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Abstract

This paper brings structured Lyapunov functions guaranteeing cooperative state synchronization of
identical agents. Versatile synchronizing region methods for identical linear systems motivate the structure
of proposed Lyapunov functions. The obtained structured functions are applied to cooperative
synchronization problems for affine-in-control nonlinear agents. For irreducible graphs a virtual leader is
used to analyze synchronization. For reducible graphs a combination of cooperative tracking and irreducible
graph cooperative synchronization is used to address cooperative dynamics by Lyapunov methods. This
provides a connection between the synchronizing region analysis, incremental stability and Lyapunov
cooperative stability conditions. A class of affine-in-control systems is singled out based on their contraction
properties that allow for cooperative stability via the presented Lyapunov designs.
© 2016 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The last two decades have witnessed an increasing interest in multi-agent networked
cooperative systems [1,5,10,11,15-17,21,26]. Early work [5,15-17,21] refers to consensus
without a leader. We term this the cooperative regulator problem. There the asymptotic
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consensus state depends on precise initial conditions of an entire system. By adding a command
generator leader that pins to a group of agents one can have synchronization to the leader's
reference trajectory for all initial conditions; this is termed pinning control [2,8,24,26,27,31].
There, pinning to all root nodes of a spanning forest is necessary for synchronization [31]. We
call this the cooperative tracker problem.

Necessary and sufficient conditions for synchronization are given by master stability functions
[20,24,33] and the related concept of synchronizing regions [4,24-26]. This guarantees local
stability. For linear systems, however, local and global stability coincide; hence the
synchronizing region approach yields global results. Synchronizing region and pinning control
papers often a priori assume inner coupling functions having special properties [2,4,12,24,26],
thereby disregarding the controllability properties inherent to single-agents.

Global results for nonlinear systems are generally obtained by Lyapunov methods [27,30,32]
or contraction analysis, ie. incremental stability [13,18,22]. Especially interesting for
interconnected systems are the results involving incremental stability [13,22,33,34] and
incremental passivity [19]. Often Lyapunov methods in the literature either assume certain a
priori forms of the drift dynamics and inner coupling functions or restrict their considerations to
undirected or balanced graphs. For example, special drift dynamics (QUAD) is assumed in [2,12]
to guarantee a quadratic bound on the pertaining contribution to dissipation, and the distributed
control is taken as all-state direct feedback in [2,23,31,32] to completely dominate the bounded
effect of the drift dynamics. Other special properties of the inner coupling function are assumed
in [12,26,31,32,43]; e.g. diagonal form [12,26,43], positive definiteness [32], or positive definite
contribution to dissipation [31]. In [40] vector double integrator agents are considered and the
underlying graph topologies, although allowed to be switching, are assumed undirected. The
approach in [40] relies on joint Lyapunov functions. Similarly [41], although considering a
different notion of consensus, also assumes undirected graphs and double integrator agents.
Consistent with restricting attention to double integrators, the leader's reference signal in both
[41,42] is constant. Developments of [41] use Laplacian potentials for undirected graphs [27].
More general Laplacian potentials, in part, motivate the approach of this paper as well. The
contraction approach [13,18,32,33,37], in contrast, occupies middle ground between the local
linearization results of synchronizing regions and global Lyapunov conclusions, in the sense that
linearized dynamics is used but stability requirements hold uniformly, implying global results
[13,36]. However, in [32,33] also a priori assumptions on inner coupling functions are made
without considering how to guarantee them for a given system.

Any a priori conditions on inner coupling functions disregard the given controllability
properties of single-agents. Realistic systems are characterized by their controllability structure
and possibly the constraints of output-feedback. This restricts the feasible distributed controls,
and must be accounted for in the control design. Furthermore, a priori choices of inner coupling
matrix and drift dynamics appear somewhat artificial in light of the fact that it is possible, within
the synchronizing region approach, to obtain the required properties by design. For example, in
[8,11,25,27] the inner coupling matrix is designed by considering the given single-agent systems.
The resulting feedback interplays with the drift dynamics to guarantee cooperative stability.
Namely, for linear time-invariant (LTI) agent synchronization [11,25,27] use single-agent
optimal feedback derived from algebraic Riccati equations (ARE). Such control guarantees an
unbounded right-half plane synchronizing region. Hence, state synchronization is achieved under
mild requirements on directed communication topology, utilizing given stabilizability properties
of individual agents rather than imposing them a priori by assumptions. Apart from accounting
for the controllability relations, synchronizing region approach [20,25,26,28] also treats cases of
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output-feedback on similar grounds [9]. Algebraic matrix equations give single-agent Lyapunov
functions [8,9,25,27] that provide a guaranteed synchronizing region. Control design is thus
based on single-agent systems and graph effects are dealt with through robustness of the
stabilizing feedback gains. Therefore, a priori assumptions on single-agents, often found in
Lyapunov and contraction approaches, are certainly at odds with the versatility of synchronizing
region results. A similar remark holds for restricting Lyapunov analysis to undirected graphs
[40-42] while the synchronizing region approach requires only a spanning tree.

This paper aims to provide a generalization of the synchronizing region approach which would
apply to affine-in-control systems globally and be as versatile as the synchronizing region
methods in the sense that it would treat both state and output-feedback similarly, would not
require a priori assumptions on the inner coupling functions and would permit general directed
graphs with a spanning tree. For this purpose we undertake a systematic construction of
structured cooperative Lyapunov functions and design controls in relation to these functions.
Single-agent Lyapunov functions, familiar from the synchronizing region approach, hint at the
appropriate structure of Lyapunov functions for cooperative stability. We are motivated to
remove a priori assumptions not appearing in the synchronizing region approach, or rather to
guarantee the required properties by design. That is, we are emulating the synchronizing region
approach in our Lyapunov analysis to account for the given single-agent structure. Moreover,
while Lyapunov results in the literature consider mainly pinning control or irreducible graphs
[3,27,29], the synchronizing regions treat in a unified way all graphs containing a spanning tree
[11,28], which is indeed a necessary prerequisite for synchronization. Our goal here is to achieve
the same level of generality by Lyapunov methods. This in turn opens new ways to address
robust and adaptive cooperative control problems. Lyapunov functions presented here account
systematically for single-agent controllability and output-feedback restrictions. These structured
functions are applicable both to linear and nonlinear systems, yielding global stability results.
Understood as sufficient cooperative stability conditions, it is shown that the synchronizing
region and the proposed Lyapunov approaches can be used for linear systems equivalently, while
for nonlinear systems Lyapunov functions offer global conclusions. Stronger assumptions on
drift dynamics allow for weaker assumptions on distributed control. In contrast to [40—42] this
paper considers affine-in-control systems and requires constant, but otherwise general, directed
graphs with a spanning tree. Our structured Lyapunov functions can be seen as a systematic
generalization of those appearing in [40,42] to directed graphs with a spanning tree.

First contribution of this paper is in revealing the appropriate structure of Lyapunov functions
for cooperative stability. The proposed functions are found to depend separately on network
topology and single-agents. These Lyapunov functions are subsequently applied to cooperative
regulator and tracker problems for affine-in-control systems yielding cooperative control design
prescriptions which generalize the algebraic Riccati equations of the synchronizing region
approach [9,25,27]. The resulting distributed controls account for controllability properties of
single-agents and interplay with the drift dynamics to achieve synchronization. The second
contribution is in bringing a Lyapunov treatment of reducible graphs containing a spanning tree
without an isolated leader. To the best knowledge of the authors the literature mainly brings
Lyapunov analysis of either irreducible graphs [3,27,43] or pinning control with an isolated
leader [24,26,32]. Based on [31] reducible graphs with a spanning tree, but without an isolated
leader, are treated here as hybrids between irreducible graph cooperative regulator and single
leader cooperative tracker. This should be contrasted with the treatment of reducible graphs in
[43] which is based solely on analysis of the graph's irreducible components. Thus all cases
naturally covered by the synchronizing regions are addressed here by Lyapunov analysis. The
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third contribution is an introduction of a novel special class of affine-in-control systems
characterized by their contraction properties. The defining contraction properties are required for
the presented cooperative stability Lyapunov theorems. These properties are stronger than the
conventional QUAD [12,32,43], and allow for an interplay of single-agent drift dynamics with
distributed linear feedbacks, similarly as in synchronizing region approach for LTI systems
[9,27]. A sufficient condition is given for the required contraction properties, avoiding the need
for a priori assumptions on distributed feedback, as e.g. those in [2,4,12,24,26,31-33], and
generalizing algebraic matrix equations from the synchronizing region approach to affine-in-
control systems.

The layout of the paper is as follows. Section 2 gives graph preliminaries and notational
conventions. Section 3 introduces the considered systems and the control goals. A proposition is
given bringing differential geometric considerations highlighting the properties of considered
systems. Section 4 outlines the synchronizing region approach and develops the structured
Lyapunov functions for linear systems. Separate Lyapunov constructions are needed for different
types of interconnection graph topologies. First is considered the cooperative tracker with an
isolated leader, then a cooperative regulator on irreducible graphs, followed by their combination
appropriate for general reducible graphs containing a spanning tree. Section 5 applies similar
Lyapunov functions to a special class of affine-in-control systems along the lines of Section 4. In
summary, Theorems 2 and 5 require isolated leaders, Theorems 3 and 6 require strongly
connected graphs and Theorems 4 and 7 require only spanning trees. Section 6 presents a
numerical example validating the proposed designs, cooperative stability conditions and
Lyapunov functions. Section 7 concludes the paper.

2. Graph theory preliminaries and notational conventions

Consider a graph G = (V, &) with a nonempty finite set of N nodes V = {vy, ---, vy} and a set of
edges &<V x V. It is assumed that the graph is simple, i.e. there are no repeated edges or self-
loops. Directed graphs are considered, and information propagates through the graph along the
edges. Two nodes v;, v, connected by an edge (v, v) € & are termed parent node v and child
node vj;, i.e. the edge leaves the parent node and connects into the child node. Denote the
adjacency matrix as E = [eij] with ¢; >0 if (v;,v;) € & and e;; = 0 otherwise. Note that diagonal
elements satisfy e; = 0. The set of neighbors of a node v; is N'; = {v; : (v;,v;) € &}, i.e. the set of
nodes with edges connecting into v;. Define the (weighted) in-degree matrix as a diagonal matrix
D =diag(d;...dy), where d; = Zje,j is the (weighted) in-degree of a node i, i.e. a row sum od E.
The weighted out-degree is defined as df = Zjej,-, i.e. a column sum of E. Define the graph
Laplacian matrix as L = D — E, which has all row sums equal to zero. A graph is balanced if in-
degrees of all the nodes equal their out-degrees. A graph is detailed balanced if there exists a
positive diagonal matrix which premultiplying its Laplacian results in a symmetric matrix [7]. A
directed path is a sequence of edges joining two nodes. A graph is said to be strongly connected
if any two nodes can be joined by a directed path. A node is termed isolated if it has no incoming
edges. Hence, in strongly connected graphs there are no isolated nodes. A directed tree is a
subgraph having a single isolated node vy, such that all other nodes except vy have only one
parent and are joined to vy by a directed path. Node v is called a root node. A graph is said to
contain a directed spanning tree if there exists a directed tree containing all nodes in the graph.
The Laplacian matrix L has a simple zero eigenvalue if and only if its directed graph contains a
spanning tree. A graph is quasi-strongly connected if for every pair of nodes there exists a
distinct node such that there is a directed path from it to both nodes of the original pair. If the
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graph has a root node then it is quasi-strongly connected. Therefore a spanning tree implies
quasi-strong connectivity.

Spanning forest is a set of directed trees such that a set of all nodes of these trees equals V. A
graph is said to be reducible if its Laplacian matrix is cogredient, i.e. it can be transformed by
permuting the nodes, to the block triangular form

Ly lel

0 Iy (1)

TTLT = [
where T is a permutation matrix. If the graph is not reducible it is said to be irreducible. A
directed graph is irreducible if and only if it is strongly connected. Let the directed graph be
reducible and let it contain a spanning forest. Then the Laplacian of the graph can be reduced by
node permutation to the Frobenius normal form [31]. If the graph contains a single spanning tree
the Frobenius normal form equals

L+G
Ly - Limw  Limt
TTLT = o : )
0 Lom Lo+
0 Lyt 1m+1

where all L; blocks are irreducible. This paper is concerned with graphs having a single spanning
tree. Such graphs can either be irreducible or have a single leader group, L, +,,+1. An important
special case of a leader group is a single isolated leader. Note that due to existence of a spanning
tree there can be at most one irreducible leader group, or in particular, at most one isolated leader.

Undirected graphs present a special simpler case of balanced graphs. Those are balanced by
definition and irreducible if and only if connected. Undirected graph contains a spanning tree if
and only if it is connected. As a special case they are not specifically addressed in this paper,
rather the results presented for irreducible graphs naturally specialize to connected undirected
graphs.

The following lemma on singular and nonsingular M-matrices [29], is useful in constructing
Lyapunov functions for cooperative control [27]. This well-known result is given here, without
proof, for the sake of completeness

Lemma 1. [29] For strongly connected, irreducible, graphs there exists a positive diagonal
matrix @ = diag(9;...9y)>0 such that the graph Laplacian matrix L satisfies

L'e+6L>0. 3)

The diagonal elements §; are the components of the Laplacian's left eigenvector for the
eigenvalue 0, 9" =[9;...9y], 8" L = 0. If the graph contains a spanning tree with a nonzero g; for
a root node v;, then there exist a positive diagonal matrix = such that

L+6G)'E+EL+G6G)>0, 4)
where G =diag(g,...gy) =0 is a diagonal matrix.

Proof. The first part of the proof is found in [29], the second part follows straightforwardly from
[29] since L + G is a nonsingular M-matrix [27]. O



3462 K. Hengster-Movric et al. / Journal of the Franklin Institute 353 (2016) 3457-3486

Lemma 2. [7] For a positive semidefinite symmetric matrix, M = M" >0, given a vector of
appropriate dimension v, vIMy =0 < Mv =0.

Although Lemma 2 seems trivial it does not hold in general for asymmetric or indefinite
matrices. Complex conjugation of a scalar ¢ € C is denoted by @ € C, and spectrum of a matrix A
by spec(A). The symbol 1, stands for a column vector of ones [1... 177, the consensus vector, of
dimension N.

3. System description
3.1. System dynamics

Let the multi-agent system comprise N identical agents whose dynamics is given as

X =f(t,x;) + Bu,,
y; = Cx;, (%)

where x; e R", u; € R™, y; € RP. The term f(z, x;) is referred to as the drift term. Systems (5) are
a special case of affine-in-control systems, with linear input B and output C relations. It is
assumed that B and C have full column and row rank respectively, implying no redundancy in
controls or measurements. The form of single-agents (5) is not overly restrictive, as detailed in
the following proposition.

Proposition 1. An affine-in-control dynamical system

x=f(t,x) + g(x)u (6)
can be transformed locally to dynamics
2=J(t,2) + Bu (7)

if and only if the columns of n x m matrix g(x), g,(x), k= 1...m, construed as vector fields on
R", satisfy

i 181(x), .oy gm(x)} are linearly independent vector fields
ii. |g;(x), gk(x)] =0, j,k=1...m, where [,] denotes a Lie bracket of vector fields.

Furthermore, a transforming diffeomorphism can be constructed as
x=T(2)= P10 B2 orevo Pin o qf)?;::]l Guee @?:(xo)’ ®)

Zm
where h,,41...h, are any smooth vector fields that satisfy rank{gl(x),...,gm(x),hm+1(x), e
h,(x)} = n, and @5 (xo) are flows of the vector fields g;(x), with t = z; respectively.

Proof. First note that Eq. (6) is transformed to Eq. (7) by a diffeomorphism x = 7'(z) if and
only if

l:()T(Z)

—1
: } §(T)=B. ©)
Z

Therefore one has to prove that Eq. (9) holds if and only if assertions (i) and (ii) of the
Proposition statement hold.
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Sufficiency: It is well known [39], that
o o PE = Pk o DY, V75 = 8;(x), g ()] =0.
Therefore by Eq. (8) and (if) one has for k=1...m
X=T(2) = D% o @S o w0 DYt 0 PE1 o o Pl o Pt o... ‘Pi’:(xo)-

Zm+1
As a consequence, by definition of the flow,

oT'
62,(:) =g(T@), k=1...m.

In other words, by matrix inverse one finds

-1 -1
[%S)} s(T(2) = [%S)} %Z(;) =wy, k=1...m,

—1
where wy is a k-th canonical basis vector of R". Whence it follows that {%ﬂ g(T(z)) =B,
with B=[wj...w,,]. This proves sufficiency.

Necessity: Assume that Eq. (6) is transformed by x = T(z) into the form (7). Then

oT(z)] " oT(z)] !
wj = |: 0z :l gj(T(Z))a Wi = oz gk(T(Z))s
where B =[w;...w,]. Constant column vectors in B, wy,...,w,, are linearly independent by

definition and their Lie brackets vanish identically, [wj, wk} = 0. Hence by coordinate invariance
the vector fields g4, ..., g,, are linearly independent, i), and their Lie brackets vanish identically
[gj, gk] =0, ii). This proves necessity, thus completing the proof of the Proposition. O

Moreover, the results of Proposition 1 hold globally, in the sense of [38], if the vector fields
{81, ..., 8u(®), hms1(x), ..., hy(x)} are complete and the image of @S o P& oo Pin o
‘plzlﬂf o ‘p?n" (x0) is simply connected. As for linear output relation in Eq. (5), it holds provided
outputs y; for Eq. (6) in terms of x; are chosen as y; = CT ~!(x;). Transformation (8) is not
unique, in fact Eq. (8) composed with any linear transformation serves the same purpose.

Cooperative stability in transformed z coordinates, pertaining to Proposition 1, is equivalent to
cooperative stability in the original x coordinates if 7'(z) satisfies a uniform bound

a(llzi —z2211) < 1T(z1) — T ()|l < a(llz1 — z21)). (10)

for some K — class functions a,@. With the bound (10) a coordinate transform T preserves the
sense of total state's distance from the consensus manifold, and asymptotic partial stability of a
total multi-agent system [35].

3.2. Isolated and collective leaders

The leader is an agent at the isolated root of a spanning tree or an external reference generator
pinning to root nodes of all trees in a spanning forest [31]. In the latter instance, the augmented
graph containing the external leader as a node reduces to the former case. Leader's system is
taken as

Xo = f(t, x0),
Yo = Cxp. (11)
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Irreducible graphs have no isolated nodes, hence no leaders in the sense of Eq. (11). The graph
Laplacian L of an irreducible graph has the left eigenvector for eigenvalue 0, p’L =0,
p= [pl ---pN], p;>0, Vi [27,29,43]. This positive vector p is used to define a collective leader
state as a weighted average of all the agents’ states [43],

= (lel) - lzipixi, (12)

At consensus one has V(i,/) x; =x; = x*. The collective leader (12), as opposed to an isolated
leader (11), depends on all agents and thereby presents centralized information. Its state,
therefore, serves for analysis only and is not used directly as a reference signal for distributed
control. Note that in balanced, and in particular undirected, graphs the collective leader's state
(12) is an average of states of all agents. For reducible graphs the corresponding left eigenvector
satisfies p; > 0, Vi and there necessarily exists an i such that p; = 0 [43], hence Eq. (12) cannot
be used in the same way to describe the collective dynamics on such graphs.

3.3. Synchronization errors and control problems

For cooperative stability analysis one defines synchronization errors in terms of isolated and
collective leaders

81i = X; — X, (13)

S =x; —x¥, (14)

respectively. Consequently, one distinguishes between the cooperative tracker, i.e. synchroniza-
tion, and the cooperative regulator, i.e. consensus problem. In the former the asymptotic final
states of all agents equal the state of the reference generator xo(f), while in the latter their
asymptotic final states x*(r) depend on precise initial conditions of an entire system. Hence, from
dynamical systems’ point of view the difference is that in cooperative tracker one has an isolated
leader, either as an external reference generator or an isolated root node, which determines the
asymptotic behavior of an entire system.

The control goal in cooperative tracker problem is to find distributed controls for all agents u;,
such that ||x; —xp|| = 0 as t— 0o, Vi. The control goal in cooperative regulator problem is to find
distributed controls for all agents u;, such that [[x;—x;|| >0 as t—oo, Vi,j, or equiva-
lently |lx;—x*|| >0, Vi. These two convergences are equivalent since x;—x*= x;—

—1 -1
(Sp) Spwi=(Sp)  Spti—x), hence [lxi—xll>0 ¥(i.j) = lly—x*] -0, Vi

The reverse implication follows by Cauchy-Schwarz, ||x; —x;|| < |lx;i —x*|| + [lx; —x*]|.

Synchronization errors d,; (14) have a crucial property with respect to Laplacian's left
eigenvector p [43],

S pon=Ypn= (L) (X)) Lpw=o. 15

Constraint (15) implies that Y (i,j) 0y = dy = 82, =0 Vi, i.e. in 6, — consensus all &y s
vanish identically.
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3.4. Local neighborhood errors and the form of distributed controls

Define the local neighborhood state error in case of an isolated leader, i.e. cooperative tracker,
as

e = ej(xj—x;) + g(xo—xy), (16)
j

where g; > 0 are the pinning gains, nonzero only for a small fraction of nodes having a direct
connection to the leader. For cooperative regulator, without an isolated leader, define the local
neighborhood error as

&y = Z eij(xj —)C,'). (17)
J

Remark 1. If an external leader pins into all roots of a spanning forest the augmented graph
containing such a leader as an isolated root node of a spanning tree is not strongly connected.
This spanning tree in an augmented graph is necessary for synchronization [11,27,31].
Augmented graph Laplacian then equals

{L+G —g],

0 0 (18)

where g =vec(g,...gy) is a vector of pinning gains, and G = diag(g,, ...,gy) is a matrix of
pinning gains. Comparing Eq. (18) with Eq. (2), if an irreducible leader group is a singleton, then
its associated Laplacian matrix block Ly, 1,41 reduces to a 1 x 1 zero matrix as in Eq. (18).

If neighbors’ full states are available both for cooperative tracker, labeled by subscript 1, and
regulator, labeled by subscript 2, then the distributed feedback is chosen as a linear state-
feedback with gain matrix K, which is designed later, as

u; = cKey o, (19)

where ¢>0 is a coupling gain detailed first in Section 4.1. In total state-space form,

T _ T . . . . .
x= [xlTxm eRM, Xy = [xg ---x(ﬂ € RN, With this notational convention applied to all

vectors, the local neighborhood state errors (16) and (17) in the total form are
e1=—(L+G) ® I,(x—X) = —(L+ G) ® 1,61, (20)

er=—-LQLx=—L® I,5, (21)

for cooperative tracker and regulator respectively. Note that the ¢, vector (21) also satisfies the
constraint (15) of &,, that )" p;e»; =0, forcing e, = &5; V(i,j) = €2, =0, Vi.

If only neighbors' outputs are available for distributed feedback control, the local
neighborhood output errors are used, &1,; = Cey;, €2,; = Cey;. The control is then chosen as a
distributed output-feedback, subscripts 1 and 2 denoting cooperative tracker and regulator
respectively,

u = CKC&'Lz,‘. (22)

Total form of local neighborhood output errors &y, differs from their full-state counterparts (20)
and (21) by matrix C instead of I,, appearing in the Kronecker product with the graph matrix [9].
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With local neighborhood output errors in distributed feedback the single-agent closed-loop systems
equal

X =f(t,x;)) + cBKCe¢ 5, 9

for cooperative tracker and regulator respectively. Linear distributed feedback (22) in cooperative
regulators on strongly connected graphs leads to the collective leader dynamics

#=(n) Yk el

The sum > p;x; in Eq. (24) equals > p;5; = > .pif (t,x;) + ¢BKCY_p;e2i = > .pif (¢, x;), from
where one has

= (Z,Pt) ”Zipf(,, x). (25)

Since generally (Zl-p,-) ! Soipif (t,x;) # f(1,x¥), the collective leader, contrary to the isolated
leader (11), does not follow the single-agent drift dynamics f. However, on synchronization
manifold V(i,j) x; =x; =x* and one still has ¥* =f(z,x*).

4. Linear systems-synchronizing region and Lyapunov approach
4.1. LTI systems dynamics

Assume that the single-agent drift dynamics is a constant linear function of agent's states,
f(t,x;) = Ax;. The system dynamics in total form is then given as

i=(Iy ® Ax—c(L+ G) ® BKC&,, (26)

i=(y ® A—cL ® BKC)x, (27)

for cooperative tracker and regulator respectively, revealing the Kronecker product structure. As
a consequence of the linear drift dynamics, the collective leader (12) in this special case follows
the single-agent drift dynamics,

= (ijj) B lszijj = Ax*. (28)

Hence for LTI agents the actual and the collective leader xp, x* behave in the same way. This
yields similar total state-space forms for respective closed-loop synchronization error dynamics,

5=y ® A—c(L + G) ® BKC)5,, (29)

b=y ® A—cL ® BKC)b,. (30)

Cooperative tracker and regulator are equivalent to asymptotic stability of synchronization errors,
012—0. Dynamics of the collective leader (28) provides a straightforward dependence of
asymptotically synchronized state on the initial conditions of the cooperative regulator problem [23].

Autonomous systems (29) and (30) are analyzed both by synchronizing regions and Lyapunov
methods. The following sections present an outline of the synchronizing region approach, for
general distributed output-feedback [9], followed by the construction of structured Lyapunov
functions guaranteeing cooperative stability for LTI cooperative tracker and regulator problems
under the same set of conditions.
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4.2. Synchronizing region approach

This section outlines the versatile synchronizing region approach as it applies to linear
systems. The Lyapunov results introduced subsequently are compared against its desirable
features. Although this approach is certainly applicable locally to nonlinear systems as well, this
is not the point we wish to make here. Rather, the main point we emphasize is the control design
based on single-agent algebraic Riccati equations, and the associated single-agent Lyapunov
functions.

For autonomous error systems (29) and (30) a synchronizing region approach relies on robust
stabilizability of single-agent systems to account for the effects of distributed communication.
The synchronizing region approach uses a structured total state transformation given by matrix
T ® I,, such that T~ '(L + G)T = A for cooperative tracker, or 7~ ILT=A for cooperative
regulator, where A is a triangular matrix. The transformed system matrix in Egs. (29) and (30)
then equals

Iy ® A—cA ® BKC, (31)
and the overall system's stability is determined by the stability of diagonal blocks, 4; = Aj;,

A—c)BKC, (32)
V4; for the cooperative tracker, and V4; # 0 for the cooperative regulator. For cooperative
regulator, stability of diagonal blocks (32) V4; # 0 describes the stability with respect to 1 =0
invariant subspace of Eq. (27), which, under the existence of a spanning tree, is precisely the
synchronization manifold. For cooperative tracker, stability of diagonal blocks V/; describes the

stability of origin in Eq. (29). This robust stability for all 4; in spec(L)/{0} or spec(L + G) is
addressed through the synchronizing region in the complex plane [7,20].

Definition 1. A synchronizing region of the matrix pencil

A—0BKC (33)

is a subset of the complex plane S={oceC : A—cBKC is Hurwitz}.

Hence the total system (29) or (30) synchronizes if and only if there exists a coupling gain
¢>0 such that the relevant eigenvalues satisfy Vi: ci;€S. One way of assessing the
synchronizing region is provided by quadratic Lyapunov functions determined by real matrices,
P =P">0[9,27]. The Lyapunov stability condition,

(A—6BKC)'P + P(A—oBKC) <0, (34)

guarantees a synchronizing region [9]. The following theorem brings the pertaining design of
feedback gain K.

Theorem 1. [9] Let the graph contain a spanning tree, for the cooperative regulator, and let the
graph contain a spanning tree with pinning into a root node, for the cooperative tracker. Let the
system be given as Eq. (29) or Eq. (30). Let the single-agent feedback gain K satisfy

KC=R Y (B'P+ M), (35)
for some M, where R =R” >0 and matrix P is a solution of the algebraic matrix equation

ATP+PA+Q—PBR 'B'"P+ M'"R'M =0. (36)
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with design matrices Q = Q7 >0 and M. Let M further satisfy
PBR™'B"P—M"R™'M > 0. (37)

Then the single-agent feedback gain (35) guarantees an unbounded conical sector
synchronizing region. This ensures synchronization for a coupling gain ¢ >0 sufficiently large
if arguments of the relevant graph matrix eigenvalues, argl;, are bounded by the angle of the
cone.

Remark 2. The simple zero eigenvalue of L in the cooperative regulator and the nonsingular
L+ G in the cooperative tracker are necessary for synchronization. These are guaranteed by a
spanning tree in the former and the existence of a spanning tree with pinning to a root node in the
latter. Also note that BKC, which amounts to the inner coupling matrix, is here designed with
respect to (A, B, C) instead of being a priori assumed.

In the case of full-state feedback C =1,, and M = 0, Eq. (36) reduces to the conventional ARE
[25,27].

Corollary 1. [9] Let the conditions of Theorem 1 be satisfied. If C =1, the choice M =0 gives
the local feedback gain

K=R"'B'P, (38)
where P> 0 is a solution of the algebraic Riccati equation
ATP 4+ PA+Q—-PBR™'BTP=0. (39)

This guarantees an unbounded half-plane synchronizing region, Res > 1/2, and allows for
synchronization under sufficiently large coupling gains ¢ >0 for all graphs containing a spanning
tree.

Remark 3. The byproduct of Theorem 1 and Corollary 1 is a single-agent Lyapunov function
kernel P guaranteeing robust stability of the closed-loop single-agent system with the optimal
feedback gain (35) or (38), providing in turn a guaranteed synchronizing region in the complex
plane. This single-agent Lyapunov approach is not appropriate for nonlinear systems globally,
though it remains applicable locally [20]. Note the judicious choice of P, and consequently K,
that makes the drift dynamics stabilize the error system (29) or (30) whenever the control
vanishes outside the synchronization manifold. Furthermore, in Eq. (35) the matrix M provides
an additional design freedom needed for output-feedback stabilization [6,9]. This circumvents
the restrictive conditions on output-feedback in [14] and the requirement of G-passivity in [30].

4.3. Lyapunov approach

To extend favorable aspects of the synchronizing region approach to nonlinear systems
globally the control problems of Section 3 are revisited here via Lyapunov analysis with
structured Lyapunov functions,

V=5{(P| ® P)51, V=05,(P| ® P>2)b,

for cooperative tracker 1 and regulator 2, respectively. Matrices P; and P, are symmetric positive
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definite matrices, P; depending on the graph topology and P, depending on the single-agent
systems.

The following sections bring Lyapunov cooperative stability conditions. Presented Lyapunov
constructions particularly depend on graph topology types. This motivates separate elaboration
of Lyapunov results as they apply to distinct types of graphs, which are all naturally covered by
the synchronizing region approach in a unified way [11,28]. One single Lyapunov construction
here, with all its peculiarities, does not apply to the most general graph topology. Hence, first is
considered a graph containing a spanning tree with an isolated leader at the root node. This is
equivalent to pinning with an external leader to all roots of a spanning forest and this graph is not
strongly connected, Remark 1. Secondly a strongly connected, i.e. irreducible, graph is
considered using Lemma [, and finally a non-strongly connected, i.e. reducible, graph containing
a spanning tree, but without an isolated leader, is presented as a hybrid of the preceding two
simpler topologies.

4.3.1. Cooperative tracker

This section considers an external leader pinning to root nodes of all trees in a spanning forest.
An isolated node at the root of a spanning tree reduces to this form if it is considered excluded
from the graph, Remark 1. Due to the spanning tree there can be at most one such isolated leader.

Theorem 2. Let the graph contain a spanning forest with a leader pinning into root nodes of all
trees. Let the total error dynamics be given as

b51=(Iy ® A—c(L+ G) ® BKC)3,. (40)
Let K be chosen to satisfy
KC=R'(B"P, + M), (41)
where R =R >0 and P, solves the algebraic Riccati equation
AP, + P, A+ Q—P,BR"'B"P, + M"R™'M =0, (42)
with design matrices Q = Q7 >0 and M, where M further satisfies
P,BR™'B"P,—M"R™'M > 0. (43)
Let P, be chosen in dependence of M as
(1) M =0: P, is chosen such that P{(L + G) + (L + G)'P,>0
(2) M #0: P, is chosen such that P{(L + G) = (L + G)'P; >0
Take the Lyapunov function as
V=6(P| ® P2)d). (44)

Then for the coupling gain ¢>0 sufficiently large the structured Lyapunov function (44)
guarantees asymptotic cooperative tracking, 6; — 0.

Proof: Given total error dynamics (40), the time-derivative of the Lyapunov function (44) is
given by the quadratic form of a matrix

P, ® (P A+ ATPy)—cPi(L+ G) ® P, BKC—c(L+ G)'P, @ CTK"B'P,. (45)
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If Eq. (41) holds for P, satisfying the algebraic matrix Eq. (42), then Eq. (45) equals
Py ® (PA+ATPy)—c(P((L+ G) + (L+ G)'P1) ® P,BR™'B"P,—cP(L+ G)
® P,BR™'M—c(L+G)'P, ® M'R™'B"P, (46)

(1) For M =0 the choice 1 applies, yielding
P, ® (PLA+ATPy)—c(P(L+ G)+ (L+ G)'P)) ® P,BR™'B'P,. (47)

Outside the origin of the §; — space the contribution of the second term in Eq. (47),
STe(Pi(L+G)+ (L+G)'Py) ® P,BR™'B'P,5,,

it being a positive semi-definite symmetric matrix, c.f. Lemma 2, is zero if and only if Vi
each &y; is in the kernel of P,BR™'BTP,. Then one has that the contribution of drift
dynamics

51 P1 ® (P,A + AT Py)5
equals, by algebraic matrix Eq. (42),
6P ® (—Q+ P.BR™'BTPy)6, = — 61 P, ® 06, <0.

Hence on the whole §;-space the time-derivative of the Lyapunov function (44) is negative
definite for ¢>0 so large that the negative semidefinite term in Eq. (47) dominates the
indefinite first term.

(2) For M #0 the last two terms in Eq. (46) are indefinite, and the choice 2 for P; applies,
leading to Pi(L+ G) =R, =R] >0 rendering the time-derivative of Lyapunov function
(44), given by Eq. (45), equal to

P, ® (P,A+ATP))—2cR, ® P, BR™'B'P,—cR, ® (P, BR™'M + M"R~'B"P,)
=P, @ (P,A+ATP,)—2cR, ® P,BR™'B'P,— (R,
Q(CTKTRKC —P>,BR™'B"P, —M"R™'M)
=P, Q@ (PLA+ATP))—cR, @ (P,BR™'B"P,—M"R™'M)—cR, ® CTKTRKC
(48)
Since P,BR™'B"P, —M"R~'M > 0, outside the origin of §; — space the time-derivative of
the Lyapunov function (44) is negative definite, for ¢ >0 so large that the negative semidefinite

terms in Eq.(48) dominate the indefinite first term. This guarantees synchronization since the
contribution of negative semi-definite terms in Eq. (48),

6TcR, ® (P.BR™'B"P,—M"R™'M)s,, 61cR, ® C"K"RKC§,,

vanishes if and only if Vi &); is in ker(P,BR™'B"P,—M"R~'M) and in ker(CTK"RKC),
but then, by algebraic matrix Eq. (42), the contribution of drift dynamics 61TP1 ® (PA +
ATPy))s; = —6'Py ® (Q—P,BR™'B"P, + M"TR™'M)s, = —6TP; ® 08, <0. This concludes
the proof. O
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4.3.2. Cooperative regulator for irreducible graphs

This section is concerned with the cooperative regulator problem. Graph is assumed
irreducible, which facilitates construction of structured Lyapunov functions, using Lemma 1. An
auxiliary lemma is required for the subsequent development.

Lemma 3. If Y p;6,; =0 with p;>0, Vi then for a matrix L having a simple zero eigenvalue
with the eigenvector 1, L ® M, =0 < 6 e kerM Vi.

Proof. The reverse implication < is obvious. To prove the = implication assume L ® Md, =0
but &y;¢kerM for at least one i. With a one dimensional kernel of L, span(1), this generally
means & =a+v; where v; ekerM,Vi, but a¢kerM. Hence &, ¢kerM,Vi. Then, since
> pi62i=0, one has a) .p;+> pvi=0 whence, with > p;>0, it follows that
a € span(vy...vy), so ackerM, implying &, € kerM, Vi; a contradiction to the original
assumption. Hence 8; is in kerM, Vi, concluding the proof. O

Theorem 3. Let the graph be strongly connected. Let the total error dynamics be given as

5,=(Iy ® A—cL @ BKC)6,. (49)
Let K be chosen to satisfy
KC=R'(B"P, + M), (50)
where R = RT >0 and P, solves
APy + P, A+ Q—P,BR'BTP, + MTR™'M =0, (51)
with design matrices Q = Q7 >0 and M, where M further satisfies
P»BR™'B"P,—M"R™'M >0, (52)
Let P, is chosen in dependence on M as
(1) M =0: P, is chosen such that P\L + LTP, >0,
(2) M #0: Py is chosen such that P{\L=L"P, > 0.
Take the Lyapunov function as
V=50(P) ® P2)d,. (53)

Then for the coupling gain ¢>0 sufficiently large the structured Lyapunov function (53)
guarantees asymptotic cooperative stability, 6, — 0.

Proof. The proof follows similarly as that for Theorem 2, except with a singular graph matrix L
instead of nonsingular L + G. Lemma 3 provides, however, a relationship similar to that for
nonsingular L + G, forcing 8,; € kerP,BR~ IBTp,, Vi if the control contribution vanishes outside
the target set. Given total error dynamics (49), the time-derivative of the Lyapunov function (53)
is given by quadratic form of the matrix

P, ® (P,A+ATP))—cP,L ® P,BKC—cL"P, ® CTK"B"P,. (54)
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If Eq. (50) holds for P, satisfying Eq. (51), then Eq. (54) equals
P, ® (P,A+ATPy)—c(P\L+ L"P)) ® P, BR™'B"P, —cP|L
® P,BR™'M—cL"P, ® MTR™'B"P,. (55)

(1) For M =0 the choice 1 applies, yielding
Py ® (PyA+A"Py)—c(PiL+L"P) ® P,BR™'B"P,, (56)

Outside the , — synchronization manifold the contribution of the second term in (56),
85e(P\L+L"P) ® P,BR™'B"P»5,,

it being a quadratic form of a positive semi-definite symmetric matrix, with P;L 4+ LT P,
having one-dimensional kernel span(1), (by Lemmas 1, 2), is zero by Lemma 3 if and only if
Vi &y is in the kernel of P,BR~'B” P,. Then one has that the contribution of drift dynamics

7P ® (P2A+ ATP)),
equals, by algebraic matrix equation (51),
57P1 ® (—Q+ P,BR™'B'Py)6, = —65P1 ® 05, <0,

since each & is in the kernel of P,BR™'BTP,. Hence outside the &,-synchronization
manifold the time-derivative of the Lyapunov function is negative definite for ¢ >0 so large
that the negative semidefinite term in Eq. (56) dominates the indefinite first term.

(2) For M # 0 the last two terms in Eq. (55) are indefinite, and the choice 2 for P, applies,
leading to P1L=R; =R} >0 rendering the time-derivative of Lyapunov function (53),
given by Eq. (54), equal to

P, ® (PA+ATPy)—2cR; ® P,BR™'BTP,—cR, ® (P,BR™'M + MTR~'BTP,)
=P, ® (P,A+ATP,)—2cR, ® P,BR™'B"P, —cR,
®(CTKTRKC —P,BR™'B"P,—M"R~'M)
=P, @ (PLA+ATP,)—cR, @ (P,BR'B"P,—M"R™'M)—cR, ® CTKTRKC
(57)
Since P,BR™'BTP,—MTR~'M >0, outside the dy-synchronization manifold the time-
derivative of the Lyapunov function is negative definite for ¢>0 so large that the negative

semidefinite terms in Eq. (57) dominate the indefinite first term. This guarantees synchronization.
Namely, the contribution of negative semidefinite terms in Eq. (57),

6TcR, ® (P.BR™'B"P,—M"R™'M)8,, 55cR, ® CTK'RKCS,,

with ker R = span(1), vanishes outside the §, — synchronization manifold if and only if Vi §,; is
in ker(P,BR™'B"P, —M"R~'M) and in ker(C'K"RKC), but then, by the algebraic matrix
equation (51), the contribution of drift dynamics satisfies 52T Pi ® (P,A+ATP))5, = —
51P; ® (Q+ P,BR™'B"P,—M"R™'M)5, = —65P; ® 05,<0. On the &, — synchronization
manifold both the Lyapunov function (53) and its time-derivative (54) equal zero as J, vanishes
there identically by Eq. (15). This concludes the proof. O
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The requirement of graph irreducibility is crucial for the above presented result as in reducible
graphs there necessarily exists at least one p; =0 [43], which would invalidate the Lyapunov
construction of Theorem 3.

Remark 4. By Lemma 1, a diagonal P; of the choice 1 in Theorems 2 and 3 can under
conditions of Theorems 2 and 3 always be found. The choice 1, M =0, is more appropriate,
however, for the full-state rather than output distributed feedback. The choice 2 can be made only
for simple graph matrices [7], resulting in a symmetric P;. For detailed balanced graphs the P of
choice 2 may be a diagonal matrix [7]. In that case, the diagonal entries of P; symmetrizing L in
Theorem 3 equal the components of its left zero-eigenvector. Note that if the choice 2 can be
made it also satisfies the graph condition of the choice 1.

The crucial property of structured Lyapunov functions (44), (53) and the chosen feedback
gains, as revealed in proofs of Theorems 2 and 3 is that the drift dynamics’ contribution is
stabilizing whenever the contribution of the control vanishes outside the target set. Note also that
€1, & can be used in Lyapunov functions (44) and (53) instead of §;, 5>, without any significant
change. Both €, and ¢, for linear systems satisfy the same dynamics as the corresponding
synchronization errors (29) and (30). Errors e, also satisfy constraint (15) and Lemma 3
consequently applies. Under stipulations on the graph topology, the vanishing of local
neighborhood errors €, =0 is equivalent to synchronization 6;, = 0. However, for nonlinear
systems it is more convenient to use synchronization errors i, 03, c.f. Section 5.

Remark 5. The condition P,BR~'B"P, —M"R~'M >0 is to be compared with conditions in
[9], guaranteeing the unbounded conical sector synchronizing region. Note that this is
automatically satisfied for M = 0.

4.3.3. Cooperative regulator for reducible graphs with a leader group

Theorems 2 and 3 deal with cooperative trackers having isolated leaders and cooperative
regulators on irreducible graphs. Note, that an isolated leader at the root node is equivalent to
external pinning to roots of all trees in a remaining spanning forest, c.f. Remark 1. Contrasted
with Theorem 1, which assumes only a spanning tree for cooperative regulator, Theorem 3,
requires a stronger property of irreducibility. This ostensibly leaves out cooperative regulators on
reducible graphs containing a spanning tree, but not having an isolated leader. This instance is
naturally included in Theorem 1 under the existence of a spanning tree, while here it needs to be
considered separately.

Consider a reducible graph containing a spanning tree, but not having an isolated leader. Then
one can re-label the agents so that the Laplacian appears in normal Frobenius form (2). The
Ly v1m+1 block of size N' represents an irreducible autonomous leader group. Its cooperative
regulator dynamics is separated from the rest of the system

X, =Ax; + cBKCZlek;(xl —Xz),
X = Ax; + cBKCey. (58)

With a slight abuse of notation indices &,/ in Eq. (58) label the N’ nodes in L, 1,1, while
indices i,j are reserved for the remaining N-N' graph's nodes. The remainder of the system
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follows the cooperative regulator dynamics
X =Ax; + CBKCZje,-j(xj —x;) + cBKCZkg[k(xk —X;), (59)

where e;; are the adjacency matrix elements pertaining to blocks L, with i,j < m, while the g;
describe connections between the leader group and the rest of the graph, as given by blocks
Lim+l N i<m.

With the collective leader for an autonomous irreducible leader group (12),

i = Ax¥, (60)

and pertaining errors 8 = x; —x*, the total synchronization error dynamics of the autonomous
leader group is

52 = (IN/ ® A—CLm+1m+1 ® BKC)52 (61)
The remainder of the dynamics (59) can then be written as

X =Ax; + CBKCZje,j(xj —x;) + cBKCZkgik(x* —x;) + CBKCZkg,«k(xk —x%). (62)

From Eq. (2), for a leader group in consensus, e.g. with v; € R, vy € R, one has

Ly - Ly Lipn Vi Ly - Lim Limt], Vi
_ ‘. : : : 63
Ly Lym1 Vi - me+lll V! ( )

Lm+ Im+1 l] Vo Ol Vo

where 1, denotes a vector of ones of length / for the leader group of size / whose topology is
given by Ly 41m+1, and 0; is a zero column vector of length . Therefore the leader group in
consensus has the same effect on the remainder of the graph as a single isolated leader, with the
pinning gains g; = L1,

Motivated by the above, the collective leader of the irreducible leader group x* is construed as
a single isolated leader x( pinning into the remainder of the graph. One then has the dynamics
(62) as

X =Ax; + ¢cBKC (Zjeij(xj —x;)+ (Zkg[k) (x* —x,-)) + CBKCZkg”ﬁzk- (64)
With definition of pinning gains
gi: = Zkgik’ (65)

one recognizes in Eq. (64) the cooperative tracker local neighborhood error
€1 Zjeu(xj x) 4+ 8:(xX" —xp).

Hence, with synchronization errors &;; = x; —x*, pinning gain matrix G = diag(g,...gy) and
G = [gik], the global §; synchronization error dynamics for the remainder of the graph (60), (64)
equals

51=Uy_n ® A—c(L + G) ® BKC)8, + ¢G' ® BKCS,. (66)

Eqgs. (61) and (66) describe a hierarchically coupled cooperative regulator and tracker,
motivating the following.
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Theorem 4. Let the graph contain a spanning tree. Let the conditions of Theorems 3 and 2
apply separately to the irreducible leader group (58) and the remainder of the graph (66),
construed as pinned by a single isolated leader with pinning gains defined by Eq. (65). Then the
synchronization of the hierarchical system (61) and (66) is guaranteed by the composite
Lyapunov function

V=6Py ® P28, + adiP;; @ P25, (67)

where matrices Py, P, are chosen for L + G and L, respectively according to Theorems
2 and 3, and a>0 is a sufficiently large scaling constant.

Proof: Construct a composite Lyapunov function (67) for the coupled system as per Theorems
2 and 3. Indices r,t in P; stand for cooperative regulator and tracker. Since the single-agent
systems are identical the same P, is chosen for cooperative regulator and tracker subsystems.
Based on Theorems 2 and 3 for coupling gain ¢> 0 sufficiently large one has that

V< 610,86 —abl 0,6, + c61 PG’ ® P,BKC6», (68)
1 2 1

where positive definite Q,, Q, give the time-derivatives of Lyapunov functions as in Theorems
2 and 3. By assumption of a spanning tree, zero is the simple eigenvalue of the entire graph. By
irreducibility, zero is the simple eigenvalue of the irreducible Laplacian L, ,,+1, hence matrix
L + G is nonsingular, and by diagonal dominance it is an M-matrix, hence Theorem 2 applies.
The expression (68) is written concisely as
81 ]
; (69)

0, —$PuG' ® P,BKC

. T T
V< — {51 52} —%CG/TPH ® CTKTBTP2 a0,

62

which is negative definite by Schur complement for a>0 sufficiently large, thus proving
asymptotic stability of §;,5, and guaranteeing synchronization of the total system. O

Remark 6. The structured Lyapunov functions of Theorems 2, 3 and 4 guarantee cooperative
stability in all cases covered by the synchronizing region approach of Theorem 1; cooperative
regulator with a spanning tree and cooperative tracker with a spanning forest having all trees
pinned into at their root nodes. Hence for linear systems both synchronizing region and
Lyapunov methods of this section can be used equivalently as sufficient conditions for
cooperative stability. Therefore one finds here an appropriate alternative to the synchronizing
region approach. In Section 5 we apply this alternative to a class of nonlinear systems.

Analysis given here is somewhat similar to that in [43] where it concerns reducible graphs.
However, here we use results on nonsingular M-matrices [29], Lemma 2, whereas [43] applies
results for irreducible graphs to reducible graph's irreducible components. In comparison, our
decomposition of the total system's dynamics considers only one irreducible component, the
autonomous leader group and the remainder of the graph, rather than considering all irreducible
components. This difference is reflected in a different choice of the matrix P;.

Remark 7. Special cases of structured Lyapunov functions (44) and (53) given by kernels
P, ® I, Iy ® P, are appropriate for special graphs or controllability properties [23,30,40,42]. If
B=C=1,, choose K=1,. Then the Lyapunov functions (44) and (53) with kernel P; ® I,
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guarantee cooperative stability. Namely for P, = I, the time-derivatives are given by quadratic
forms of

P ® AT +A)—c(P((L+G)+(L+G)'P) ® I, (70)
for cooperative tracker, or
P ® A +A)—c(P L+L"P) ® 1, (71)

for cooperative regulator. In Eqgs. (70) and (71) for ¢>0 sufficiently large the second term
dominates the first just as in the proofs of Theorems 2 and 3. On the other hand, if the graph
topology is balanced or undirected choose K =R~ 'B"P, where P, solves (39). Then the
Lyapunov functions (44) and (53) with kernel Iy ® P, guarantee cooperative stability [30,42].
Namely for P, = Iy the time-derivatives are given by quadratic forms of

Iy ® (ATP, + PyA)—c(L + G + (L+ G)") ® P,BR™'B'P,, (72)
for cooperative tracker, or
Iy ® (ATPy + P,A)—c(L+ L") @ P,BR™'B"P, (73)

for cooperative regulator. For undirected graphs a state transformation further leads to block
diagonal structure with blocks ATP, + P,A— cu;P2BR™ IBT P, akin to expression (39), where i
are the eigenvalues of the original symmetric positive semi-definite graph matrices, providing a
connection with synchronizing regions [30,42].

From this it is evident that the choice P, = I,, disregards the controllability relations inherent to
single-agent systems, or simplifies them to all-state direct full-state feedback, while P =1y
restricts the graph topology. These special cases clearly reveal the connection of graph topology
with the choice of Py and that of single-agent properties with the choice of P,. This paper bridges
the gap between local synchronizing region approach and global Lyapunov approach by
structured quadratic Lyapunov functions, P; ® P,, thus supplementing relations between local
synchronizing region and global stability approaches studied in [33].

5. Nonlinear systems

This section applies Lyapunov functions, structured as in Section 4, to original nonlinear
systems (5). For nonlinear cooperative regulators on irreducible graphs the diagonal form of P is
crucial [32]. Since this restriction generally comes at odds with the choice 2 of M #0 in
Theorems 2 and 3 one takes here C =1,, M =0, appropriate for the full-state feedback. The
choice of M # 0 can nevertheless be made in nonlinear case for detailed balanced graphs, (c.f.
Remark 4). Two definitions detailing incremental properties of the drift dynamics are needed in
the sequel.

Definition 2. The drift dynamics f(¢, x) is termed QUAD or quadratically bounded uniformly, if
there exists a matrix P, = P} >0 and some matrix Q, = QO such that Vx,y, uniformly in 7,

=)' Pa(f(t,0) —f(1,7) < (x =) Qalx—). (74)

The QUAD property, as usually defined in the literature [12,32,43], uses diagonal Q, matrices,
but here QUAD is generalized to symmetric matrices, more in keeping with the contraction
approach [13,18,34]. The QUAD property provides quadratic bounds on the effect of drift
dynamics on the time-derivative of a quadratic incremental stability Lyapunov function [34].
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Definition 3. The drift dynamics f(z,x) is termed special QUAD (sQUAD) with respect to the
given linear state feedback control, u = Kx, if there exists a matrix P, = PZT >0 such that Vx,y,
uniformly in ¢,

@@= Pa(f(t,x)—f(1,)) < (x =) Qa(x =), (75)

with O, = Qg negative definite on the linear subspace where the feedback control vanishes;
kerK.

In addition to QUAD of Definition 2 the extra structure of Q,, with respect to the a linear
feedback control, makes this a SQUAD property. Note that sSQUAD depends not only on the drift
dynamics but also on the chosen linear feedback. It does not imply that the drift dynamics is
contracting [32], but if the drift dynamics is contracting, in the sense of V-uniformly decreasing
[31], then it is SQUAD.

For nonlinear system (5), the linear feedback gain K = R~ 'BTP,, where R=R” >0 and P,
satisfies

(=) Palf 01,30~ 5 (= 3) PoBR™ BT P =) < — 5 (=) Qafx—3) <0,
(76)

uniformly in #, x, y, guarantees SQUAD with respect to the linear state-feedback u = Kx. Clearly,
global exponential incremental stabilizability of Eq. (5) by a linear feedback is a necessary
condition for solution of Eq. (76) to exist. Note that Eq. (76) applied to LTI systems reduces to
algebraic Riccati equation (39).

Exposition of the main results of this section proceeds along the lines of Section 4, due to a
similar dependence of Lyapunov constructions on the underlying graph topology types.

5.1. Cooperative tracker

Similarly to Theorem 2 we have the following result for cooperative trackers with affine-in-
control systems (5).

Theorem 5. Let the graph contain a spanning forest with a leader pinning into root nodes of all
trees. Let the single-agent closed-loop system be given as

X; =f(t,x;) + cBKey;, 77)
with the linear feedback gain chosen as

K=R'B'P,, (78)
where R = RT >0 and P, satisfies

ST Pa(f(1,33) —F(t.x0) < 67,025, (79)

uniformly in #,x;,x9, with Q, =02 <0 on kerP,BR™'BTP,. Let P; be chosen for L+ G
according to Lemma 1. Then the structured Lyapunov function,

V=56P ® P8 = Zpi51TiP251i, (80)

for the coupling gain ¢ > 0 sufficiently large guarantees asymptotic cooperative tracking, §; — 0.
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Proof. The time-derivative of the Lyapunov function (80) is
V=> polPaf(t.x)—f(t.x0) + cBK Y _ e(xj—x1) = 8| Py ® Py(F(t,x)—f(t,x0))
i J

— 61 P{(L+ G) ® P,BK§,, (81)
where F(1,x) = [f7(t,x1)-f7(t,xy)] € RV, and F(1,x0) = [T (1, %0)--fT (1, %0)] " € R¥. Under
conditions of the Theorem, the contribution of the second term in Eq. (81),

1
fﬁ@@+®+@+@%0®&m”f&% (82)

is negative semidefinite, vanishing only if Vi, dy; € kerP,BR~'B" P, = kerB" P,, by the full
column rank of B, and regularity of R. In that case one is left with the contribution of the drift
dynamics

81 P1 ® Po(F(t,x)—F(t.x0)) = Y _ pidl:Pa(F(t, %) —f (£, x0), (83)

which is rendered negative by the positivity of p; (Lemma 1) and the properties of drift dynamics
assumed in the theorem (79);

D PSP x) = f(,%0)) <Y pid]025], =5 P1 ® 0y8] <O,

for 8;; € kerP,BR~'BT P, Vi. Whenever the term (82) does not vanish ¢> 0 needs to be so large
that it dominates the contribution of the generally indefinite first term, quadratically bounded by
STPL® 0y8 O

The sQUAD condition (79) appearing in Theorem 5 serves the purpose of and generalizes the
ARE of LTI systems, Theorem 2. Compared with [43], which considers only diagonal inner
coupling matrices and diagonal P,, O, matrices characterizing the QUAD property, our
approach accounts for the controllability properties of single-agents which result in more general
inner coupling matrices, requiring more general symmetric P, O, matrices. Also, cooperative
stability criteria in [43] require checking numerous conditions that are here satisfied by design.

5.2. Cooperative regulator for irreducible graphs

Similarly to Theorem 3 we have the following result for cooperative regulators with affine-in-
control system (5) on irreducible graphs.

Theorem 6. Let the graph be strongly connected. Let the closed-loop systems be given as
X =f(t,x;) + cBKey, (84)
with the linear feedback gain chosen as K =R~ 1BTP, where R =R” >0 and P, satisfies

P2 (f (6, ) —f (1, x*) < 63,028, (85)

uniformly in #,x;,x* with Q, = Q2T <0 on kerP,BR™'BTP,. Let P; be chosen according to
Lemma 1, as diag(p;...py)- Then the structured Lyapunov function,

V= 52TP1 ® P56, = ZpiazTiPZ(SZi (86)

for the coupling gain ¢ >0 sufficiently large guarantees asymptotic cooperative stability, 5, — 0.
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Proof. The time-derivative of the Lyapunov function (86) is

V=> poLPaf(t.x)—%*) + cBK Y _ e;(xj—x)) = 53 Py @ Py(F(t,x)—f(t,x"))
i J

—c6yPIL ® P2BK&,, (87)

where F(t,x)= [fT(t,x1)-f" (¢, xN)]T e R, and f(1,x*) = [fT(t,x%)-fT(1, x*)]T e RM. Note
that in Eq. (87) i*#f(t,x*) but because of the crucial constraint (15) one has that
S pidyPra= (3 pi6s;)Pra=0 for any vector a, and in our case i* appearing in each entry i

can be replaced Iby any vector e.g. f(t,x*). The contribution of the second term in Eq. (87),
1
5(sgc(PlL +L"P)) ® P,BR™'B"P,5, (88)

is negative semidefinite, vanishing outside the 8, — synchronization manifold if and only if Vi,
5,; € kerBT P, by the full column rank of B and regularity of R. In that case one is left with the
contribution of drift dynamics

8y P1 ® Po(F(1,0) =f(t,x*) = Y pidyPa(f(,x) —f(1,"), (89)

which is rendered negative by the positivity of p; (Lemma 1) and the properties of drift dynamics
assumed in the theorem (84),

pri(s;{iPz(f(h ) —f(t,x%) < Z,.pﬁ;QzéQ =5P1 ® 0,6, <0,

for &,; € kerP,BR~'BT P, Vi. Where Eq. (88) does not vanish ¢ >0 needs to be sufficiently large
so that it dominates the contribution of the generally indefinite first term, quadratically bounded
by 8P ® 0,6,. O

As in Theorem 3, graph irreducibility is crucial for the above result since in reducible graphs
there necessarily exists at least one p; =0 [43], which would invalidate the Lyapunov
construction of Theorem 6.

5.3. Cooperative regulator for reducible graphs with a leader group

Cooperative regulators on reducible graphs containing a spanning tree without an isolated
leader are treated similarly as in Section 4. The proof however differs in a crucial requirement on
single-agent drift dynamics. Similar to Section 4.3.3 one has cooperative regulator dynamics of
the autonomous leader group

S =f(t,%) + cBK Y en(xi—xi),

qp =f(t,x¢) + cBKey. (90)
The remainder of the system follows cooperative regulator dynamics
Xi=ftx)+ CBKZJ_e[j(Xj —x;) + CBKZkgik(xk —Xx;), ©on

where e;; are adjacency matrix elements pertaining to the blocks L;;, with i,j < m, while the g;
describe the connections between the leader group and the remainder of the graph, as given by
blocks Li,+1, i <m. With a collective leader for the irreducible autonomous leader group, as
detailed in Theorem 4, one has

= (p) S ©2)
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With 8y = x; —x* the synchronization error dynamics for the autonomous leader group is

Sok =f(t, ) —* + CBKZlekl(aﬂ —0621). (93)
The remainder of the dynamics (91) can then be written as
X =f(t,x) + cBKZje,-j(xj —x;) + cBKZkg,-k(x* —x;) + cBKZkg,»k(xk —x) (94)

With x* construed as the single isolated leader xy pinning into the remainder of the graph one
has

Xi=f(t,x;) + cBK (Zjeij(xj —x;) + (Zkgik) (* —xi)> + CBKZkgik52k~ (95)
For synchronization errors §j; = x; —x*, similarly as in Theorem 4, this leads to
51 =F(t,x)—% —c(lL + G) ® BKS, + ¢cG' ® BKS»,
51 = F(t,x)—f(t, i*) — (L + G) ® BKS) + ¢G' ® BK&, + f(1,¥*)—x". (96)
Eqgs. (93) and (96) describe a hierarchically coupled system, with the caveat that

1, X*)—}* # 0 outside the synchronization manifold for the autonomous leader group. Still
one has the following result.

Theorem 7. Let the graph contain a spanning tree. Let the conditions of Theorems 6 and 5
apply separately to the autonomous irreducible leader group (90), and the remainder of the
graph (91), construed as pinned by a single isolated leader. If the single-agent drift dynamics
f(t,x) is globally Lipschitz in x, uniformly in t, then the synchronization of hierarchical system
(93) and (96) for a coupling gain ¢ >0 large enough is guaranteed by the composite Lyapunov
function

V=26[P1 ® P25 + adyPy1 ® P2ds, 97)

where matrices P,;, P,y are chosen for I + G and L+ 1m+1 according to Theorems 5 and 6, and
a>0 is a sufficiently large scaling constant.

Proof. Construct a Lyapunov function (97) where indices r,¢ in P; stand for cooperative
regulator and tracker respectively. Matrices P;;, P, are chosen for L+ G and Ly 1m+1 according
to Theorems 5 and 6. Since the single-agent systems are identical the same P, is chosen for
cooperative regulator and tracker subsystems. Based on the results of Theorems 5 and 6, for the
coupling gain ¢> 0 sufficiently large one has that

V< —670,61—as}0,6, 4+ 61cPyG' ® P,BKS, + 61 Py ® Py(f(t, ) —%"). (98)

where positive definite Q,, Q, characterize the time-derivatives of Lyapunov functions as in
Theorems 5 and 6. The last term in Eq. (98) requires special attention. It equals

8Py ® Py(f(t,5*)—X") = pidfPa(f(t, %) — ). (99)
Furthermore, one has that

ety == - (X p) Spien=(Ep) S i),

(100)
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—1
whence it follows by Cauchy—Schwartz that [[f(, x*)— £*|| < (szj) >l (1,2 = £, ).
Global Lipschitz bound on the drift dynamics in x uniformly in 7, [[f(z,x*)—f(t,x)| <

Cllx—x*|| < ClIal, implies [[f(t,x*) —*|| < Cl|al, therefore [[f(r,x*)—X"|| < CV/N|8 .
Hence inequality (98) implies the following:

a(0,) — 3(B(P1G ® P,BK) +5(Pyy ® P,)V/NC)

VS*M&””@M{faﬁ0m7®Pﬁm+awu®&wW0 as(Q,)

] o

For a>0 sufficiently large (101) is negative definite, by Schur complement, thus proving
asymptotic stability of §;, d,, guaranteeing synchronization of the total system. O

Remark 8. Notions related to SQUAD appearing in the literature [31-33,43] guarantee distributed
synchronization. However it is often a priori assumed that the feedback has certain sufficient, but
not necessary properties. In [43] the inner coupling matrix is assumed diagonal, for which the
diagonal matrices characterizing the QUAD property can be used. This does not represent realistic
controllability properties, whereas the inner coupling matrices designed here with respect to single-
agents do. In [31] the inner coupling matrix is assumed such that its contribution in the dissipation
relation is symmetric and positive definite. Here the corresponding contribution is given by
PBR~'BTP which is symmetric, but only positive semi-definite. Reference [32] at first assumes
all-state direct feedback, as appearing also in [2], and subsequently weakens it by assuming the
coupling function # satisfying dh/dx > 0. Here this corresponds to BK C > 0. Both assumptions are
weakened by requiring SQUAD. In [33] synchronization is approached via incremental stability of
f(t,x)—ah(x) system, which is stated as an assumption. Instead of assuming that A(x) yields
incremental stability, as in [33], the sSQUAD requirement here, by virtue of (76), guarantees that the
corresponding closed-loop system f(z,x)—BR ~'B” Px is indeed incrementally stable by design.
General quadratic bounds on the contribution of drift dynamics, e.g. requiring contraction of
f(t,x) — ax for some positive « in [31,32], or drift dynamics being V-uniformly decreasing in [31],
obscure special structural properties relating the drift dynamics f(z, x) and the input matrix B,
explicitly emphasized in Definition 3.

6. Numerical example
This section brings a network of 11 nonlinear oscillators with dynamics given in input—output
form as

yi—1
2 ST
S(1+y7 +57)

Their drift dynamics is a Lienard system possessing a limit cycle. The state-space model is

chosen as
T R [ P e [
— = X; X; . u;.
dt | xpp -1 =02 X O.ZW&Q—O.ZMI sin 0.6¢ 1

5,40 i+ (1402 sin 0.61)y, = u;.
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The time-varying and nonlinear part is globally Lipschitz, uniformly in time, with globally
bounded gradient, and the single-agent drift dynamics is SQUAD with
{3.042 0.732
2 =

=0.13,.
0.732 1.672}’ Q> 2

The control gain is designed via Eq. (76), K =BTP, = [0.732 1.672]. The interconnecting
communication graph topology is given by its Laplacian matrix and is depicted on Fig. 5.

1 0 0 0 0 0 00 —1 0 0]
-1 1.0 0 0 0 00 0 0 0
-1 =12 0 0 0 00 0 0 O
0O 0 0 2 -1 0 00 0 0 -1
-1 0 0 -1 2 0 00 0 0 O
L=l0o 0 0 0 0 1 00 0 -1 0
0O 0 0 0 0 —-110 0 0 0
0 0 0 0 0 —1201 0 0
1 -1 0

0 0o 2 -2

I -1 0 1

This graph is reducible, contains a spanning tree, but it does not have an isolated leader; rather
it has an autonomous leader group. It is found that P,; = diag(1,0.5,0.5,0.75,0.6,1,0.5,0.5),
P,y =diag(2/3,1/3,2/3). The coupling gain ¢ = 2.2 satisfies sufficient conditions of Theorems
5 and 6 for the autonomous leader group and the remainder of the graph separately.

Note that this example does not use the all-state direct feedback, rather the controllability
properties of single-agent systems are accounted for in the control design. The distributed
feedback is designed based on the given drift dynamics’ contraction properties and it does not
rely simply on overpowering the drift dynamics. The following figures, Figs. 14, depict the
time-dependence of the first state variable for all 11 agents, with pertaining synchronization
errors, including the detailed view of transients for the first 10 s.

7. Conclusions

This paper brings a Lyapunov approach unifying the cooperative regulators and trackers on
graphs having a spanning tree. Lyapunov techniques for cooperative stability are here developed

Fig. 1. (a) First state var. of the leader group. (b) First state var. of the leader group—detail.
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Fig. 3. (a) First state var. entire system. (b) First state var. entire system—detail.

Fig. 4. (a) First state var. synch. error entire system. (b) First state var. synch error entire system—detail.

as a parallel to the versatile synchronizing region approach. Existence of a spanning tree is
necessary for the synchronizing region approach which naturally includes all the cases
considered. Lyapunov approach presented here, however, requires separate considerations for
different types of graphs. Structured quadratic Lyapunov functions are given that guarantee
exponential cooperative stability with linear distributed controls for agents whose dynamics
belongs to a special class. This class, characterized by incremental properties of the drift
dynamics, is termed special QUAD (sQUAD). A sufficient condition is given for a system to be
SQUAD, analogous to ARE for LTI systems. This provides a design scheme for affine-in-control
systems. Restrictive a priori assumptions often found in the literature are removed and the
required properties are achieved by design. Future work will apply the structured Lyapunov
functions to robust and adaptive distributed control problems on general directed graphs.
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8 4

2 > 3
Fig. 5. The interconnecting communication graph.
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