∞∑
k=0

λkxnk

)

=
∞∑

k=0

λkAik. (6)

Each polynomial Aik, i = 1, . . . , n, is to be defined
in such a way that it depends on xi0, xi1, . . . , xik,
i = 1, . . . , n, only:

Ai0 = Ai0(x10, . . . , xn0),

Ai1 = Ai1(x10, . . . , xn0, x11, . . . , xn1),

Ai2 = Ai2(x10, . . . , xn0, x11, . . . , xn1, x12, . . . , xn2).
(7)

In the resulting series for the solution xi =
∑∞

k=0 ×
λkxik, each xik is to be calculated recursively,
namely Aik, k ≥ 0, i = 1, . . . , n, are defined as
follows

Ai0(x10, x20, . . . , xn0) = Fi(x10, x20, . . . , xn0), i = 1, 2, . . . , n,

Aik =
1
k!

dk

dλk


Fi


 k∑

j=0

λjx1j ,

k∑
j=0

λjx2j , . . . ,

k∑
j=0

λjxnj






λ=0

, k = 1, 2, . . . , i = 1, 2, . . . , n.

Note, that Adomian polynomials Aik can be evaluated for all forms of smooth nonlinearity Fi(x), i =
1, . . . , n. In particular, setting λ = 1 in (6) gives the desired expansion of Fi, i = 1, . . . , n, namely

Fi(x1, . . . , xn) =
∞∑

k=0

Aik(x10, . . . , xn0, . . . , x1k, . . . , xnk), i = 1, . . . , n. (8)
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Example 2.1. Consider system (1) and (2) with
n = 3 and F1 ≡ 0, F2 ≡ 0, F3 ≡ F (x1, x3), i.e. the
following nonlinear dynamical system (recall, that
gi’s stand for the linear part of the right-hand side)

ẋ1 = g1(x1, x2, x3), ẋ2 = g2(x1, x2, x3)

ẋ3 = g3(x1, x2, x3) + F (x1, x3).
(9)

Note, that famous Rössler system is a particular
case of the above system and therefore the current
example would serve well to analyze it later on, cf.
Sec. 3. As the nonlinearity is present in the last row
only, Aik ≡ 0, i = 1, 2; k = 0, 1, . . . and denote
A3k := Ak for all k ∈ N . Straightforward though
laborious computations show that

A0 = F (x10, x30),

A1 = x11
∂F

∂x1
(x10, x30) + x31

∂F

∂x3
(x10, x30),

A2 = x12
∂F

∂x1
(x10, x30) + x32

∂F

∂x3
(x10, x30) +

1
2!

x2
11

∂2F

∂x2
1

(x10, x30)

+
1
2!

x2
31

∂2F

∂x2
3

(x10, x30) + x11x31
∂2F

∂x1∂x3
(x10, x30)

A3 = x13
∂F

∂x1
(x10, x30) + x33

∂F

∂x3
(x10, x30) + x11x12

∂2F

∂x2
1

(x10, x30)

+ (x11x32 + x12x31)
∂2F

∂x1∂x3
(x10, x30) + x31x32

∂2F

∂x2
3

(x10, x30) +
1
3!

x3
11

∂3F

∂x3
1

(x10, x30)

+
1
3!

x3
31

∂3F

∂x3
3

(x10, x30) +
1
2!

x2
11x31

∂3F

∂x2
1∂x3

(x10, x30) +
1
2!

x11x
2
31

∂3F

∂x1∂x2
3

(x10, x30),

(10)

while Adomian polynomials A4, A5, . . . can be computed analogously. This concludes the example.

Now, let us combine the Adomian technique with Laplace transform of linear part of (2). Using (3),
(4) and (8)

L
{ ∞∑

k=0

xik

}
=

xi(0)
s

+
1
s
L
{

gi

( ∞∑
k=0

x1k, . . . ,

∞∑
k=0

xnk

)}
+

1
s
L
{ ∞∑

k=0

Aik

}
, i = 1, 2, . . . , n. (11)

Introducing Xik(s) := L{xik(t)} and using the linearity of gi’s, the equality (11) implies
∞∑

k=0

Xik(s) =
xi(0)

s
+

∞∑
k=0

gi

(
1
s
X1k(s), . . . ,

1
s
Xnk(s)

)
+

∞∑
k=0

1
s
L{Aik}, i = 1, 2, . . . , n. (12)

Matching both sides of (12) can be done in sev-
eral ways. Let us mention three of them. They will
be referred to as the Algorithms 1–3 in the sequel.
Algorithms 1–3 solve (12) formally algebraically
only and convergence issues will be addressed when
appropriate later on.

Algorithm 1. This algorithm formally and explic-
itly solves (12) in the following way :

Xi0(s) =
xi(0)

s
, i = 1, . . . , n,

Xi,k+1(s) = gi

(
X1k(s)

s
, . . . ,

Xnk(s)
s

)

+
1
s
L{Aik(x10(t), . . . , xn0(t), . . . ,

x1k(t), . . . , xnk(t)}, i = 1, . . . , n,

(13)

where k = 0, 1, . . . is the Adomian expansion term
number. Indeed, each recursive step explicitly com-
putes (k + 1)th Adomian expansion term via those
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already computed before. Note, that the recursive
steps in (13) can be repeated analytically again and
again in the following way. One can easily see using
recursive computations that any xik(t) has the form
xik(t) = cikt

k, cik ∈ R. Therefore by properties of
Adomian polynomials, namely, by their homogene-
ity one has

Aik(x10(t), . . . , xn0(t)) = Aik(c10, . . . , cn0)tk,

L{Aik} = AikL{tk} = Aik
k!

sk+1
.

In other words, one can see that Xi,k+1(s) = ci,k+1

sk+2 ,
where ci,k+1 ∈ R are some real constants that can
be determined recursively. Rather than giving the
general expression with abusive notation, the reader
is referred to examples presented later on, namely,
to Rössler system and to the so-called generalized
Lorenz system.

Algorithm 2. This algorithm formally and semi-
explicitly solves (12) in the following way :

Xi0 =
xi(0)

s
+

1
s
gi(X10(s), . . . ,Xn0(s)),

i = 1, . . . , n,

Xi,k+1(s) = gi

(
X1k(s)

s
, . . . ,

Xnk(s)
s

)

+
1
s
L{Aik(x10(t), . . . , xn0(t), . . . ,

x1k(t), . . . , xnk(t)}, i = 1, . . . , n,

(14)

where k = 0, 1, . . . is the Adomian expansion term
number. Indeed, only the initial step is implicit here
and involves straightforward solving of the linear
algebraic equation to get the first Adomian expan-
sion term. All other recursive steps just determine
explicitly (k + 1)th Adomian expansion terms via
those already computed before. These recursive steps
are the same as in Algorithm 1 and therefore similar
comments apply to their computability as before.

Algorithm 3. This algorithm formally and implic-
itly solves (12) in the following way :

Xi0 =
xi(0)

s
+

1
s
gi(X10(s), . . . ,Xn0(s)),

i = 1, . . . , n,

Xi,k+1(s) − gi

(
X1,k+1(s)

s
, . . . ,

Xn,k+1(s)
s

)

=
1
s
L{Aik(x10(t), . . . , xn0(t), . . . ,

x1k(t), . . . , xnk(t)}, i = 1, . . . , n,

(15)

where k = 0, 1, . . . is the Adomian expansion
term number. The above recursive relation can be
regarded as the implicit one as its left-hand side
is a linear function of X1,k+1, . . . ,Xn,k+1, which
is invertible except for isolated values of s, while
the nonlinearity on the right-hand side depends on
X1,j , . . . ,Xn,j , j = 0, 1, . . . , k, only. These recursive
steps can be realized analytically (symbolically) as
well. Indeed, each Adomian polynomial gives a gen-
eralized polynomial of time, so its Laplace transform
can be computed analytically.

Note, that Algorithm 2 is more computation-
ally complex than Algorithm 1 while Algorithm 3
is more complex than Algorithm 2. Advantage
of Algorithm 3 is, roughly saying, that it does
not approximate any exponential by its expansion.
Finally, note that all three algorithms obviously give
the same solutions, they just filter differently the
infinite sums into partial finite sums in order to
match all terms in (12).

The convergence of the Adomian method is of
great importance, nevertheless, its general analysis
is not available, some partial results are given in
[Cherruault & Adomian, 1993].

Example 2.2. Algorithm 1 was applied in [Hashim
et al., 2006] to the well-known Lorenz system

ẋ = σ(y − x),

ẏ = ρx − y − xz,

ż = βz + xy,

(16)

where σ = 10.0, ρ = 28.0, β = 8/3 is the well-
known collection of parameters providing its chaotic
behavior. The following explicit solution of Lorenz
system (16) was obtained in [Hashim et al., 2006]

x(t) =
∞∑

m=0

am
tm

m!
,

y(t) =
∞∑

m=0

bm
tm

m!
,

z(t) =
∞∑

m=0

cm
tm

m!
,

(17)
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where the coefficients am, bm, cm ∈ R are given by
the following recursive relations

a0 = x(0), b0 = y(0), c0 = z(0),

am = −σam−1 + σbm−1, m ≥ 1,

bm = ρam−1 − bm−1

− (m − 1)!
m−1∑
k=0

akcm−k−1

k!(m − k − 1)!
, m ≥ 1,

cm = βcm−1 + (m − 1)!
m−1∑
k=0

akbm−k−1

k!(m − k − 1)!
,

m ≥ 1.
(18)

Moreover, it was demonstrated in [Hashim et al.,
2006] that the 10-term decomposition solution
is comparable to the fourth-order Runge–Kutta
numerical solution even in the case of chaotic behav-
ior of Lorenz system. This result will be extended
in this paper both to the case of the well-known
Rössler system [Gaspard, 2005] and to the so-called
generalized Lorenz system [Čelikovský & Vaněček,
1994; Čelikovský & Chen, 2002, 2005].

3. Main Results

In this section, the main paper results are presented,
namely, the computation of the Adomian repre-
sentations for the well-known Rössler system and
for the generalized Lorenz system [Čelikovský &
Vaněček, 1994; Čelikovský & Chen, 2002, 2005].
Moreover, interesting analysis of the generalized
Lorenz system with respect to values of certain
parameters in its nonlinear part is provided using
numerical computations stemming from the Ado-
mian method. To start with, compute Adomian
method based recurrent relations for the case of
Rössler system [Gaspard, 2005]

ẋ = −y − z, ẏ = x + ay,

ż = b − cz + xz.
(19)

Let L[φ(t)] stand for Laplace transform of the func-
tion φ(t). Applying Laplace transform to all parts
of Eqs. (19) gives

L[ẋ] = −L[y] − L[z], L[ẏ] = L[x] + aL[y],

L[ż] = L[b] − cL[z] + L[xz].
(20)

Denote X(s) = L{x(t)}, Y (s) = L{y(t)}, Z(s) =
L{z(t)}, then (20) leads to

sX(s) − x(0) = −Y (s) − Z(s),

sY (s) − y(0) = X(s) + aY (s),

sZ(s) − z(0) =
b

s
− cZ(s) + L[xz]

(21)

and one has by straightforward computations that

X(s) =
x(0)

s
− 1

s
Y (s) − 1

s
Z(s),

Y (s) =
y(0)

s
+

1
s
X(s) +

a

s
Y (s),

Z(s) =
z(0)
s

+
b

s2
− c

s
Z(s) +

1
s
L[xz].

(22)

To derive the recurrent relations solving (22), let us
represent the solution in the time domain as follows:

x(t) =
∞∑

k=0

xk(t), y(t) =
∞∑

k=0

yk(t),

z(t) =
∞∑

k=0

zk(t).

(23)

The overbar introduced in (23) is meant to distin-
guish the expansion functions from the expansion
coefficients introduced later on. To satisfy initial
conditions x(0), y(0), z(0), the terms xk(t), yk(t),
zk(t), k ∈ R in (23) are to be computed in such a
way that

x0(0) = x(0), y0(0) = y(0), z0(0) = z(0), (24)

xk(0) = yk(0) = zk(0) = 0, k = 1, 2, . . . . (25)

Next, to handle the nonlinear term L[xz] note,
that (19) has the same structure as Example 2.1
with x1 := x, x2 := y, x3 := z and F := xz. There-
fore, using (10) with x1 := x, x2 := y, x3 := z, one
gets straightforwardly

Ak =
k∑

i=0

xizk−i, k ≥ 0, L[xz] =
∞∑

k=0

L[Ak].

The above evaluations allow to present the
recurrent procedure solving the Rössler system.
For simplicity and shortness, the expansion solv-
ing (22) will be obtained using Algorithm 1, but
Algorithms 2 and 3 may be applied with some mod-
ifications as well. Denote again Xk(s) := L[xk(t)],
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Yk(s) := L[yk(t)], Zk(s) := L[zk(t)], k = 0, 1, . . . .
Based on Algorithm 1, the relation (22) is decom-
posed into the following series of relations

X0(s) =
x(0)

s
, Y0(s) =

y(0)
s

, Z0(s) =
z(0)
s

,

X1(s) = −1
s
(X0(s) + Z0(s)),

Y1(s) =
1
s
(X0(s) + aY0(s)),

Z1(s) =
b

s2
− 1

s
(cZ0(s) − L[A0]),

Xk+1(s) = −1
s
(Xk(s) + Zk(s)),

Yk+1(s) =
1
s
(Xk(s) + aYk(s)),

Zk+1(s) = −1
s
(cZk(s) − L[Ak]), k = 1, 2, . . . .

(26)

To solve the above series of relations, one can pro-
ceed as follows. First, determine x0(t), y0(t), z0(t)
and define x0, y0, z0 ∈ R in such a way that:

x0(t) ≡ x(0) := x0, y0(t) ≡ y(0) := y0,

z0(t) ≡ z(0) := z0.

Next, to determine x1(t), y1(t), z1(t), note, that
L[A0] = L[x0(t)z0(t)] = 1

sx0z0, and therefore

X1(s) = − 1
s2

(x0 + y0),

Y1(s) =
1
s2

(x0 + ay0),

Z1(s) =
b

s2
− 1

s2
(cz0 − x0z0).

This allows to determine x1(t), y1(t), z1(t) and to
define x1, y1, z1:

x1(t) = x1t, y1(t) = y1t, z1(t) = z1t,

x1 := x0 + y0, y1 := x0 + ay0,

z1 := b − cz0 + x0z0.

Note, that (25) with k = 1 was used here, i.e.
x1(0) = y1(0) = z1(0) = 0. Furthermore, x2(t),
y2(t), z2(t) and x2, y2, z2 ∈ R are determined using

X2(s) = −1
s
(X1(s) + Z1(s)) = − 1

s3
(x1 + z1),

Y2(s) =
1
s
(X1(s) + aZ1(s)) =

1
s3

(x1 + az1),

Z2(s) = −1
s
(cZ1(s) −L[A1])

= − 1
s3

(cz1 − L[(x0z1 + x1z0)t])

=
1
s3

(x0z1 + x1z0) − cz1

s3
.

(27)

In other words

X2(s) =
x2

s3
, Y2(s) =

y2

s3
, Z2(s) =

z2

s3
,

x2 := −x1 − z1, y2 := x1 + ay1,

z2 := −cz1 + x0z1 + x1z0,

x2(t) = x2
t2

2
, y2(t) = y2

t2

2
, z2(t) = z2

t2

2
.

(28)

The last relation uses (25) with k = 2. To obtain the
general terms Xk+1(s), Yk+1(s), Zk+1(s), xk+1(t),
yk+1(t), zk+1(t) and xk+1, yk+1, zk+1, k = 2, 3, . . . ,
consider

L[Ak] = L
[

k∑
i=0

xi(t)zk−i(t)

]

= L
[

k∑
i=0

xizk−i
ti

i!
tk−i

(k − i)!

]

=
k∑

i=0

xizk−i

i!(k − i)!
L[tk]

=
k!

sk+1

k∑
i=0

xizk−i
1

i!(k − i)!
.

Therefore one has for k = 2, 3, . . .

Xk+1(s) =
xk+1

sk+2
, Yk+1 =

yk+1

sk+2
,

Zk+1(s) =
zk+1

sk+2
,

xk+1 := −xk − zk, yk+1 := xk + ayk,

zk+1 := −czk +
k∑

i=0

xizk−i
k!

i!(k − i)!
,

xk+1(t) = xk+1
tk+1

(k + 1)!
,

1650051-7
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yk+1(t) = yk+1
tk+1

(k + 1)!
,

zk+1(t) = zk+1
tk+1

(k + 1)!
.

(29)

Summarizing, the following theorem has been just
proved.

Theorem 1. Consider Rössler system

ẋ = −y − z,

ẏ = x + ay,

ż = b − cz + xz.

(30)

Then the formal solution of (30) starting from the
initial conditions x(0), y(0), z(0) is given by the fol-
lowing series

x(t) =
∞∑

k=0

xk
tk

k!
, (31)

y(t) =
∞∑

k=0

yk
tk

k!
, (32)

z(t) =
∞∑

k=0

zk
tk

k!
, (33)

where coefficients xk, yk, zk are given by the follow-
ing recurrent relations

x0 = x(0), y0 = y(0), z0 = z(0), (34)

x1 = −y0 − z0, y1 = x0 + ay0,

z1 = b − cz0 + x0z0,
(35)

xk+1 = −yk − zk, yk+1 = xk + ayk, k ≥ 1,
(36)

zk+1 = −czk +
k∑

i=0

k!
i!(k − i)!

xizk−i, k ≥ 1.

(37)

To illustrate Theorem 1, recurrent rela-
tions (34)–(37), were evaluated numerically for the
case k = 0, 1, . . . , 30 and discretized by t = 0, 1, . . . ,
800. The results are shown in Fig. 1. The graphi-
cal output shown there is comparable to the similar
results in the literature, [Gaspard, 2005; Wikipedia,
2015; Shinn, 2010].

Another object of our investigation is the so-
called generalized Lorenz system introduced in

15
10

5
0

-5
-10-20

-10

0

0

5

10

15

20

25

10

Fig. 1. Rössler system.

the series of papers [Čelikovský & Vaněček, 1994;
Čelikovský & Chen, 2002, 2005] and it is defined as
follows.

Definition 3.1. The nonlinear system of ordinary
differential equations in R3 of the following form is
called the generalized Lorenz system:

ẋ =

[
A 0

0 λ3

]
x + x1




0 0 0

0 0 −1

0 1 0


x, (38)

where x = [x1, x2, x3]T , λ3 ∈ R, and A is a (2 × 2)
real matrix:

A =

[
a11 a12

a21 a22

]
, (39)

with eigenvalues λ1, λ2 ∈ R such that

−λ2 > λ1 > −λ3 > 0. (40)

Moreover, the generalized Lorenz system is said to
be nontrivial if it has at least one solution that goes
neither to zero nor to infinity nor to a limit cycle.

For the nontrivial generalized Lorenz system,
the following theorem was proved [Čelikovský &
Chen, 2002].

Theorem 2. For the nontrivial generalized Lorenz
system (38)–(40), there exists a nonsingular linear
change of coordinates, z = Tx, which takes (38)
into the following generalized Lorenz canonical form

ż =




λ1 0 0

0 λ2 0

0 0 λ3


 z + (1,−1, 0)z




0 0 −1

0 0 −1

1 τ 0


 z,

(41)

where z = [z1, z2, z3]T and parameter τ ∈ (−1,∞).

1650051-8
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The form (41) is usually referred to as the gen-
eralized Lorenz canonical form [Čelikovský & Chen,
2002] and it can be rewritten as follows

ż1 = λ1z1 − (z1 − z2)z3

ż2 = λ2z2 − (z1 − z2)z3

ż3 = λ3z3 + (z1 − z2)z1 + τ(z1 − z2)z2.

(42)

It is worthwhile to mention the dependance of
the system nonlinearity only on one scalar param-
eter τ that drives the whole nonlinear dynam-
ics of the system. The system (42) will be used
to study the generalized Lorenz system by the
Adomian approach. Another significant advantage
here is that the linear part of (42) is easily solv-
able due to its diagonal matrix. Analogously to
Rössler system, the solution of (42) is sought in the
form

z1(t) =
∞∑

k=0

z1k(t) =
∞∑

k=0

z1k
tk

k!
, (43)

z2(t) =
∞∑

k=0

z2k(t) =
∞∑

k=0

z2k
tk

k!
, (44)

z3(t) =
∞∑

k=0

z3k(t) =
∞∑

k=0

z3k
tk

k!
. (45)

Again, variables with overbars stand for the func-
tions while those without bars are real num-
bers, called as the expansion coefficients. First, set
z10 = z1(0), z20 = z2(0), z30 = z3(0), where z1(0),
z2(0), z3(0) are the initial conditions of the prob-
lem (42). Next, note that the Adomian polynomials
decomposition for the nonlinear part of (42) is as
follows:

(z1 − z2)z1

=
∞∑

k=0

Ajk

=
∞∑

k=0

k∑
i=0

(z1i − z2i)z1,k−i, j = 1, 2,

(z1 − z2)z1 + τ(z1 − z2)z2

=
∞∑

k=0

A3k

=
∞∑

k=0

k∑
i=0

(z1i − z2i)z1,k−i

+ τ

∞∑
k=0

k∑
i=0

(z1i − z2i)z2,k−i.

(46)

The expansion coefficients z1k, z2k, z3k in (43)
are therefore as follows

z10 = z1(0), z20 = z2(0), z30 = z3(0), (47)

z11 = λ1z10 − A10,

z21 = λ2z20 − A20, (48)

z31 = λ3z30 + A30,

z1,k+1 = λ1z1k −
k∑

i=0

k!
i!(k − i)!

× (z1i − z2i)z3,k−i, k ≥ 1, (49)

z2,k+1 = λ2z2k −
k∑

i=0

k!
i!(k − i)!

× (z1i − z2i)z3,k−i, k ≥ 1, (50)

z3,k+1 = λ3z3k +
k∑

i=0

k!
i!(k − i)!

(z1i − z2i)z1,k−i

+ τ
k∑

i=0

k!
i!(k − i)!

(z1i − z2i)z2,k−i, k ≥ 1.

(51)

Detailed derivation of the above recursive formu-
las mimics that of Rössler system earlier in this
paper and therefore they are skipped for shortness.
The above evaluation of the generalized Lorenz
canonical form (42) was clearly based on Algo-
rithm 1 described in Sec. 2. Nevertheless, the
major advantage of the generalized Lorenz canoni-
cal form is the diagonality of its linear approxima-
tion, see [Čelikovský & Chen, 2002] for discussion.
Yet another advantage of that diagonality is that
Algorithm 3 described in Sec. 2 of the current paper
is easily implementable. Indeed, one has obviously
by (42) and the mentioned Algorithm 3 described
in Sec. 2 that

Z0
i (s) =

zi(0)
s − λi

, i = 1, 2, 3, . . . .

1650051-9
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Next, one has by (42) and (46) such that

Z1
1(s) =

z0
2z

0
3

λ2 + λ3 − λ1

(
1

s − λ2 − λ3
− 1

s − λ1

)

− z0
1z

0
3

λ1 + λ3 − λ1

(
1

s − λ1 − λ3
− 1

s − λ1

)
,

Z1
2(s) =

z0
2z

0
3

λ2 + λ3 − λ2

(
1

s − λ2 − λ3
− 1

s − λ2

)

− z0
1z

0
3

λ1 + λ3 − λ2

(
1

s − λ1 − λ3
− 1

s − λ2

)
,

Z1
3(s) =

(z0
1)

2

2λ1 − λ3

(
1

s − 2λ1
− 1

s − λ3

)

− τ(z0
2)

2

2λ2 − λ3

(
1

s − 2λ2
− 1

s − λ3

)

+
(τ − 1)z0

1z
0
2

λ1 + λ2 − λ3

(
1

s − λ1 − λ2
− 1

s − λ3

)
.

Finally, assume recursively, that it holds for some
k ≥ 1 and i = 1, 2, 3

Zk
i (s) =

Nk∑
l=1

Li,k
l

(s − αi,k
l )p

i,k
l

, Li,k
l ∈ R, αi,k

l ∈ R,

pi,k
l ∈ N , Nk ∈ N , l = 1, . . . , Nk.

Indeed, both Z0
i (s) and Z1

i (s), i = 1, 2, 3, have the
above form. Now, one has by (42) and (46) such
that

Zk+1
i (s) =

1
s − λi

L(Ai
k), i = 1, 2, 3.

Note, that (here L−1 stands for the inverse Laplace
transform)

Ai
k = Ai

k(L−1(Z0
1),L−1(Z0

2),L−1(Z0
3), . . . ,

L−1(Zk
1),L−1(Zk

2),L−1(Zk
3))

=
k∑

j=0

(L−1(Zj
1) − L−1(Zj

2))L−1(Zk−j
i ),

i = 1, 2, 3.

Moreover, L−1(Zj
i ), i = 1, 2, 3, j = 0, 1, . . . , k, is

by the above recursive assumption a generalized

polynomial (sum of monomials containing powers
of t and exponents of t) and therefore L(Ai

k), i =
1, 2, 3, is again of the form

L(Ai
k) = L


 k∑

j=0

(L−1(Zj
1) −L−1(Zj

2))L−1(Zk−j
i )




=
Nk∑
l=1

Li,k
l

(s − αi,k
l )p

i,k
l

, Li,k
l ∈ R, αi,k

l ∈ R,

pi,k
l ∈ N , Nk ∈ N , l = 1, . . . ,Nk.

Finally, the constants Li,k
l , αi,k

l , pi,k
l , Nk, are the

explicit functions of Li,k
l , αi,k

l , pi,k
l , Nk. Therefore,

Zk+1
i (s) =

1
s − λi

Nk∑
l=1

Li,k
l

(s − αi,k
l )p

i,k
l

:=
Nk+1∑
l=1

Li,k+1
l

(s − αi,k+1
l )p

i,k+1
l

,

where Li,k+1
l ∈ R, αi,k+1

l ∈ R, Nk+1 ∈ N , pi,k+1
l ∈

N , l = 1, . . . , Nk+1, are some constants depending
on Li,k

l , αi,k
l , pi,k

l , Nk, l = 1, . . . , Nk. The corre-
sponding explicit recursive expressions can be eas-
ily obtained, but they are skipped for shortness. In
such a way, taking inverse Laplace transform one
has that the solution of (42) is approximated by gen-
eralized polynomials uniquely defined by Nk ∈ N ,

Li,k
l , αi,k

l , pi,k
l , l = 1, . . . , Nk, k = 1, 2, . . . , i = 1, 2, 3.

Graphical results of the simulations performed
by Algorithm 1 of Sec. 2 are presented in Figs. 2–6.

-3-2-1012420-2

3

2.5

2

1.5

1

0.5

3.5

Fig. 2. Generalized Lorenz system λ1 = −3, λ2 = 5, λ3 = 1,
τ = 0.
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Fig. 3. Generalized Lorenz system λ1 = 8, λ2 = −16, λ3 =
−1, τ = 0.
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Fig. 4. Generalized Lorenz system λ1 = 8, λ2 = −16, λ3 =
−1, τ = 0.168.
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Fig. 5. Generalized Lorenz system λ1 = 8, λ2 = −16, λ3 =
−1, τ = 0.9.
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Fig. 6. Generalized Lorenz system λ1 = 8, λ2 = −16, λ3 =
−7, τ = 0.017889.

Note, that these results are astonishingly similar to
the simulations made in [Čelikovský & Chen, 2002]
using Runge–Kutta numerical schemes.

Let us shortly comment on these results. Fig-
ures 2 and 3 show the so-called “simplest chaotical
systems” introduced already in [Čelikovský & Chen,
2002]. Indeed, these systems have their right-hand
sides with integer parameters only. Moreover, the
attractor in Fig. 3 has completely different topol-
ogy than the classical Lorenz system. As a matter
of fact, as already noted in [Čelikovský & Chen,
2002, 2005], these cases correspond to the well-
known Chen system [Chen & Ueta, 1999] in dif-
ferent coordinates.

Figure 6 then illustrates typical chaos near the
homoclinicity, as predicted by Shilnikov [Shilnikov,
1969; Shilnikov et al., 2004, 2009], see e.g. [Wig-
gins, 1988, 2003] for nice and detailed presentation
of that theory. Indeed, zooming in, Fig. 6 shows
chaotic-like behavior, though the attractor is very
narrow and approximates the homoclinic orbit as
well. Note, that the unpredictability of behavior is
related exclusively to a small neighborhood of the
origin, where trajectory turns to the left or right,
depending on a very small state of differences. The
remaining parts of the trajectories behave in a well-
predictable way.

4. Conclusions and Outlooks

This paper has demonstrated that even in the case
of nonlinear systems there are analytical-algebraic
approaches of getting results in a fashion resembling

1650051-11
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Laplace transform technique for linear systems. In
particular, Rössler system and generalized Lorenz
system were represented and simulated in their
chaotic regimes using Laplace–Adomian decompo-
sition method. The major advantage here is that
one can compute highly precise approximation on
the pre-selected time interval and enhance this
precision inside selected time subintervals only. In
other words, precision at some time moment does
not affect the precision at another time moment.
Other interesting future applications may be in
the area of chaos-based cryptography replacing the
usual chaotic differential equation by its approxima-
tion by properly truncated Adomian based iterative
expansion.

Acknowledgment

This work was supported by the Czech Science
Foundation through the research Grant No. 13-
20433S.

References

Abbaoui, A. [1995] “Les fondements mathematiques de
la methode decompositionnelle de Adomian et appli-
cation a la resolution de problemes issus de la biologie
et de la medicine,” These de doctorate de la Univer-
site de Paris VI, 1995.

Adomian, G. [1994] Solving Frontier Problems of
Physics : The Decomposition Method (Fundamental
Theories of Physics) (Springer).

Alabdullatif, M., Abdusalam, H. A. & Fahmy, E. S.
[2007] “Adomian decomposition method for nonlin-
ear reaction diffusion system of Lotka–Volterra type,”
Int. Math. Forum 2, 87–96.

Biazar, J., Agha, R. & Islam, M. R. [2006] “The Ado-
mian decomposition method for the solution of the
transient energy equation in rocks subjected to laser
irradiation,” Iranian J. Sci. Tech., Trans. A 30, 201–
212.

Bokhari, A. H., Ghulam Muhammad, M. T. & Zaman,
F. D. [2009] “Adomian decomposition method for a
nonlinear heat equation with temperature dependent
thermal properties,” Math. Probl. Engin. 2009, Arti-
cle ID 926086.
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Čelikovský, S. & Chen, G. [2002] “On a generalized
Lorenz canonical form of chaotic systems,” Int. J.
Bifurcation and Chaos 12, 1789–1812.
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