# 2D AND 3D IMAGE ANALYSIS BY MOMENTS

# 2D AND 3D IMAGE ANALYSIS BY MOMENTS

#### Jan Flusser, Tomáš Suk and Barbara Zitová

Institute of Information Theory and Automation, Czech Academy of Sciences, Prague, Czech Republic

### WILEY

This edition first published 2017 © 2017, John Wiley & Sons, Ltd

#### Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

MATLAB<sup>®</sup> is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB<sup>®</sup> software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB<sup>®</sup> software.

Library of Congress Cataloging-in-Publication data

Names: Flusser, Jan, author. | Suk, Tomáš, author. | Zitová, Barbara,

author.

Title: 2D and 3D image analysis by moments / Jan Flusser, Tomáš Suk, Barbara Zitová.

Description: Chichester, UK ; Hoboken, NJ : John Wiley & Sons, 2016. | Includes bibliographical references and index.

Identifiers: LCCN 2016026517| ISBN 9781119039358 (cloth) | ISBN 9781119039372 (Adobe PDF) | ISBN 9781119039365 (epub)

Subjects: LCSH: Image analysis. | Moment problems (Mathematics) | Invariants.

Classification: LCC TA1637 F58 2016 | DDC 621.36/7015159–dc23 LC record available at https://lccn.loc.gov/2016026517

Set in 10/12pt, TimesLTStd by SPi Global, Chennai, India.

 $10\ 9\ 8\ 7\ 6\ 5\ 4\ 3\ 2\ 1$ 

To my wife, Vlasta, my sons, Michal and Martin, and my daughters, Jana and Veronika.

Jan Flusser

To my wife, Lenka, my daughter, Hana, and my son, Ondřej.

Tomáš Suk

To my husband, Pavel, my sons, Janek and Jakub, and my daughter, Babetka.

Barbara Zitová

# Contents

| Preface |                                |                                       | xvii |
|---------|--------------------------------|---------------------------------------|------|
| Ackı    | nowledge                       | ements                                | xxi  |
| 1       | Motiv                          | ation                                 | 1    |
| 1.1     | Image                          | analysis by computers                 | 1    |
| 1.2     | Humai                          | ns, computers, and object recognition | 4    |
| 1.3     | Outlin                         | e of the book                         | 5    |
|         | Refere                         | ences                                 | 7    |
| 2       | Introd                         | luction to Object Recognition         | 8    |
| 2.1     | Featur                         | re space                              | 8    |
|         | 2.1.1                          | Metric spaces and norms               | 9    |
|         | 2.1.2                          | Equivalence and partition             | 11   |
|         | 2.1.3                          | Invariants                            | 12   |
|         | 2.1.4                          | Covariants                            | 14   |
|         | 2.1.5                          | Invariant-less approaches             | 15   |
| 2.2     | Categories of the invariants   |                                       | 15   |
|         | 2.2.1                          | Simple shape features                 | 16   |
|         | 2.2.2                          | Complete visual features              | 18   |
|         | 2.2.3                          | Transformation coefficient features   | 20   |
|         | 2.2.4                          | Textural features                     | 21   |
|         | 2.2.5                          | Wavelet-based features                | 23   |
|         | 2.2.6                          | Differential invariants               | 24   |
|         | 2.2.7                          | Point set invariants                  | 25   |
|         | 2.2.8                          | Moment invariants                     | 26   |
| 2.3     | Classit                        | fiers                                 | 27   |
|         | 2.3.1                          | Nearest-neighbor classifiers          | 28   |
|         | 2.3.2                          | Support vector machines               | 31   |
|         | 2.3.3                          | Neural network classifiers            | 32   |
|         | 2.3.4                          | Bayesian classifier                   | 34   |
|         | 2.3.5                          | Decision trees                        | 35   |
|         | 2.3.6                          | Unsupervised classification           | 36   |
| 2.4     | Performance of the classifiers |                                       | 37   |

|      | 2.4.1                                      | Measuring the classifier performance                        | 37  |
|------|--------------------------------------------|-------------------------------------------------------------|-----|
|      | 2.4.2                                      | Fusing classifiers                                          | 38  |
|      | 2.4.3                                      | Reduction of the feature space dimensionality               | 38  |
| 2.5  | Conclu                                     | ision                                                       | 40  |
|      | Refere                                     | nces                                                        | 41  |
| 3    | 2D Mo                                      | oment Invariants to Translation, Rotation, and Scaling      | 45  |
| 3.1  | Introdu                                    | uction                                                      | 45  |
|      | 3.1.1                                      | Mathematical preliminaries                                  | 45  |
|      | 3.1.2                                      | Moments                                                     | 47  |
|      | 3.1.3                                      | Geometric moments in 2D                                     | 48  |
|      | 3.1.4                                      | Other moments                                               | 49  |
| 3.2  | TRS ir                                     | nvariants from geometric moments                            | 50  |
|      | 3.2.1                                      | Invariants to translation                                   | 50  |
|      | 3.2.2                                      | Invariants to uniform scaling                               | 51  |
|      | 3.2.3                                      | Invariants to non-uniform scaling                           | 52  |
|      | 3.2.4                                      | Traditional invariants to rotation                          | 54  |
| 3.3  | Rotatio                                    | on invariants using circular moments                        | 56  |
| 3.4  | Rotatio                                    | on invariants from complex moments                          | 57  |
|      | 3.4.1                                      | Complex moments                                             | 57  |
|      | 3.4.2                                      | Construction of rotation invariants                         | 58  |
|      | 3.4.3                                      | Construction of the basis                                   | 59  |
|      | 3.4.4                                      | Basis of the invariants of the second and third orders      | 62  |
|      | 3.4.5                                      | Relationship to the Hu invariants                           | 63  |
| 3.5  | Pseudo                                     | binvariants                                                 | 67  |
| 3.6  | Combi                                      | ned invariants to TRS and contrast stretching               | 68  |
| 3.7  | Rotatio                                    | on invariants for recognition of symmetric objects          | 69  |
|      | 3.7.1                                      | Logo recognition                                            | 75  |
|      | 3.7.2                                      | Recognition of shapes with different fold numbers           | 75  |
|      | 3.7.3                                      | Experiment with a baby toy                                  | 77  |
| 3.8  | Rotatio                                    | on invariants via image normalization                       | 81  |
| 3.9  | Mome                                       | nt invariants of vector fields                              | 86  |
| 3.10 | Conclusion                                 |                                                             | 92  |
|      | Refere                                     | nces                                                        | 92  |
| 4    | 3D Mo                                      | oment Invariants to Translation, Rotation, and Scaling      | 95  |
| 4.1  | Introdu                                    | uction                                                      | 95  |
| 4.2  | Mathe                                      | matical description of the 3D rotation                      | 98  |
| 4.3  | Transl                                     | ation and scaling invariance of 3D geometric moments        | 100 |
| 4.4  | 3D rotation invariants by means of tensors |                                                             | 101 |
|      | 4.4.1                                      | Tensors                                                     | 101 |
|      | 4.4.2                                      | Rotation invariants                                         | 102 |
|      | 4.4.3                                      | Graph representation of the invariants                      | 103 |
|      | 4.4.4                                      | The number of the independent invariants                    | 104 |
|      | 4.4.5                                      | Possible dependencies among the invariants                  | 105 |
|      | 4.4.6                                      | Automatic generation of the invariants by the tensor method | 106 |

| 4.5  | Rotatio                      | on invariants from 3D complex moments                              | 108 |
|------|------------------------------|--------------------------------------------------------------------|-----|
|      | 4.5.1                        | Translation and scaling invariance of 3D complex moments           | 112 |
|      | 4.5.2                        | Invariants to rotation by means of the group representation theory | 112 |
|      | 4.5.3                        | Construction of the rotation invariants                            | 115 |
|      | 4.5.4                        | Automated generation of the invariants                             | 117 |
|      | 4.5.5                        | Elimination of the reducible invariants                            | 118 |
|      | 4.5.6                        | The irreducible invariants                                         | 118 |
| 4.6  | 3D tra                       | nslation, rotation, and scale invariants via normalization         | 119 |
|      | 4.6.1                        | Rotation normalization by geometric moments                        | 120 |
|      | 4.6.2                        | Rotation normalization by complex moments                          | 123 |
| 4.7  | Invaria                      | ints of symmetric objects                                          | 124 |
|      | 4.7.1                        | Rotation and reflection symmetry in 3D                             | 124 |
|      | 4.7.2                        | The influence of symmetry on 3D complex moments                    | 128 |
|      | 4.7.3                        | Dependencies among the invariants due to symmetry                  | 130 |
| 4.8  | Invaria                      | ants of 3D vector fields                                           | 131 |
| 4.9  | Numer                        | rical experiments                                                  | 131 |
|      | 4.9.1                        | Implementation details                                             | 131 |
|      | 4.9.2                        | Experiment with archeological findings                             | 133 |
|      | 4.9.3                        | Recognition of generic classes                                     | 135 |
|      | 4.9.4                        | Submarine recognition – robustness to noise test                   | 137 |
|      | 4.9.5                        | Teddy bears – the experiment on real data                          | 141 |
|      | 4.9.6                        | Artificial symmetric bodies                                        | 142 |
|      | 4.9.7                        | Symmetric objects from the Princeton Shape Benchmark               | 143 |
| 4.10 | Conclusion                   |                                                                    | 147 |
|      | Appendix 4.A                 |                                                                    | 148 |
|      | Appendix 4.B                 |                                                                    | 156 |
|      | Appendix 4.C                 |                                                                    | 158 |
|      | Refere                       | nces                                                               | 160 |
| 5    | Affine                       | Moment Invariants in 2D and 3D                                     | 163 |
| 5.1  | Introdu                      | uction                                                             | 163 |
|      | 5.1.1                        | 2D projective imaging of 3D world                                  | 164 |
|      | 5.1.2                        | Projective moment invariants                                       | 165 |
|      | 5.1.3                        | Affine transformation                                              | 167 |
|      | 5.1.4                        | 2D Affine moment invariants – the history                          | 168 |
| 5.2  | AMIs                         | derived from the Fundamental theorem                               | 170 |
| 5.3  | AMIs                         | generated by graphs                                                | 171 |
|      | 5.3.1                        | The basic concept                                                  | 172 |
|      | 5.3.2                        | Representing the AMIs by graphs                                    | 173 |
|      | 5.3.3                        | Automatic generation of the invariants by the graph method         | 173 |
|      | 5.3.4                        | Independence of the AMIs                                           | 174 |
|      | 5.3.5                        | The AMIs and tensors                                               | 180 |
| 5.4  | AMIs via image normalization |                                                                    |     |
|      | 5.4.1                        | Decomposition of the affine transformation                         | 182 |
|      | 5.4.2                        | Relation between the normalized moments and the AMIs               | 185 |
|      | 5.4.3                        | Violation of stability                                             | 186 |

|      | 5.4.4                       | Affine invariants via half normalization            | 187 |
|------|-----------------------------|-----------------------------------------------------|-----|
|      | 5.4.5                       | Affine invariants from complex moments              | 187 |
| 5.5  | The me                      | ethod of the transvectants                          | 190 |
| 5.6  | Derivat                     | tion of the AMIs from the Cayley-Aronhold equation  | 195 |
|      | 5.6.1                       | Manual solution                                     | 195 |
|      | 5.6.2                       | Automatic solution                                  | 198 |
| 5.7  | Numer                       | ical experiments                                    | 201 |
|      | 5.7.1                       | Invariance and robustness of the AMIs               | 201 |
|      | 5.7.2                       | Digit recognition                                   | 201 |
|      | 5.7.3                       | Recognition of symmetric patterns                   | 204 |
|      | 5.7.4                       | The children's mosaic                               | 208 |
|      | 5.7.5                       | Scrabble tiles recognition                          | 210 |
| 5.8  | Affine                      | invariants of color images                          | 214 |
|      | 5.8.1                       | Recognition of color pictures                       | 217 |
| 5.9  | Affine                      | invariants of 2D vector fields                      | 218 |
| 5.10 | 3D affi                     | ne moment invariants                                | 221 |
|      | 5.10.1                      | The method of geometric primitives                  | 222 |
|      | 5.10.2                      | Normalized moments in 3D                            | 224 |
|      | 5.10.3                      | Cayley-Aronhold equation in 3D                      | 225 |
| 5.11 | Beyond                      | d invariants                                        | 225 |
|      | 5.11.1                      | Invariant distance measure between images           | 225 |
|      | 5.11.2                      | Moment matching                                     | 227 |
|      | 5.11.3                      | Object recognition as a minimization problem        | 229 |
|      | 5.11.4                      | Numerical experiments                               | 229 |
| 5.12 | Conclu                      | sion                                                | 231 |
|      | Append                      | dix 5.A                                             | 232 |
|      | Append                      | dix 5.B                                             | 233 |
|      | Referen                     | nces                                                | 234 |
| 6    | Invaria                     | ants to Image Blurring                              | 237 |
| 6.1  | Introdu                     | lection                                             | 237 |
|      | 6.1.1                       | Image blurring – the sources and modeling           | 237 |
|      | 6.1.2                       | The need for blur invariants                        | 239 |
|      | 6.1.3                       | State of the art of blur invariants                 | 239 |
|      | 6.1.4                       | The chapter outline                                 | 246 |
| 6.2  | An intu                     | itive approach to blur invariants                   | 247 |
| 6.3  | Project                     | ion operators and blur invariants in Fourier domain | 249 |
| 6.4  | Blur in                     | variants from image moments                         | 252 |
| 6.5  | Invaria                     | nts to centrosymmetric blur                         | 254 |
| 6.6  | Invaria                     | nts to circular blur                                | 256 |
| 6.7  | Invaria                     | nts to N-FRS blur                                   | 259 |
| 6.8  | Invaria                     | nts to dihedral blur                                | 265 |
| 6.9  | Invaria                     | nts to directional blur                             | 269 |
| 6.10 | Invariants to Gaussian blur |                                                     | 272 |
|      | 6.10.1                      | 1D Gaussian blur invariants                         | 274 |
|      | 6.10.2                      | Multidimensional Gaussian blur invariants           | 278 |

|      | 6.10.3 2D Gaussian blur invariants from complex moments                                      | 279        |  |
|------|----------------------------------------------------------------------------------------------|------------|--|
| 6.11 | Invariants to other blurs                                                                    | 280        |  |
| 6.12 | Combined invariants to blur and spatial transformations                                      | 282        |  |
|      | 6.12.1 Invariants to blur and rotation                                                       | 282        |  |
|      | 6.12.2 Invariants to blur and affine transformation                                          | 283        |  |
| 6.13 | Computational issues                                                                         | 284        |  |
| 6.14 | Experiments with blur invariants                                                             | 285        |  |
|      | 6.14.1 A simple test of blur invariance property                                             | 285        |  |
|      | 6.14.2 Template matching in satellite images                                                 | 286        |  |
|      | 6.14.3 Template matching in outdoor images                                                   | 291        |  |
|      | 6.14.4 Template matching in astronomical images                                              | 291        |  |
|      | 6.14.5 Face recognition on blurred and noisy photographs                                     | 292        |  |
|      | 6.14.6 Traffic sign recognition                                                              | 294        |  |
| 6.15 | Conclusion                                                                                   | 302        |  |
|      | Appendix 6.A                                                                                 | 303        |  |
|      | Appendix 6.B                                                                                 | 304        |  |
|      | Appendix 6.C                                                                                 | 306        |  |
|      | Appendix 6.D                                                                                 | 308        |  |
|      | Appendix 6 E                                                                                 |            |  |
|      | Appendix 6 F                                                                                 |            |  |
|      | Appendix 6 G                                                                                 |            |  |
|      | References                                                                                   |            |  |
|      |                                                                                              | 010        |  |
| 7    | 2D and 3D Orthogonal Moments                                                                 | 320        |  |
| 7.1  | Introduction                                                                                 | 320        |  |
| 7.2  | 2D moments orthogonal on a square                                                            |            |  |
|      | 7.2.1 Hypergeometric functions                                                               | 323        |  |
|      | 7.2.2 Legendre moments                                                                       | 324        |  |
|      | 7.2.3 Chebyshev moments                                                                      | 327        |  |
|      | 7.2.4 Gaussian-Hermite moments                                                               | 331        |  |
|      | 7.2.5 Other moments orthogonal on a square                                                   | 334        |  |
|      | 7.2.6 Orthogonal moments of a discrete variable                                              | 338        |  |
|      | 7.2.7 Rotation invariants from moments orthogonal on a square                                | 348        |  |
| 7.3  | 2D moments orthogonal on a disk                                                              |            |  |
| , 10 | 7.3.1 Zernike and Pseudo-Zernike moments                                                     | 352        |  |
|      | 7.3.2 Fourier-Mellin moments                                                                 | 358        |  |
|      | 7.3.3 Other moments orthogonal on a disk                                                     | 361        |  |
| 74   | Object recognition by Zernike moments                                                        | 363        |  |
| 75   | Image reconstruction from moments                                                            |            |  |
| 1.0  | 7.5.1 Reconstruction by direct calculation                                                   | 367        |  |
|      | 7.5.1 Reconstruction by direct curculation<br>7.5.2 Reconstruction in the Fourier domain     | 369        |  |
|      | 7.5.2 Reconstruction from orthogonal moments                                                 | 370        |  |
|      | 754 Reconstruction from noisy data                                                           | 370        |  |
|      | $7.5.7$ Acconstruction from $\Omega G$ moments with a reconstruction from $\Omega G$ moments | 272        |  |
| 76   | 3D orthogonal moments                                                                        | 575<br>273 |  |
| 1.0  | 76.1  3D moments orthogonal on a cube                                                        | 380        |  |
|      |                                                                                              |            |  |

|     | 7.6.2               | 3D moments orthogonal on a sphere                               | 381 |
|-----|---------------------|-----------------------------------------------------------------|-----|
|     | 7.6.3               | 3D moments orthogonal on a cylinder                             | 383 |
|     | 7.6.4               | Object recognition of 3D objects by orthogonal moments          | 383 |
|     | 7.6.5               | Object reconstruction from 3D moments                           | 387 |
| 7.7 | Conclu              | ision                                                           | 389 |
|     | Referen             | nces                                                            | 389 |
| 8   | Algori              | thms for Moment Computation                                     | 398 |
| 8.1 | Introdu             | lection                                                         | 398 |
| 8.2 | Digital             | image and its moments                                           | 399 |
|     | 8.2.1               | Digital image                                                   | 399 |
|     | 8.2.2               | Discrete moments                                                | 400 |
| 8.3 | Momen               | nts of binary images                                            | 402 |
|     | 8.3.1               | Moments of a rectangle                                          | 402 |
|     | 8.3.2               | Moments of a general-shaped binary object                       | 403 |
| 8.4 | Bounda              | ary-based methods for binary images                             | 404 |
|     | 8.4.1               | The methods based on Green's theorem                            | 404 |
|     | 8.4.2               | The methods based on boundary approximations                    | 406 |
|     | 8.4.3               | Boundary-based methods for 3D objects                           | 407 |
| 8.5 | Decom               | position methods for binary images                              | 410 |
|     | 8.5.1               | The "delta" method                                              | 412 |
|     | 8.5.2               | Quadtree decomposition                                          | 413 |
|     | 8.5.3               | Morphological decomposition                                     | 415 |
|     | 8.5.4               | Graph-based decomposition                                       | 416 |
|     | 8.5.5               | Computing binary OG moments by means of decomposition methods   | 420 |
|     | 8.5.6               | Experimental comparison of decomposition methods                | 422 |
|     | 8.5.7               | 3D decomposition methods                                        | 423 |
| 8.6 | Geome               | tric moments of graylevel images                                | 428 |
|     | 8.6.1               | Intensity slicing                                               | 429 |
|     | 8.6.2               | Bit slicing                                                     | 430 |
|     | 8.6.3               | Approximation methods                                           | 433 |
| 8.7 | Orthog              | onal moments of graylevel images                                | 435 |
|     | 8.7.1               | Recurrent relations for moments orthogonal on a square          | 435 |
|     | 8.7.2               | Recurrent relations for moments orthogonal on a disk            | 436 |
|     | 8.7.3               | Other methods                                                   | 438 |
| 8.8 | Conclu              | ision                                                           | 440 |
|     | Append              | dix 8.A                                                         | 441 |
|     | Referen             | nces                                                            | 443 |
| 9   | Applic              | ations                                                          | 448 |
| 9.1 | Introdu             | iction                                                          | 448 |
| 9.2 | Image understanding |                                                                 | 448 |
|     | 9.2.1               | Recognition of animals                                          | 449 |
|     | 9.2.2               | Face and other human parts recognition                          | 450 |
|     | 9.2.3               | Character and logo recognition                                  | 453 |
|     | 9.2.4               | Recognition of vegetation and of microscopic natural structures | 454 |

|      | 9.2.5 Traffic-related recognition                           | 455 |  |
|------|-------------------------------------------------------------|-----|--|
|      | 9.2.6 Industrial recognition                                | 456 |  |
|      | 9.2.7 Miscellaneous applications                            | 457 |  |
| 9.3  | Image registration                                          | 459 |  |
|      | 9.3.1 Landmark-based registration                           | 460 |  |
|      | 9.3.2 Landmark-free registration methods                    | 467 |  |
| 9.4  | Robot and autonomous vehicle navigation and visual servoing | 470 |  |
| 9.5  | Focus and image quality measure                             | 474 |  |
| 9.6  | Image retrieval                                             | 476 |  |
| 9.7  | Watermarking                                                | 481 |  |
| 9.8  | Medical imaging                                             | 486 |  |
| 9.9  | Forensic applications                                       |     |  |
| 9.10 | Miscellaneous applications                                  |     |  |
|      | 9.10.1 Noise resistant optical flow estimation              | 496 |  |
|      | 9.10.2 Edge detection                                       | 497 |  |
|      | 9.10.3 Description of solar flares                          | 498 |  |
|      | 9.10.4 Gas-liquid flow categorization                       | 499 |  |
|      | 9.10.5 3D object visualization                              | 500 |  |
|      | 9.10.6 Object tracking                                      | 500 |  |
| 9.11 | Conclusion                                                  | 501 |  |
|      | References                                                  | 501 |  |
| 10   | Conclusion                                                  | 518 |  |
| 10.1 | Summary of the book                                         | 518 |  |
| 10.2 | Pros and cons of moment invariants                          | 519 |  |
| 10.3 | Outlook to the future                                       | 520 |  |

#### Index

521

### Preface

Seven years ago we published our first monograph on moments and their applications in image recognition: J. Flusser, T. Suk, and B. Zitová, *Moments and Moment Invariants in Pattern Recognition*, Wiley, 2009.

That book (referred to as MMIPR) was motivated by the need for a monograph covering theoretical aspects of moments and moment invariants and their relationship to practical image recognition problems. Long before 2009, object recognition had become an established discipline inside image analysis. Moments and moment invariants, introduced to the image analysis community in the early 1960s, have played a very important role as features in invariant recognition. Nevertheless, such a book had not been available before 2009<sup>1</sup>.

The development of moment invariants after 2009 was even more rapid than before. In SCOPUS, which is probably the most widely-used publication database, we have received 16,000 search results as the response to the "image moment" keyword and 6,000 results of the "moment invariants" search<sup>2</sup>. There has been an overlap of about 2,000 papers, which results in 20,000 relevant papers in total. This huge number of entries illustrates how a large and important area of computer science has been formed by the methods based on image moments. In Figure 1 we can observe the development in time. A relatively slow growth in the last century was followed by a rapid increase of the number of publications in 2009–2010 (we believe that the appearance of MMIPR at least slightly contributed to the growing interest in moment invariants). Since then, the annual number of publications has slightly fluctuated, reaching another local maximum in 2014. In 2014, a new multi-authored book edited by G. A. Papakostas<sup>3</sup> appeared on the market. Although the editor did a very good job, this book suffers from a common weakness of multi-authored books - the topics of individual chapters had been selected by their authors according to their interest, which made some areas overstressed, while some others, remained unmentioned despite their importance. The Papakostas book reflects recent developments in some areas but can hardly be used as a course textbook.

<sup>&</sup>lt;sup>1</sup> The very first moment-focused book by R. Mukundan and K. R. Ramakrishnan, *Moment Functions in Image Analysis*, World Scientific, 1998, is just a short introduction to this field. The second book by M. Pawlak, *Image Analysis by Moments: Reconstruction and Computational Aspects*, Wroclaw, Poland, 2006, is focused narrowly on numerical aspects of image moments, without providing a broader context of invariant image recognition and of practical applications.

<sup>&</sup>lt;sup>2</sup> The search was performed within the title and abstract of the papers.

<sup>&</sup>lt;sup>3</sup> G. A. Papakostas ed., Moments and Moment Invariants – Theory and Applications, Science Gate Publishing, 2014.



Figure 1 The number of moment-related publications as found in SCOPUS.

The great number of publications that have appeared since 2009 led us to the idea of writing a new, more comprehensive book on this topic. The abundant positive feedback we have received from the MMIPR readers and from our students was another factor which has strengthened our intentions. In 2014, the MMIPR was even translated into Chinese<sup>4</sup>.

The main goal of the book you are now holding in your hands is to be a comprehensive monograph covering the current state of the art of moment-based image analysis and presenting the latest developments in this field in a consistent form. In this book, the reader will find a survey of all important theoretical results as well as a description of how to use them in practical image analysis tasks. In particular, our aims were

- To review the development of moments and moment invariants after 2009;
- To cover the area of 3D moments and invariants, which were mostly omitted in the MMIPR but have become important in the last few years;
- To present some of the latest unpublished results, especially in the field of blur invariants; and
- To provide readers with an introduction to a broader context, showing the role of the moments in image analysis and recognition and reviewing other relevant areas and approaches.

At the same time, we aimed to write a self-contained book. This led us to the decision (with the kind permission of Wiley) to include also the core parts of the MMIPR, of course in enhanced and extended/up-to-date form. Attentive readers may realize that about one half of this book was already treated in the MMIPR in some form, while the other half is original. In particular, Chapters 1, 2, 4, and 6 are completely or mostly original. Chapters 7, 8, 9, and 10 are substantially extended versions of their ancestors in the MMIPR, and Chapters 3 and 5 were adopted from the MMIPR after minor updates.

<sup>&</sup>lt;sup>4</sup> Published by John Wiley & Univ. of Science and Technology of China Press, see http://library.utia.cas

<sup>.</sup>cz/separaty/2015/ZOI/flusser-0444327-cover.jpg.

The book is based on our deep experience with moments and moment invariants gained from twenty-five years of research in this area, from teaching graduate courses on moment invariants and related fields at the Czech Technical University and at the Charles University, Prague, Czech Republic, and from presenting several tutorials on moments at major international conferences.

The target readership includes academic researchers and R&D engineers from all application areas who need to recognize 2D and 3D objects extracted from binary/graylevel/color images and who look for invariant and robust object descriptors, as well as specialists in moment-based image analysis interested in a new development on this field. Last but not least, the book is also intended for university lecturers and graduate students of image analysis and pattern recognition. It can be used as textbook for advanced graduate courses on Invariant Pattern Recognition. The first two chapters can be even utilized as supplementary reading to undergraduate courses on Pattern Recognition and Image Analysis.

We created an accompanying website at http://zoi.utia.cas.cz/moment\_ invariants2 containing selected Matlab codes, the complete lists of the invariants, the slides for those who wish to use this book for educational purposes, and Errata (if any). This website is free for the book readers (the password can be found in the book) and is going to be regularly updated.

## Authors' biographies



**Prof. Jan Flusser, PhD, DrSc**, received the MSc degree in mathematical engineering from the Czech Technical University, Prague, Czech Republic, in 1985, the PhD degree in computer science from the Czechoslovak Academy of Sciences in 1990, and the DrSc degree in technical cybernetics in 2001. Since 1985 he has been with the Institute of Information Theory and Automation, Czech Academy of Sciences, Prague. In 1995–2007, he held the position of head of Department of Image Processing. Since 2007 he has been a Director of the Institute. He is a full professor of computer science at the Czech Technical University, Faculty of Nuclear Science and Physical Engineering, and at the Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic, where he

gives undergraduate and graduate courses on Digital Image Processing, Pattern Recognition, and Moment Invariants and Wavelets. Jan Flusser's research interests cover moments and moment invariants, image registration, image fusion, multichannel blind deconvolution, and super-resolution imaging. He has authored and coauthored more than 200 research publications in these areas, including the monograph *Moments and Moment Invariants in Pattern Recognition* (Wiley, 2009), approximately 60 journal papers, and 20 tutorials and invited/keynote talks at major conferences (ICIP'05, ICCS'06, COMPSTAT'06, ICIP'07, DICTA'07, EUSIPCO'07, CVPR'08, CGIM'08, FUSION'08, SPPRA'09, SCIA'09, ICIP'09, CGIM'10, AIA'14, and CI'15). His publications have received about approximately 1000 citations.

In 2007 Jan Flusser received the Award of the Chairman of the Czech Science Foundation for the best research project and won the Prize of the Czech Academy of Sciences for his contribution to image fusion theory. In 2010, he was awarded the SCOPUS 1000 Award presented by Elsevier. He received the Felber Medal of the Czech Technical University for excellent contribution to research and education in 2015. Personal webpage: http://www.utia.cas.cz/people/flusser



**Tomáš Suk, PhD**, received the MSc degree in technical cybernetics from the Czech Technical University, Prague, Czech Republic, in 1987 and the PhD degree in computer science from the Czechoslovak Academy of Sciences in 1992. Since 1992 he has been a research fellow with the Institute of Information Theory and Automation, Czech Academy of Sciences, Prague. His research interests include invariant features, moment and point-based invariants, color spaces, geometric transformations, and applications in botany, remote sensing, astronomy, medicine, and computer vision.

Tomáš Suk has authored and coauthored more than thirty journal papers and fifty conference papers in these areas, including tutorials on moment invariants held at the conferences ICIP'07 and

SPPRA'09. He also coauthored the monograph *Moments and Moment Invariants in Pattern Recognition* (Wiley, 2009). His publications have received about approximately citations. In 2002 he received the Otto Wichterle Premium of the Czech Academy of Sciences for young scientists. Personal webpage: http://zoi.utia.cas.cz/suk



**Barbara Zitová, PhD**, received the MSc degree in computer science from the Charles University, Prague, Czech Republic, in 1995 and the Ph.D degree in software systems from the Charles University, Prague, Czech Republic, in 2000. Since 1995, she has been with the Institute of Information Theory and Automation, Czech Academy of Sciences, Prague. Since 2008 she has been the head of Department of Image Processing. She gives undergraduate and graduate courses on Digital Image Processing and Wavelets in Image Processing at the Czech Technical University and at the Charles University, Prague, Czech Republic. Barbara Zitová's research interests include geometric invariants, image enhancement, image registration, image fusion, and image processing in medical and in cultural

heritage applications. She has authored or coauthored more than seventy research publications in these areas, including the monograph *Moments and Moment Invariants in Pattern Recognition* (Wiley, 2009) and tutorials at several major conferences. In 2003 Barbara Zitová received the Josef Hlavka Student Prize, in 2006 the Otto Wichterle Premium of the Czech Academy of Sciences for young scientists, and in 2010 she was awarded the prestigious SCO-PUS 1000 Award for receiving more than 1000 citations of a single paper. Personal webpage: http://zoi.utia.cas.cz/zitova

## Acknowledgements

First of all, we would like to express gratitude to our employer, the Institute of Information Theory and Automation (ÚTIA) and to its mother organization, the Czech Academy of Sciences, for creating an inspiring and friendly environment and for continuous support of our research. We also thank both universities where we teach, the Czech Technical University, Faculty of Nuclear Science and Physical Engineering, and the Charles University, Faculty of Mathematics and Physics, for their support and for administration of all our courses.

Many our colleagues, students, and friends contributed to the book in various ways. We are most grateful to all of them, especially to

Jiří Boldyš for his significant contribution to Chapters 4 and 6, Bo Yang for his valuable contribution to Chapters 4 and 7, Sajad Farokhi for participation in the experiments with Gaussian blur in Chapter 6, Roxana Bujack for sharing her knowledge on vector field invariants, Matteo Pedone for his contribution to blur-invariant image registration, Jaroslav Kautsky for sharing his long-time experience with orthogonal polynomials, Filip Šroubek for his valuable contribution to Chapter 6 and for providing test images and deconvolution codes. Cyril Höschl IV for implementing the graph-based decomposition in Chapter 8, Jitka Kostková for creating illustrations in Chapter 2, Michal Šorel for his help with the optical flow experiment in Chapter 9, Babak Mahdian for his contribution to the image forensics experiment in Chapter 9, Michal Breznický for his comments on the blur invariants, Stanislava Šimberová for providing the astronomical images, Digitization Center of Cultural Heritage, Xanthi, Greece, for providing the 3D models of the ancient artifacts. Alexander Kutka for his help with the focus measure experiment in Chapter 9, Jan Kybic for providing us with his code for elastic matching, and Jarmila Pánková for the graphical design of the book front cover.

Special thanks go to the staff of the publisher John Wiley & Sons Limited, who encouraged us to start writing the book and who provided us with help and assistance during the publication process. We would also like to thank the many students in our courses and our tutorial attendees who have asked numerous challenging and stimulating questions.

The work on this book was partially supported by the Czech Science Foundation under the projects No. GA13-29225S in 2014 and No. GA15-16928S in 2015–16.

Last but not least, we would like to thank our families. Their encouragement and patience was instrumental in completing this book.

Jan Flusser Tomáš Suk Barbara Zitová Institute of Information Theory and Automation of the CAS, Prague, Czech Republic, November 2015.

# About the companion website

Don't forget to visit the companion website for this book: http://www.wiley.com/go/flusser/2d3dimageanalysis



There you will find valuable material designed to enhance your learning, including:

- 300 slides
- Matlab codes

Scan this QR code to visit the companion website