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A B S T R A C T

Invariants to image scaling composed of Gaussian–Hermite moments are introduced in this paper for the first
time. To achieve the invariance, we propose to modulate the Gaussian–Hermite polynomial basis using variable
parameter σ, the value of which depends on the input image. The scaling invariance property can be coupled
with the rotation invariance presented earlier. This approach is applicable in 2D as well as in 3D and provides
very good numerical stability, as demonstrated by several experiments on real data.

1. Introduction

Image descriptors, which are invariant with respect to certain group
of coordinate transformations, have been a topic of much recent
research in image analysis. Moment invariants form probably the
largest class of such kind of features [1,2]. The research on moment
invariants has been focused into two main directions. The first one is
about looking for the ”best” (in some sense) polynomial basis, i.e. the
best set of moments the invariants are composed of. The criteria are
usually the numerical stability, discrimination power, and computing
complexity of the moments. The second direction is designing invar-
iants w.r.t. new transformation groups.

In the moment-related literature, we may find endless discussion
and a number of comparative experiments about what type of moments
provides the maximum separability of objects, maximum robustness,
and requires minimum computational time. Individual experiments
exhibit statistically insignificant results and/or contradict to experi-
ments presented by other authors. Apparently, there is no “optimal”
type of moments since the results depend substantially on the
particular data. Nevertheless, most authors agree that for practical
applications where the moments are supposed to be computed on mid-
size or large images, we should focus on orthogonal (OG) polynomials
and orthogonal moments. Comparing to geometric moments, which are
suitable for theoretic considerations because of their simplicity, OG
moments are numerically more stable.

Among various orthogonal moments [3–9], Gaussian–Hermite
(GH) moments play a special role. The GH polynomials and moments
were introduced into the image analysis area by Shen [10,11] and were
proved to be very robust w.r.t. additive noise comparing to other
common moments, which is a remarkable advantage [12,13]. They

were employed in several successful applications, such as in detection
of moving objects in a video [14], in licence plate recognition [15], in
image registration as landmark descriptors [16], in fingerprint classi-
fication [17], in face recognition [18,19], and as directional feature
extractors [20]. GH polynomials are orthogonal on a rectangular area,
which is suitable when working with digital images. The polynomials
orthogonal on a disk, such as Zernike, radial Chebyshev, and similar
polynomials, require polar resampling of the image, which not only
increases the computation time but also leads to the loss of precision.
Generally, it is difficult to construct rotation invariants, which are
important for object recognition, from moments orthogonal on a
rectangle (on the contrary, the moments orthogonal on a disk can be
made rotation-invariant easily). The GH moments are the only
moments orthogonal on a rectangle which offer a possibility of an easy
and efficient design of rotation invariants. This is guaranteed by the
Yang's Theorem, which holds in 2D [9,21,22] as well as in 3D [23].

The main drawback of using the GHmoments for object recognition
is a (somehow surprising) fact, that their invariance w.r.t. scaling has
not been discovered yet. In case of other common moments, the scaling
invariance can be achieved easily by normalizing the moments by an
object area or by a mean graylevel of the image. We show in the paper
why this approach fails in case of the GH moments.

In this paper, we present a novel method how to make the GH
moments invariant to image scaling. This idea works in an arbitrary
number of dimensions. The new normalized GH moments can be used
individually or can be substituted into the general formulas for rotation
GH invariants proposed in [22]. The substitution does not violate the
rotation invariance and yields rotation-scaling invariants. In this sense,
this paper can be viewed as a generalization of our recent work [9,22]
published in this journal.
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The paper is organized as follows. In the next section, we briefly
recall the basics about the GH polynomials and moments. We show in
Section 3 why the common approach to moment normalization w.r.t.
scaling cannot work for the GH moments. Section 4 presents the new
idea of designing scale invariants by variable modulation. In Section 5
we explain how to achieve simultaneous invariants to scaling, rotation
and contrast changes. Finally, in Section 6, we illustrate the perfor-
mance of the proposed invariants by experiments on real 2D and 3D
images.

2. Recalling Gaussian–Hermite polynomials and moments

Hermite polynomial of the n-th degree is defined as [24]
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The three-term recurrence relation, which is used for fast and stable
evaluation of Hn, is
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but it is not appropriate for numerical calculations.
Hermite polynomials are orthogonal on (−∞, ∞) with the weight
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If they were not modulated, they would have a high dynamic range and
poor localization, which would make them difficult to use directly for
image description. To overcome this, we modulate Hermite polyno-
mials with a Gaussian function and scale them. This normalization
yields Gaussian–Hermite polynomials
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which are not only orthogonal but also orthonormal
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As can be seen in Fig. 1, the GH polynomials have the range of
values inside (−1, 1). Even if they are formally defined on (−∞, ∞),
they are effectively localized in a small neighborhood of the origin
controlled by the parameter σ.

1D Gaussian–Hermite moment of order p of function f is defined as

∫η H x σ f x x= ( , ) ( )d .p p
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This definition can be readily extended into an arbitrary number of
dimensions N as
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3. Gaussian–Hermite moments under scaling

Let us investigate how the GH moments are transformed under
scaling x sx′ = , where s is a positive scaling factor. We show this in 1D
first. For the sake of simplicity, we work with the non-coefficient form
of GH polynomials
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and corresponding non-coefficient GH moments
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Dropping the multiplicative factor only violates the orthonormality but
has no impact on the design of the invariants.

The GH moments are transformed under scaling as
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It is not possible to eliminate the scaling factor from the argument of
Hp. In other words, we cannot express the moment after the scaling η ′p
in terms of the original moments η η,…, p0 . Let us recall that such
expression is the key to a successful design of the invariants. In case of
geometric moments
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it holds
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and the scaling factor can be cancelled by normalization m m/p
p

0
+1. The

same idea works for all common moments, but as we have seen it
cannot be applied to the GH moments.

4. Scale invariants of Gaussian–Hermite moments

The main difficulty in designing GH invariants to scaling arises
from the fact that the parameter σ is fixed. To overcome this, we need
to replace the constant σ in the definition of GH polynomials by
variable σ f( ), which depends on the function f the moments are
calculated of and which ”adapts” itself whenever f is scaled. Under the
scaling, it should be transformed as

σ f sσ f( ′) = ( ). (13)

There are many possible choices of such σ f( ). The simplest one (which
is also the most robust) is

σ f σ m( ) = ,0 0 (14)

where m0 is the zero-order moment of f and σ0 is a positive constant
which controls the modulation. This choice fulfills the requirement
(13).

Now let us show how the GH moments with this variable modula-
tion (we denote them η∼p) are transformed under scalingFig. 1. The graphs of the Gaussian–Hermite polynomials up to degree 6 with σ = 1.
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Considering that m sm′ =0 0, we define scale-invariant GH moments as

ν η m= /∼
p p 0 (16)

(the normalization with m0 is the simplest one among many other
possible normalizations).

The extension to N dimensions is easy thanks to the separability of
multidimensional GH polynomials. We assume uniform scaling
x sx′ =k k for all k N= 1,…, . If we set

σ f σ m( ) = ,0 00…0N (17)

we get the desirable relation
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Hence, the multidimensional GH moments are transformed under
scaling as
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As in 1D, the normalization

ν η m= /∼
p p p p, …, , …, 00…0N N1 1 (20)

yields invariants to scaling for any indexes p p,…, N1 .
In the proposed normalization, the only user-defined parameter is

σ0, which is an initialization parameter that is the same on all scales. Its
choice has nothing to do with the scaling invariance; the scale
normalization works well for any σ > 00 . The choice of σ0 influences
the modulation of Hermite polynomials and the suppression of
boundary regions of the image. There is no general criterion for an
optimal selection of σ0 and their recommended choice was derived
empirically. At the initial scale (i.e. for a database image) we have in the
2D case σ f σ m( ) = 0 00 and the choice of σ0 may be deduced from the
rules derived earlier for the choice of (fixed) σ f( ). An empirical rule
which optimizes the reconstruction abilities of the GH moments was
proposed in [16]. Since the invariants proposed in this paper should
serve for recognition rather than reconstruction of the image, we used a
simpler rule. The value of σ0 should be selected such that on the initial
scale σ m0 00 is between 0.3 and 1.5 multiple of the image size,
depending on how much we want to suppress the boundary regions.

5. Combining scale, rotation, and contrast invariants

For most of practical applications in 2D and 3D, the simultaneous
invariance w.r.t. scaling, rotation and translation is required.
Translation invariance is obvious and can be achieved easily just by
shifting the GH polynomials from the coordinate origin to the centroid
of the image. Invariants to rotation can be constructed due to the
Yang's Theorem (see [9,21] for its 2D version and [23] for the 3D
version with complete proofs). The theorem in 2D states that if there
exists a rotation invariant of geometric moments
I m m m( , ,…, )p q p q p qd d1 1 2 2 , the same function of the corresponding
Gaussian Hermite moments I η η η( , ,…, )p q p q p qd d1 1 2 2

is also a rotation
invariant. The statement is the same in 3D and holds both for the non-
coefficient as well as coefficient forms of the GH moments. Explicit
general forms of rotation invariants of arbitrary-order GH moments,
that were designed using the Yang's Theorem, can be found in [22].

The Yang's Theorem holds well even for the scale-normalized GH
moments νpq, because the normalization by m00, which itself is a
rotation invariant, does not violate the invariance property.
Substituting them into the formulas for rotation invariants, we obtain
invariants of the GH moments to scaling and rotation.

In some applications, additional invariance to contrast stretching
may be required. The underlaying model in 2D is

f x y cf x s y s′( , ) = ( / , / ). (21)

To eliminate the contrast parameter c from σ f( ), we choose

σ f σ m m m( ) = ( + )/0 20 02 00 (22)

(other choices using higher-order moments are also possible). Then it
holds σ f sσ f( ′) = ( ) and, consequently, η cs η

′
=∼ ∼

pq pq
2 . Normalization

with m00 leads to scale-contrast invariants, which can again be
substituted into the formulas of rotation invariants. The same can be
done in 3D with the setting

σ f σ m m m m( ) = ( + + )/ .0 200 020 002 000 (23)

6. Numerical experiments

The goal of the experiments is namely to demonstrate that the
variable modulation actually yields scale invariant GH moments, unlike
the constant modulation. We also show the possibility of coupling
scaling and rotation invariance together. We do not compare the scale-
invariant GH moments to geometric moments. Exhaustive tests of
numerical properties of the GH moments with constant modulation
and of their recognition and reconstruction power were already
performed in [22,23] and showed the superiority of the GH moments
over the geometric moments. Introducing the variable modulation does
not change these advantageous properties.

Fig. 2. Sample GH scale invariants v ν v ν= , = ,1 5,5 3 7,8 and v ν=6 11,12 calculated over

nine different image scales. They exhibit almost perfect invariance. The normalized
moments of the same indexes are denoted as v v′ , ′ ,1 3 and v′6. They change significantly as
the image has been scaled. Note that v v= ′k k if s=1.

Table 1
Relative errors of the scaling invariants (%).

v1 v3 v6

GH with σ f( ) 0.14 0.06 0.06

GH with fixed σ 146 223 133
ZM with mapping 0.17 0.42 0.28
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6.1. 2D images with artificial scaling

The first experiment was done on the image which was scaled
artificially by means of bilinear interpolation. Computer-generated
scaling allowed us to control the scaling parameter, to evaluate the
results quantitatively, and to eliminate any other unwanted factors. We
used the famous “Cameraman” 512×512 graylevel image at nine
different scales: 0.5, 0.8, 1.0, 1.2, 1.5, 1.7, 2.0, 2.3, and 2.5.

We calculated scale invariants ν η m= /∼
pq pq 00 with variable σ f( ),

which were defined in Eq. (20), up to the order 20. According to the
recommendation given in Section 4, we set σ = 0.00420 , which ensures

that the Gaussian function with σ f( ) reasonably covers the image. All
invariants νpq were perfectly stable over the whole range of scales, the
only errors were caused by resampling and numerical inaccuracies.
Most of the mean relative errors were far below 1%.

To illustrate that the variable σ f( ) actually makes a substantial
difference from the fixed σ, we repeated this experiment with normal-
ized moments η m/pq 00. To make the experiments comparable, we set
σ σ f= ( )1 , where f1 means the image at the original scale s=1 and σ f( )1
has been calculated in the first experiment. In the current experiment,
σ stays constant over all image scales. The normalized moments do not
exhibit any invariant property. They change significantly, yielding the

Fig. 3. The leaves used in the experiment: (a), (c), (d), (g), (h), (i), (j), (k), (l) Acer platanoides, (b), (e), (f), (m), (n), (o), (p) Juglans regia. The leaves (g)–(p) were scanned in the
resolution 300 dpi, (a), (b) 1200 dpi, (c), (e) 600 dpi and (d), (f) 150 dpi, respectively.
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mean relative errors over 100%. The behavior of three sample
invariants and three normalized moments with constant σ is shown
in Fig. 2; the relative errors can be seen in Table 1, lines one and two.

We repeated this experiment with five other well-known benchmark
images (Baboon, Barbara, Goldhill, Boat, Peppers, and Lena) with
exactly the same conclusions.

Finally, we compared the proposed GH invariants with scale-
invariant Zernike moments. Zernike moments (ZMs) [3] have become
very popular in image analysis and have found numerous applications.
Their main advantage comes from the fact that they are orthogonal on
a unit disk and their magnitude does not change under an image
rotation (the family of moments with this rotation property contains
several similar ”radial” moments such as Pseudo–Zernike, Fourier–

Mellin [25], Jacobi–Fourier [26–28], Chebyshev–Fourier [29], and
others). This property ensures a theoretically easy construction of
rotation invariants [5]. Zernike moments, as well as other radial
moments, are not inherently invariant to scaling. However, the image
must be mapped into the unit disk before the Zernike moments can be
calculated. This mapping implicitly provides the scaling invariance.
Using the same “Cameraman” image scaled as above, we calculated
Zernike moments and compared them to the corresponding GH
moments1 (see Table 1, line three). It can be observed, that the ZMs

Fig. 4. The leaves represented by rotation-scale GH invariants, Acer platanoides (red asterisk) and Juglans regia (blue circle). The magnitudes of the invariants are used for
visualization purposes. The separability of the two species is evident. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
paper.)

1 The correspondence between ZMs and GHs is not straightforward because the
second index of the Zernike moment expresses an angular repetition factor while both
indices of the GH moments are the degrees of the polynomials. Reasonable pairs to be
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actually exhibit the scaling invariance but their numerical accuracy is
slightly worse than that of the GH moments with variable σ f( ). The
main reason for this effect is that the calculation of ZMs requires image
resampling into polar coordinates. Although there exist alternative
algorithms that seemingly do not perform any resampling, they cannot
overcome the principle necessity of working in a polar raster which
always generates numerical errors. The errors induced by the polar

raster in ZM calculation were analyzed in detail by Pawlak in [30].
Another factor which could also contribute to the errors is that the
zeros of the GH polynomials are distributed more evenly than those of
the Zernike polynomials. This comparison shows the prominent
position of the GH moments, their orthogonality on a rectangular grid
yields very good numerical stability while the Yang's theorem and the
proposed variable normalization provide an easy construction of
rotation and scaling invariants.

Fig. 5. (a)–(f) Teddy bear No. 1 in six different scales and orientations, (g) Teddy bear No. 2.

(footnote continued)
compared are GHp q, and ZMp q p q+ , − .
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6.2. 2D images with real scaling and rotation

This experiment demonstrates the behavior of the invariants under
a real scaling coupled with real rotations. In addition to the invariance,
we also demonstrate the discriminability between two different shape
classes. The test images came from the MEW database [31], the largest
leaf database of Central European wood species which contains the
leaves of all domestic and most of the imported trees and shrubs
growing in the Central Europe (about 15,000 leaf items, representing
201 species).

The leaves of the same species often differ from each other
significantly by the size, shape, color and texture. Their images in the
database may have various orientation as the leaves were not scanned
in a normalized position, some of them were even scanned upside
down. The spatial resolution of the scanner varies as well. All these
variances should be covered by the invariant properties. Within-class
shape variations range from slight to significant. Of course, the
invariants cannot be perfectly stable w.r.t. these shape variations but
should exhibit certain degree of robustness. The goal of this experiment
is to study the within-class deviations of the GH scale-rotation
invariants. We do not aim to build up a new leaf recognition system
based on the GH moments. As explained in [32], a successful system
should combine features of various kinds together. We only want to test
the proposed GH scale invariants in a real environment.

We chose two sample classes, the Norway maple (Acer platanoides)
and the English walnut (Juglans regia), that actually contain leaves of
various shape, size, orientation, and scanner resolution (in Fig. 3,
subfigures (a), (c), (d), and (i) are different scans of the same leaf,
similarly as (b), (e), (f), and (m)). To remove color and texture
variations, we thresholded all leaves and worked with binary images
only. For each leaf we calculated scale-rotation GH invariants obtained
by substitution of scale invariants νpq (20) into the formulas of 2D
rotation invariants derived in [22]. Although the invariance is not
perfect, the two species are well separated in the feature space even if
we consider a few invariants only. One can see some examples of
subspaces of three invariants in Fig. 4. If we increase the dimension
and consider more invariants together, the separability further im-
proves.

6.3. 3D objects

Public databases of 3D shapes such as the Princeton Shape

Benchmark (PSB) [33] consist mostly of CAD models of simplified
objects, which are stored in a single scale and orientation. They seldom
contain images of real objects. The tests on noise-free ideal models, the
scaling of which would have to be generated artificially, are neither
challenging nor convincing. This is why we decided to perform the
experiment on real objects with actually different positions in the
space.

We scanned a teddy bear by means of the Kinect device. Then we
repeated this process five times with different orientations of the teddy
bear in the space. Hence, we obtained six complete scans differing from
each other by rotation and also slightly by scale and by quality of the
details. To increase the variation of size, we scaled the scans by the
factors 0.5, 0.8, 1.0, 1.3, 1.7, and 2.0, respectively (see Fig. 5(a)–(f)).
For a comparison we also scanned another teddy bear, which is similar
to the first one at the first sight but is actually of a different shape (see
Fig. 5(g)). The second teddy bear was scanned only once. We chose
teddy bears as test objects because their surface, covered by coat,
introduced random errors into the scanning process, which made the
experiment more challenging. The Kinect software produces a trian-
gulated representation of the object surface. To calculate the moments,
we converted each teddy bear figure into 3D volumetric representation.
The size at the largest scale was approximately 300 × 300 × 300 voxels.

To construct GH scale-rotation 3D invariants, we again used the
substitution principle. In 3D, however, the structure of the set of
rotation invariants is more rich than in 2D. There exist 1185
irreducible rotation invariants up to the order 16 constructed from
geometric moments (their complete list is available in [34], the relevant
theory can be best found in [2,35]). We substituted the scale invariants
νpqr with variable σ f( ) (20) into all of them and evaluated them on all
six instances of the Teddy bear No. 1. The relative error of the
invariants slightly increases as the moment order increases but in
most cases it has been kept in a reasonable interval, except 14
invariants, all others have relative error less than 6% (relative errors
of those 14 invariants are high because their absolute values are very
close to zero). The behavior of five sample invariants (we denote them
as Φ2, Φ3, Φ9, Φ11, and Φ14 to preserve the consistency with the paper
[23]) is shown in Fig. 6. We can see that the values of the invariants,
calculated on Teddy bear No. 1, stay almost perfectly constant over all
orientations and scales. Slight variations, leading to mean relative
errors from 0.2% to 0.6%, are caused by measurement errors when the
object has been scanned. We can also see that the values of Teddy bear
No. 2 are significantly different (except Φ14), which illustrates the
recognition power of the GH invariants.

7. Conclusion

In this paper we extended the theory of Gaussian–Hermite moment
invariants, which was introduced originally in [9,21–23] for rotation
and translation, also to scaling transformation. We showed the scaling
invariance cannot be achieved when using traditional definition of the
GH moments with a constant modulation. To overcome this, we
proposed the idea of a variable modulation by σ f( ). As proved
theoretically as well as by the experiments, this idea works in any
dimension and even allows to combine the scaling and rotation
invariance together. The main advantage of the proposed scale and
rotation-scale GH invariants is their numerical stability.
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