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a b s t r a c t

Moments are important characteristics of digital signals and images and are commonly
used for their description and classification. When calculating the moments and their de-
rived functions numerically, we face, among other numerical problems studied in the liter-
ature, certain instabilities which are connected with the properties of Pascal triangle. The
Pascal triangle appears inmoment computation in various formswheneverwe have to deal
with binomial powers. In this paper, we investigate the reasons for these instabilities in
three particular cases—central moments, complex moments, and moment blur invariants.
While in the first two cases this phenomenon is tolerable, in the third one it causes seri-
ous numerical problems. We analyze these problems and show that they can be partially
overcome by choosing an appropriate polynomial basis.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Moments are scalar quantities which have been used for more than hundred years to characterize a (possibly
multidimensional) function and to capture its significant features. Theyhavebeenwidely used in statistics for the description
of the shape of a probability density function and in classic rigid-bodymechanics tomeasure themass distribution of a body.
From the mathematical point of view, moments are projections of a function onto a polynomial basis (in the same way that
the Fourier transform is a projection onto a basis of harmonic functions).

Moments were first introduced to the pattern recognition and image processing community in 1962, when Hu [1] em-
ployed the results of the classical theory of algebraic invariants [2–5] and derived the first moment-based characteristics
(features) suitable for object description and recognition. Since that time, this field has undergone significant development.
The study of moments has formed a well-established area of image recognition with thousands of relevant papers and sev-
eral survey monographs [6–10] and has become one of the most frequently used features in image analysis.

A general definition of a moment in d dimensions is as follows. Let {bk(x)} be a d-variable polynomial basis of the space
of image functions defined on D ⊂ Rd and let k = (k1, . . . , kd) be a multi-index of non-negative integers which show the
highest power of the respective variables in bk(x). Then the general moment M(f )

k of image f is defined as

M(f )
k =


D
bk(x)f (x)dx. (1)

The number |k| =
d

j=1 kj is called the order of the moment. We omit the superscript (f ) when there is no ambiguity.
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The properties of the moments depend on the choice of the basis {bk(x)}. The most common choice is a standard power
basis

bk(x) = xk = xk11 . . . xkdd
which leads to geometric moments

mk =


D
xkf (x)dx. (2)

In addition to that, numerous orthogonal bases have been used in the literature (see [8] for a survey).
The moments themselves are rarely used directly for object recognition because they depend on the position, orienta-

tion, size, and many other variations of the object. To overcome this, one can create certain functions of moments which
stay constant under certain group of transformations. These functions are calledmoment invariants. A number of variousmo-
ment invariants have been reported in the literature—rotation invariants, similarity invariants, affine invariants, and blur
invariants are the most important ones (see [8] for a survey and detailed forms of individual invariants).

Although the theory of all moment invariants has been developed in a continuous domain because of the comfortable
mathematical tools available, our practical interest is in the domain of discrete (digital) signals and images. The transition
from the continuous to the discrete domain entails an approximation of the integral in (1) by a sum. In the simplest case, a
zero-order approximation is used and (1) turns to the form (we show a 1D case for simplicity)

Mk =

N
j=1

bk(xj)f (xj) (3)

where the evaluation points are commonly chosen xj = j. Regardless of what approximation scheme has been applied, this
transition always induces errors of several kinds. Some of them are firmly connected with the sampling and quantization
errors of the image and have been thoroughly analyzed for instance in [7].

Another group of errors is connected with the numerical evaluation of a sum such as that in (3) and originates from
the finite precision of the computer arithmetic. Although they might be by several orders higher than the sampling errors
(especially if an unstable numerical algorithm has been applied), they have not been systematically studied and fully
explored yet. Most papers on numerical moment calculations have been focused on fast algorithms rather than on error
analysis [11,12]. If the authors had observed some instability in the experiments, they mostly explained it as a moment
sensitivity to additive noise in the image or as a consequence of using very large valueswhenworkingwith the powers. They
tried, with partial success, to overcome these problems by changing the polynomial basis to Legendre [13], Zernike [13,14],
Pseudo-Zernike [15], Gauss–Hermite [16], Chebyshev [17], Krawtchouk [18], and other special bases [19,20].

In this paper we investigate a specific source of errors: the poor condition of a Pascal matrix (11). We show that the
Pascal matrix (and forms derived from it) often appears when evaluating polynomial moments and moment invariants. We
demonstrate that in some cases it introduces serious numerical errorswhile in other, seemingly very similar, cases its impact
is much less significant. This aspect of moment calculations has never been investigated and errors of this kind have, in the
past, been misinterpreted.

The paper is organized as follows. In Section 2 we recall three important classes of moments, and their invariants, where
Pascal-like matrices appear in their evaluation. Section 3 presents a general overview of numerical algebra on the given
problem. In Section 4 we briefly discuss the importance of choosing the suitable domain for the calculation of geometric
moments (that is, choosing xj in (3)), then we study how the Pascal triangle influences the transformations between
geometric, central and complex moments. We describe the effect of combining the Pascal triangle with a Toeplitz matrix
carrying the centroid information and, finally, we show that to calculate complex moments from the geometric moments, a
2D version of Pascal triangle leads to better numerical accuracy thanmight be expected. The stability of all these calculations
can be studied by elementarymeans, that is through the numerical condition of the linear transforms involved. On the other
hand, the evaluation of blur invariants leads to a numerical misbehavior of such magnitude that cannot be explained just by
the numerical condition of the underlying linear system. In Section 5 we demonstrate, analyze and explain this instability,
caused inherently by the Pascal triangle.We demonstrate that the error of this kind is actually very serious because it renders
higher order moments useless for the purpose of discriminating between blurred images. We show how it can be partially
overcome. This is the main contribution of the paper. Section 6 contains a summary and discussion.

2. Central moments, complex moments and blur invariants

In this section, we introduce three examples of derived moments, where various versions of the Pascal triangle appear.
The influence of the Pascal triangle on the numerical calculationswill be investigated later in the paper.We limit ourselves to
the 1D and 2D cases for the sake of simplicity. The extension into 3D or even to higher dimension (in case of blur invariants)
is, in principle, straightforward.

The most commonmoments are those with respect to the basis composed of the power monomials {xp} in 1D and {xpyq}
in 2D. They are called geometric moments and in the 2D continuous domain are defined as

mpq =


∞

−∞


∞

−∞

xpyqf (x, y)dxdy. (4)
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In signal analysis, they are not used directly because they do not exhibit any desirable invariant property. However,
numerous invariants can easily be derived from them (see [8] for a detailed survey). The invariance to translation is readily
achieved by shifting the power basis into the ‘‘centroid’’ of the signal, which leads to so-called central moments

µpq =


∞

−∞


∞

−∞

(x − xc)p(y − yc)qf (x, y)dxdy, (5)

where

xc = m10/m00, yc = m01/m00

are the coordinates of the centroid. The central moments can easily be expressed in terms of geometric moments as

µpq =

p
k=0

q
j=0


p
k


q
j


(−1)k+jxkcy

j
cmp−k,q−j.

This relation is sometimes used when calculating central moments by means of a fast algorithm designed to calculate
geometric moments. Note that the summation ranges over geometric moments of all pairs of indices k ≤ p, j ≤ q.

Achieving rotational invariance is more difficult. Among several published methods, probably the most straightforward
is the one using complex moments [21], which are projections of the signal onto the basis πkj(x, y) = (x + iy)k(x − iy)j
(complex moments do not exist in 1D), where i is the imaginary unit

cpq =


∞

−∞


∞

−∞

(x + iy)p(x − iy)qf (x, y)dxdy. (6)

Geometric moments and complex moments carry the same amount of information in the following sense. Each complex
moment can be expressed in terms of geometric moments of the same order (which is now the sum of the indices) as

cpq =

p
k=0

q
j=0


p
k


q
j


(−1)q−j

· ip+q−k−j
· mk+j,p+q−k−j (7)

and vice versa

mpq =
1

2p+qiq

p
k=0

q
j=0


p
k


q
j


(−1)q−j

· ck+j,p+q−k−j. (8)

Under image rotation, complex moments preserve their magnitude and change only the phase as can be seen from their
transformation into polar coordinates

cpq =


∞

0

 2π

0
rp+q+1ei(p−q)θ f (r, θ)drdθ. (9)

Although (9) might seem more convenient for numerical evaluation, one often uses (7) due to the availability of fast
algorithms for geometric moment calculation. Hence, this leads to dealing again with a kind of Pascal triangle.

The last of our examples where the Pascal triangle appears is the set of invariants with respect to a convolution of a signal
with a symmetric kernel function. These blur invariants have been used in signal analysis to identify blurred signals without
the need for deconvolution. Various blur invariants have been published in the literature. Particular form of the invariant
depends on the kind of the symmetry of the kernel [22]. However, the Pascal-like matrices appear in all of them and their
impact does not depend on the particular form of the invariant. For the sake of simplicity, we limit our analysis to the 1D
case, where the only existing symmetry of the kernel is the central symmetry.

The first formula for moment blur invariants in 1D was published in [23]

Sp = µp −
1
µ0

(p−1)/2
n=1

 p
2n


Sp−2n · µ2n (10)

(p being odd). In [24] we showed that blur invariants are in fact a solution of a linear algebraic system depending on the
moments and derived the relation between blur invariants with respect to two different polynomial bases, particularly
between standard powers (leading to geometric moments) and orthogonal polynomials. We also gave general advice on
how to implement such transformation to obtain the benefits of the more numerically stable orthogonal polynomials. In
this case, the Pascal triangle enters the computation in a way different from that of the two previous examples.

It is interesting to observe that the level of instability caused by the Pascal triangle depends significantly on the particular
form inwhich it appears in the calculations.While in the case of central and complexmoments this instability does not affect
the calculated values significantly (Section 4), it leads to serious problems in the case of blur invariants (Section 5).
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3. Numerical linear algebra viewpoint

As we pointed out in the previous section, calculation with discrete moments may lead to large linear systems and care
should be exercised in solving them. It iswell understood, for example, thatwhen solving the linear algebraic system Ax = b,
the relative error of the solution x is bounded by the relative error of the data (b, A and the errors of calculation)multiplied by
the condition of thematrix, cond(A) = ∥A∥ ∥A−1

∥ (∥A∥ is thematrix norm inducedby the l2 vector normused in this paper). As
this condition is the same for thematrix inverse the bound applies not only to solving of the system but to applying the linear
transform as well (calculating b for a given x). While the boundmay, in particular cases, be pessimistic the matrix condition
is still an important indicator of possible numerical problems despite a sometimes popular belief that calculations with
explicit formulae, such as forward- or back-substitution, are inherently stable. Another source of numerical instability,which
may appear in moment computation, is calculation with polynomials represented through their power expansions. This is
because the powers of higher degrees are numerically nearly linearly dependent regardless of the fact that they are actually
linearly independent. In discretized situations we can form a matrix of these basis functions at, say, equidistant points and
observe the condition of such amatrix. Replacing the power basis by orthogonal polynomials and, possibly, choosing suitable
points for the evaluation would significantly improve the condition of the discrete approximations. Polynomials have the
remarkable (but obvious) property that a polynomial of a sum x + y is again a polynomial, either in x (with coefficients
depending on y) or in y (with coefficients depending on x). Whenever this is exploited (as in the calculation of certain
moments derived from the basic geometric moments, in the evaluation of some invariants, etc.) it leads to linear algebraic
systems involving binomial coefficients which can be gathered into a lower triangular matrix, the Pascal triangle

Pn =


j − 1
k − 1

n

j,k=1
=


1 0 0 0

1 1 0 0
...

1 2 1 0
1 3 3 1

· · ·
. . .

 . (11)

The condition of P increases rapidly with its size – see Fig. 2 – which also leads to numerical instability of calculations. It
would appear that making sure the condition of any matrix involved in our calculations and choosing the right polynomial
basis (if relevant) should lead to numerically safe methods. We will demonstrate that this is true in some cases but not in
others.

4. Numerical aspects of calculating geometric, central and complex moments

4.1. Geometric moments

Regardless of what interpretation we associate with a discretized image we approximate the integrals defining the
moments using a midpoint quadrature formula with equidistant knots x1, x2, . . . . The evaluation of geometric moments
(4) can be written as

Mg = γ ZxFZT
y (12)

where Mg is a r × r matrix of moments mpq of orders at most r , F is an nx × ny matrix of the discretized image and, with
powers as the polynomial basis,

Zx =


xj−1
k

j=r,k=nx

j=1,k=1

is a r × nx matrix and similarly for Zy .
The scaling factorγ depends on the interpretation of the physical aspects of the discretization and is essentially irrelevant.

What is more relevant is the choice of the points xk which influences the numerical condition of matrices Zx and Zy .
It is not unusual to use simply xk = k. Thismay lead to overflow for higher degrees of powers but it also leads to extremely

badly conditioned matrices Zx as shown in Fig. 1 where the testing image was an image with nx = ny = 256. Shifting the
origin improves the situation a little, as explained in the next section. The reason for the very bad conditioning is that we
are using the powers for very large arguments where they are indeed computationally nearly linearly dependent.

A much better strategy is, as when using orthogonal polynomials, to use a symmetric fixed length interval [−a, a] for
some a > 0. The choice a = 1 is standard here but we propose a = 2 as a good compromise between underflow and
overflow for very high degrees. The general formula for the knots of mid-point quadrature with equal weights is

xk =
2k − n − 1

n
a, k = 1, 2, . . . , n.

The conditions of matrices Zx are shown in Fig. 2.
We do not claim that using the power basis over the suggested domain resolves all the problems of numerical instability

but wish only to point out the drawbacks of an approach that is, unfortunately, often used.
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Fig. 1. Conditions of some matrices of size r , 2 < r < 20: discretized powers Zx on [1, 256] (green ∗), same shifted to centroid origin (blue ◦) and Pascal
Pr (red ×). Also ∥Mc∥ (cyan +) and ∥Mg∥ (mauve �). The centroid was [137, 124]. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

4.2. Central geometric moments

As discussed in Section 2, it is important to be able to calculate geometric moments with respect to a given coordinate
origin. Regardless of how that origin is chosen we are interested in the numerical properties of such a shift.

Given the new origin [xc, yc] the central moments are like those in (4) with (x, y) replaced by [x − xc, y − yc]. In the
discretized form this leads to

µpq =

p
k=0


p
k


(−xc)k

q
j=0


q
j


(−yc)jmp−k,q−j. (13)

To study the numerical properties of such a conversion we will express it in matrix form. We note that the summation of
the j-factors acts on the rows of the matrixMg of the geometric momentsmpq and the other sum acts on its columns.

By T (v) we denote the lower triangular Toeplitz matrix with the vector v as its first column, that is

T (v) =


v1 0 0 0

v2 v1 0 0
...

v3 v2 v1 0
v4 v3 v2 v1

· · ·
. . .

 .

We also denote

Gx = Pr . ∗ T

x0c x1c x2c · · · xr−1

c


the Hadamard (element-wise) product of the Pascal matrix and the Toeplitz matrix with the powers of xc , and similarly for
Gy . We then have, for the matrix of central moments,

Mc = GxMgGT
y . (14)

The numerical accuracy of this conversion is thus governed by the conditions of the matrices Gx and Gy which now depend
on the data through the Toeplitz matrices T with powers of the coordinates of the new origin. The smaller these coordinates
are, the closer Gx and Gy will be to Pr , the condition of which is shown in Figs. 1 and 2.

The ratio of the relative error of the solution of a linear system to the relative error of the input is bounded by the condition
number of the matrix of the transformation (see, e.g., Theorem 2.5-1 in [25]).

To demonstrate this we calculated both geometricMg and centralMc moments from first principal and then calculatedMc = GxMgGT
y and Mg = G−1

x Mc(GT
y )

−1
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Fig. 2. Conditions of some matrices of size r , 2 < r < 20: discretized powers Zx on [−2, 2] (green ∗), same shifted to centroid origin (blue ◦) and Pascal
Pr (red ×). Also ∥Mc∥ (cyan +) and ∥Mg∥ (mauve �). The centroid was [0.14, −0.0674]. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 3. Conditioning of the conversion between geometric and complexmoments. Relative errors in calculatingMc fromMg (blue ◦) and vice versa (green∗).
Also the error bound (cond(Gx) + cond(Gy))ε (red ×), ε is the machine precision. The magnitudes of ∥Mc∥ and ∥Mg∥, which divide the relative errors, can
be observed in Fig. 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

using (14) both ways. The relative errors

∥Mc − Mc∥

∥Mc∥
and

∥Mg − Mg∥

∥Mg∥

are shown in Fig. 3, together with their upper bound

(cond(Gx) + cond(Gy))ε

which, according to the theoremmentioned above, bounds the calculated relative errors of the solutions because ε = 10−16,
the machine precision, represents the relative error of the input.



J. Kautsky, J. Flusser / Journal of Computational and Applied Mathematics 306 (2016) 53–68 59

Note that it would be misleading to conclude here that the calculations have the same accuracy regardless of the size of
the systems—it is the relative accuracy we are observing here; the quantities we are calculating depend very much on the
size of the system as shown in Fig. 2 for comparison.

4.3. Complex moments

The Pascal triangle is hidden in (7) in two interlacing ways. We now need to characterize the linear transforms involved
in this transformation from geometric to complex moments.

Defining the sum of powers r = p+ q to be the order of the momentsmpq and cpq we see, from (7) and (8), that complex
moments of order r are fully determined by the geometric moments of order r and vice versa. This mapping is described in
the following lemma.

Lemma 4.1. Denote cr =

c0r c1r−1 · · · cr0

T the vector of complex moments of order r and similarly mr for geometric
moments. Then

cr = Armr (15)

where

Ar = DpmBrDpmDi.

Here Dpm = diag

1 −1 1 · · ·


, Di = diag


ir ir−1

· · · i0


and

(Br)pj =

min(p,j)
k=max(0,p+j−r)

(−1)k

p
k


r − p
j − k


.

Proof. In (7), shift j by −k, switch the order of summations and use q = r − p for p = 0, 1, . . . , r . �

Matrices Br have the same condition as Ar (the diagonal matricesDpm andDi are unitary) and are (unlike Ar ) real and have

a simpler sign pattern. For example, B0 = 1, B1 =


1 1
1 −1


,

B2 =

1 2 1
1 0 −1
1 −2 1


, B3 =

1 3 3 1
1 1 −1 −1
1 −1 −1 1
1 −3 3 −1

 ,

B4 =


1 4 6 4 1
1 2 0 −2 −1
1 0 −2 0 1
1 −2 0 2 −1
1 −4 6 −4 1


and so on. It is not difficult to observe that the first r rows of Br can be obtained from the rows of Br−1 by the same
summation rule as their first rows satisfy in the Pascal triangle. The last row of Br is just the first one with alternating
signs. So B0, B1, B2, . . . form a Pascal pyramid.

Numerical calculation shows that for larger r (greater than 6) we have
cond(Ar) = cond(Br) ≈ 0.588 · 100.287r ,

obtained by a least-square fit to the data. We suggest that this is an acceptable growth, particularly in comparison with the
condition of the Pascal triangle—see Fig. 4 to compare them. For example, cond(B20) ≈ 13 · 103 suggesting that in IEEE
double precision about 10 decimal places in the solution will be reliable.

To confirm these bounds on particular cases is not straightforward because exact results are not easily available. Calculat-
ing complex moments numerically involves, both in Cartesian or polar coordinates, the same powers causing inaccuracies.
Both geometric and complex moments were evaluated for a simple binary image (X shape rotated by 45°, see Fig. 5) using
explicit formulae and a high accuracy quadrature. It appears that the error of using (15) to calculate complexmoments from
the geometric ones is, in this case, in fact negligible.

5. Numerical instability of blur invariants

5.1. Background

Denote by w(t) =

1 t t2 · · · tn−1T the vector of standard powers and also recall (11), the lower triangular

Pascal matrix P with rows containing the binomial coefficients. The geometric moments

ν =

ν0 ν1 ν2 · · · νn−1

T
=


g(t)w(t)dt
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Fig. 4. Conditions of the Pascal matrix Pr (blue ◦) and of the layers of the Pascal pyramid Ar (green ∗). The smaller condition of the latter confirms the
reasonable stability of the transform between geometric and complex moments. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. Binary image ‘‘rotated X’’ for which the geometric and complex moments were calculated from first principles.

of the function

g(t) = (f ∗ h)(t) =


f (τ )h(t − τ)dτ

which is a convolution of functions f (t) and h(t) satisfy

M(µ)π = ν (16)

where

µ =


f (τ )w(τ )dτ and π =


h(τ )w(τ )dτ
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are the vectors of moments of the functions f and h, and the matrix

M(µ) =


µj−k


j − 1
k − 1

n

j,k=1
=


µ0 0 0

µ1 µ0 0
...

µ2 2µ1 µ0

· · ·
. . .

 = P. ∗ T (µ) (17)

is the Hadamard product of the Pascal matrix P and a lower triangular Toeplitz matrix T (µ) with first column µ.
Assume that n is even and denote by we(t) the vector of even powers, by wd(t) the vector of odd powers and similarly

for the vectors of moments. Consider now the linear system of n/2 equations in the unknown β(µ)

C(µe)β(µ) = µ0µd (18)
where the matrix

C(µe) =


µ2(j−k)


2j − 1
2k − 1

n/2

j,k=1
=


µ0 0 0

3µ2 µ0 0
...

5µ4 10µ2 µ0

· · ·
. . .

 = Pdd. ∗ T (µe)

is the Hadamard product of Pdd, the even numbered (that is, corresponding to odd powers) rows and columns of the Pascal
matrix P , and a lower triangular Toeplitz matrix T (µe) with first column µe. If the filter h(t) is symmetric (so that πd = 0)
it has been shown [23] that the solution β(µ) of (18) is the vector of blur invariants so that

β(µ) = β(ν)

for any symmetric PSF h(t). This can be also shown by a fairly straightforward matrix calculation from (16).
In [24] it was also shown how to derive similar results for moments with respect to any polynomial basis p(t) = Lw(t),

L a non-singular, usually lower triangular, matrix. Assuming the new basis is symmetric (L is checkerboard) and denoting
µ̃ = Lµ the moments with respect to the new basis (and similarly for ν̃, π̃), the equations determining the invariants
becomesC(µ̃e)β̃(µ̃) = µ̃0µ̃d (19)
whereC(µ̃e) = LddC(L−1

ee µ̃e).

5.2. A numerical instability observed

The blurring of the signal is assumed to be due to the convolution of the original signal with an unknown filter. This leads
to an algebraic relation between the digitized signals and filter which in turn gives a similar relation between the moments
of this data with respect to the chosen functional basis, (16) for geometric moments. The invariants are then obtained by
eliminating the moments of the unknown filter from this relation using some assumed property of the filter. Assuming its
symmetry, for example, leads to (17).

An instability has been observed in the following numerical experiments. For 1D signals, we calculated moments of two
rows of a digitized image and, to check the invariance of the solution of (17) we blurred them by three different filters (box,
hat and the second order B-spline). Having confirmed the invariance, we show the blur invariants in Fig. 6 in logarithmic
scale. The fact, that the values of higher order invariants steeply increase should be suspicious but, even so, we were able to
distinguish between the two signals. The higher order invariants are needed when we want to distinguish between signals
which have the same first few moments. What happens in such a situation is shown in Figs. 7 and 8—we see that when 8
moments coincide, resulting in the first four blur invariants being identical, the higher invariants are also not different. This
experiment was performed by combining low order moments of one signal with higher order moments of the other signal.

This problem is more serious than the growth mentioned above because it implies that the higher order moments, and
higher order invariants, do not contribute to the discriminative power of the blur invariants.

We also ran the experiment with orthogonal polynomials because they are known to resolve problems associated with
the powers basis. f The results are summarized in Fig. 9 where we show only the differences between blur invariants
with certain numbers of common low order moments. Note that the discriminative power has increased but not beyond
somewhere between invariants of order 8 and 12.

For reason discussed towards the end of Section 5.3 we performed yet another experiment. We used a basis of corrected
powers

wγ (t) =

1 t t2 + γ t3 t4 + γ · · ·

T (20)
for some constant γ . In Fig. 10 we see that this basis performs better than the orthogonal invariants in Fig. 9 but that im-
provement is limited, too.
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Fig. 6. Geometric blur invariants of two signals with all moments different. Blurred and original rows 12 and 44 of the 256 × 256 Lena image were used
as signal data. Their l2 norm difference was 858. Blurring by three different filters showed the invariance was less than 3.49e−10.

Fig. 7. Geometric blur invariants of two signals as in Fig. 6 but with first 4 moments equal; consequently, the first two invariants are equal as well.

For comparison, we show in Fig. 11 the blur invariants up to order 25 using real trigonometric (Fourier) ‘‘moments’’
(see Section 5.4 for definition and details). We observe that they are of reasonable magnitude and the change in higher
order moments is well captured by the invariants.

We can now formulate the following conclusions from these experiments.
(a) Calculation of blur invariants using a polynomial basis suffers from severe instability resulting in higher moments not

contributing to the ability to discriminate between signals with common lower order moments.
(b) For geometric moments this limitation starts at very low degree (moment order 8/invariants order 4).
(c) Although using an orthogonal basis improves things the same remedy is achieved by using corrected powers where a

constant is added to the even powers. This increases the discriminative power to moment order 20/invariants order 10,
probably more than necessary for practical purposes.

The suggested explicit limits are based on our particular experiments; they may slightly change depending on details of the
implementation but not significantly.
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Fig. 8. Geometric blur invariants of two signals with first 8 moments equal; invariants of order 5 and higher should differ but do not!.

Fig. 9. Difference between blur invariants of two signalswith same first 6 (red×), 15 (green+) and 24 (blue ◦) Legendre orthogonalmoments polynomials
(to control the logarithmic display small values are replaced by 10−25). Signals in which the first 24 moments are equal are not recognized as different.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The roots of this instability should, however, be properly investigated and understood. This is the aim of the next section.

5.3. Analysis of the numerical instability

To study the reasons for the ineffectiveness of the higher order invariants is difficult; to analyze the invariants as we
have no means, independent of solving (18), for obtaining correct results (a comment in passing, substituting into explicit
formulae for the invariants is numerically equivalent to solving the system, or possibly even worse).

However, when we use blur invariants, we are implicitly using the moments of the unknown filter the values of which
we can obtain independently. Therefore studying their evaluation should give us information about the blur invariants as
well. Thus, in the experiments where we know the filter and its moments we can compare what we are evaluating with the
exact results.
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Fig. 10. Difference between blur invariants of two signals as in Fig. 9 but using the extended powers. Signals in which the first 24 moments are equal are
recognized as different (only minor improvement).

Fig. 11. Blur invariants using trigonometric moments, two signals with the same first 25 moments. Higher order invariants are bounded and show the
difference well. Using three different filters the blur invariants differ by less than 3.49e−10.

In Fig. 12 we show the results of numerical calculations of the filter moments. Using the same quadrature as for the
moments of other signals results in the blue graph: the odd ordermoments are, because of the symmetry, theoretically zeros,
but computationally about 15 orders of magnitude smaller than the neighboring moments of even order. The other graphs
were obtained by solving the system (16) which depends on the moments of the original signal and with the right-hand
side generated by the moments of the blurred signal. The green graph used a wrong blurred signal, the purple the correct
one and the two in between used a blur signal with increasing number of equal moments to the original signal.

The critical observation is in the purple graph. Up to order 8 the nonzero (even)moments of the filter are calculated quite
accuratelywhile the accuracy of the oddmoments,which should be zero, gradually decreases. Furthermore, for orders higher
than 8, the calculated moments steadily increase and have no resemblance of the correct moment values. It is therefore not
surprising that the geometric blur invariants could not distinguish between two signals having the same first 8 moments.
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Fig. 12. Calculation of geometric moments of a known symmetric filter (blue ◦), by solving (16) with the correct r.h.s. (purple �). Also while using r.h.s.
with 6 (red ×) and 12 (cyan +) first moments as the original signal. Blurred and original rows 12 and 44 of the 256 × 256 Lena image were used as signal
data. Their l2 norm difference was 858. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 13. Same calculation of symmetric filter moments as in Fig. 12 but using Legendre orthogonal polynomial moments.

In Fig. 13 we show similar results using orthogonal instead of geometric moments. We see that there is an essential
improvement – the even (non-zero) filter moments are reasonably well evaluated up to order 22 rather than 8 – but then
the same instability creeps in.

The reason for the instability is explained by the following lemma, theoremand corollary, the proofs ofwhich are straight-
forward. First we need the following result which is essential as it replaces the Hadamard product in the definition ofM(µ)
by a straightforward multiplication of matrices.

Lemma 5.1. Let Df = diag((1, 1, 1/2!, 1/3!, . . . , 1/(n − 1)!)) be a diagonal matrix with the indicated elements, (.f is a
mnemonic for factorial). Then the matrices P and M(µ) can be factorized as

P = D−1
f T (Df 1)Df and M(µ) = D−1

f T (Df µ)Df .
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Fig. 14. Solutions of the reduced system (21) for geometric moments: calculated (green ∗) and exact (blue o). The slope of the spurious solution (red x)
is given by the maximal root of the polynomial determined by the rows of the system matrix (mean 0.289, st. dev. 0.00017) and fits the calculated zeros.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We can now formulate the main observation clarifying the problems of solving the system (16).

Theorem 5.2. The system (16) for evaluating the filter moments π is equivalent to solving

T (Df µ)z = Df ν and then π = D−1
f z. (21)

If the basis functions are reasonably normalized then the moments are bounded. Thus the elements of the right-hand
side, of the solution and also of the first column of the Toeplitz matrix of the system all decrease as 1/n! (the diagonal
elements in Df ), which is faster than any power. The higher order moments have limited influence on the result because
their contribution is scaled down by the factorial. The recovery of π from z , although trivial, is still numerically unstable.
Even worse, the higher order moments of the filter cannot be calculated at all because of the following result which thus
explains the observed instability.

Corollary 5.3. If µj = 0 for j > j0 then there exist a numerical solution π̃j to (16) which is approximately

π̃j = cσ j, c a constant,

where σ is the largest (in absolute value) root of the polynomial

j0
k=0


j0
k


µkσ

k. (22)

We have observed that the dominant root is almost independent of j0; see Fig. 14 for the fit of the spurious solution to the
calculated solution and also the standard deviation of the dominant root over the range of j0’s. The actual value of this root
depends on the signal but, due to the facts mentioned above, the spurious solution will always prevail over the desired one.

A similar analysis can be done for the evaluation of the blur invariants, that is the solution of (18). After scaling to a form
similar to (21), the rate of the decrease or growth of the spurious solution can be established and compared to the calculated
solution.

One question of interest to answer is why do orthogonal polynomials perform better than the standard powers?
Comparing Figs. 12 and 13 we observe that the spurious solution behaves similarly in both. On the other hand, the exact
values of the geometric moments of the filter decrease quickly while those for orthogonal moments are almost constant.
Thus the spurious (or parasitic) solution begins to dominate the correct values later, that is, only for higher order moments.
This lead us to introduce the ‘‘corrected powers’’ (20) by adding a constant to the even powers, as mentioned in Section 5.2.
This appears to suffice; orthogonal polynomials are not necessary to obtain a reasonable performance of blur invariants.

Note that the observed instability caused by a spurious solution of the forward process prevails whether we actually
solve (21) by forward elimination or by other means, such as a solver using pivoting. One exception might be, as in other
such situations, to run the elimination backwards; one estimates the tail of the solution, solves the intermediate equations
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and tries to fit the top end of the system. Such a shooting technique appears very insensitive for this problem and leads to no
improvement. This may be due to the presence of very small roots of the polynomial in (22) which generate rapidly growing
spurious solutions of the reversed process.

Finally, we investigated the possibility of exploiting the HRA (High Relative Accuracy) method of calculating with TN
(TotallyNonnegative)matrices [26,27]. Recall that a totally nonnegativematrix is amatrixwhoseminors are all nonnegative.
Although our lower triangular Pascal matrix is TN, the Toeplitz matrix in the critical system (21) is generally not. Numerical
tests showed that even if it is forced to be one, by an artificial choice of the moments, the HRA method still calculates the
spurious solution; its existence is not caused by the loss of relative accuracy.

5.4. Why are polynomials not convenient in the construction of blur invariants?

Another way to ask this question is: Why do Pascal triangles arise in this problem?
Let p(t) =


p1(t), p2(t), . . . , pn(t)

T be a vector of some basis functions. Evaluating moments of the blurred signal
g = f ∗ hwith respect to this functional basis leads to

ν =


g(x)p(x)dx =


f (t)h(x − t)p(x)dtdx =


f (t)h(x)p(x + t)dxdt.

To involve moments of f and h we need to break the p(x + t) to separate the dependence on x and t . Generally, we would
like to have

p(x + t) = M(p(t))p(x) (23)
where the matrixM(a) may or may not be linear in a,

M(a) =


ajMj

for some constant matrices Mj. Using powers w(t) for p(t) brings in the binomial coefficients of the Pascal triangle into
M(w(t)).

It appears that the only other functions with the property (23) are those based on exponentials;

p(t) =

1 sin t cos t sin 2t cos 2t · · ·

T
is a good symmetric/asymmetric real choice withM(p(t)) block diagonal. This basis was used in the calculations leading to
Fig. 11. The projections onto this basis should in fact not be called moments because the basis is not formed by polynomials.
This basis is closely related to the discrete Fourier transform and the moments are essentially the Fourier coefficients. The
property (23) implies thewell-known fact that the Fourier transform turns a convolution into a product. In signal processing,
this property is called Fourier Convolution Theorem. Blur invariants in the Fourier domain are then derived from the ratio of
a signal spectrum and its symmetric projection (see [22] for details). It is interesting to note that Fourier-domain invariants
and moment blur invariants are closely related via the Taylor expansion of the Fourier spectrum, as was discovered in [28]
and generalized in [22].

6. Conclusions

In this paper, we studied the influence of the Pascal triangle on the numerical evaluation of geometric moments and
their derived form—central moments, complex moments, and moment blur invariants. Although these moment functions
have been used extensively in signal and image analysis, this aspect has not been investigated before. We showed that
the Pascal-type matrices entering moment calculations are extremely badly conditioned. While in the case of central and
complex moments the impact on the numerical computation is almost negligible, in the case of blur invariants a spurious
solution appears which dominates the correct solution for higher orders. Since the blur invariants are typically used to
distinguish between two (blurred or non-blurred) signals, the consequence of our observation is that two signals are either
distinguishable by low-order invariants up to certain order ρ or are not distinguishable at all. This effect is observable
for any polynomial basis but the ρ depends on the particular choice of basis but not in any significant way on the signal
itself. While for the power basis this threshold is about ρ = 4, by introducing the ‘‘corrected powers’’ or orthogonal
polynomials we achieve higher threshold about ρ = 10 in both cases. This not only explains limited recognition power
of the invariants reported in the literature (see for instance [8] for some examples and other relevant references) but also
shows that introducing an orthogonal basis (whichmay be advantageous for other reasons)may here be replaced by a simple
modification of the power basis with the same results.

As a historical remark, we note that the instability explanation presented in this paper is an echo from the 1960s when
Dahlquist’s resolution of instabilities ofmulti-stepmethods for ODEs [29] has lead to a stable application of such algorithms.
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