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Abstract—In this paper we propose a novel algorithm for a
decomposition of 3D binary shapes to rectangular blocks. The
aim is to minimize the number of blocks. Theoretically optimal
brute-force algorithm is known to be NP-hard and practically
infeasible. We introduce its polynomial sub-optimal approxima-
tion, which transforms the decomposition problem onto a graph-
theoretical problem. We show by extensive experiments that the
proposed method outperforms the the octree decomposition in
terms of the number of blocks on statistically significant level.
We also discuss potential applications of the method in image
processing.

I. INTRODUCTION

Binary images, both in 2D and 3D, form a specific class of
objects and require dedicated algorithms for their processing
and analysis. The major difference from traditional gray-level
and color images is that the pixel/voxel matrix representation
of binary images (which consists only of zeros and ones) is
highly redundant. This has led to many specialized algorithms
that employ various loss-less compressive representations for
image storage and object description (see, for instance, the
books [1], [2]). Such representations result not only in an
efficient memory usage but also contribute to fast feature
calculation and object recognition.

One of the possible approaches (and probably the most
frequently used one) is to decompose the object into simple
parts which we are able to store and process efficiently (some
other approaches, such as object characterization based on its
boundary and various kinds of multilevel representations, exist
but are beyond the scope of this paper). Having a binary object
𝐵 (by a binary object we understand a set of all pixels of a
binary image whose values equal one), we decompose it into
𝐾 ≥ 1 partitions 𝐵1, 𝐵2, . . . , 𝐵𝐾 such that 𝐵𝑖 ∩ 𝐵𝑗 = ∅ for

any 𝑖 ∕= 𝑗 and 𝐵 =
𝐾
∪

𝑘=1

𝐵𝑘.

The 2D decomposition problem has been studied for
decades in computational geometry and some of the methods
were later introduced into the image analysis area. Although in
the continuous domain we may consider various shapes of the
partitions (convex, star-shaped, hexagonal, rectangular, etc.,
see [3]), the decomposition methods in the discrete domain
should use only rectilinear rectangular blocks because of a
native rectangular structure of the discrete image domain (if
other primitives were allowed, we would have to face sampling
errors along the boundary).

A commonly accepted measure of the decomposition quality
is the number of the resulting blocks 𝐾. This is a reasonable
criterion, justified by the fact that the complexity of subsequent
calculations uses to be 𝒪(𝐾) and compression ratio (if the de-
composition is used for compression purposes) also increases
as the number of blocks decreases. The time complexity of the
decomposition is usually the secondary criterion. Obviously,
sophisticated decomposition methods which end up with small
number of blocks usually require more time than the simple
ones. Since the decomposition is in most tasks performed only
once per object and can be done off-line, the time complexity
becomes crucial only if it is so high that the method is not
feasible in an acceptable time.

Several rectangular 2D decomposition algorithms have been
proposed namely in connection with compression and image
feature calculation [4], [5], [6], [7], [8], [9], [10], [11]. The
decomposition methods in the above cited papers are simple,
intuitive but only suboptimal – they do not guarantee the
minimal number of the blocks. In computational geometry,
several authors [12], [13], [14] independently proposed ba-
sically the same algorithm (later discussed and improved in
[15], [16]) which was proved to be optimal since it actually
minimizes the number of blocks for an arbitrary input shape.
The algorithm has a polynomial time complexity and is
applicable in numerous image processing tasks [17]. In this
sense, the 2D decomposition problem has been fully resolved.

During the last decade, 3D image/object analysis has at-
tracted a significant attention due to a dynamic development
of 3D imaging devices and technologies.

To our best knowledge, the only paper on 3D shape
decomposition into rectangular blocks is by Dielissen and
Kaldewaij [18], who proved that decision problem of the
optimal 3D decomposition (i.e. that one which minimizes
𝐾) is equivalent to a variant of the Boolean three satisfi-
ability problem called 3SAT3. This means that the optimal
3D decomposition problem is NP-complete and cannot be
efficiently resolved. Nevertheless, 3D decomposition can be
accomplished by various sub-optimal methods. Some simple
algorithms can be easily designed as an extension of 2D
methods. Run-length encoding and the quadtree decomposition
(which turns into octree in 3D) are typical examples.

In this paper, we present a new sub-optimal algorithm. It
was inspired by the optimal 2D decomposition algorithm [14],
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[17] but unlike the optimal 3D algorithm the proposed method
is of a polynomial complexity. From this point of view, it
can be considered a polynomial approximation of an NP-
complete algorithm. As demonstrated experimentally and by
statistical tests, the proposed method outperforms the octree
decomposition significantly.

II. OPTIMAL DECOMPOSITION IN 2D

As we already pointed out, there exist a 2D decomposition
method of polynomial complexity (even in several versions)
which guarantees the minimum number of blocks for an
arbitrary shape. Here we briefly recall the version proposed
in [17].

The method performs hierarchically on two levels. On the
first level, we detect all “concave” vertices (i.e. those having
the inner angle 270∘) of the input object and identify pairs
of “cogrid” concave vertices (i.e. those having the same
horizontal or vertical coordinates). Then we divide the object
into subpolygons by constructing chords which always connect
two cogrid concave vertices. As proved in [14] and in other
papers, the optimal choice of the chord set is such that the
chords are pair-wise disjoint and their number is maximum
possible.

The problem of optimal selection of the chords is equivalent
to the problem of finding the maximal set of independent ver-
tices in a graph, where each vertex corresponds to a chord and
two vertices are connected by an edge if the two chords have
a common point (either a concave vertex or an intersection).
Generally, this problem is NP-complete, but our graph is a
bipartite one, since any two horizontal (vertical) chords cannot
intersect one another. In a bipartite graph, this task can be
efficiently resolved. We find a maximal matching, which is a
classical problem in graph theory, whose algorithmic solution
in a polynomial time has been published in various versions.
Some of them are optimized with respect to the number of
edges, the others with respect to the number of the vertices
(see [19], [20], [21], [15] for some examples of particular
algorithms) but all of them are polynomial in both.

As soon as the maximal matching has been constructed,
the maximal set of independent vertices can be found much
faster than the maximal matching itself – roughly speaking, the
maximal independent set contains one vertex of each matching
pair plus all isolated vertices plus some other vertices, which
are not included in the matching but still independent. As a
result, we obtain a set of vertices that is unique in terms of
the number of vertices being involved but ambiguous in terms
of the particular vertices. However, this ambiguity does not
matter – although each set leads to different object partition,
the number of the components is always the same. Hence,
at the end of the first level, the object is decomposed into
subpolygons, which do not contain any cogrid concave vertices
(see Fig. 1).

The second level is very simple. Each subpolygon arriving
from the first level is either a rectangle or a concave polygon.
In the latter case, it must be further divided. From each its
concave vertex, a single chord is constructed such that this

(a) (b)

(c) (d)

Fig. 1. The first level of the 2D optimal decomposition method. (a) The
input object. (b) All possible chords connecting two cogrid concave vertices.
The crosses indicate the chord intersections. (c) The corresponding bipartite
graph with a maximum independent set of three vertices. Other choices are
also possible, such as {ℎ1, ℎ2, ℎ3} or {𝑣1, 𝑣2, 𝑣3}. (d) The first level of the
object decomposition.

chord terminates either on the boundary of the subpolygon
or on the chord that has been constructed earlier. This is a
sequential process in which each concave vertex is visited
only once. The order of the concave vertices may be chosen
arbitrary. Similarly, we may choose randomly between two
possible chords offered in each concave vertex. This choice
does not influence the final number of blocks. After that, the
subpolygon is divided into rectangles, because rectangle is the
only polygon having no concave vertices.

The optimal decomposition cannot be readily extended into
3D because it becomes NP-complete, as follows from the anal-
ysis presented in the next Section. The method we propose in
this paper replaces the NP-complete steps by approximations
of a polynomial complexity.

III. 3D SUBOPTIMAL DECOMPOSITION

When trying to extend the 2D optimal algorithm [17] into
3D, we discover several substantial differences between the
2D and 3D cases. In 3D, concave edges play the role of
concave vertices (see Fig. 2). The analogue of the chord is
the separator, which is the intersection of a plane and the
object (see Fig. 3). Note that the separator not always splits the
entire object into two separate components. Any concave edge
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Fig. 2. A concave edge formed by two voxel faces of a 270∘angle in between.

Fig. 3. A separator is a cross-section of a plane and the object. Meaningful
separators eliminate some concave edges of the object. In this example, the
red edges have been eliminated by a cyan separator.

must be contained in a separator to get the decomposition into
blocks. Separators containing no concave edges are possible
but useless. Unlike 2D, where a chord can contain two concave
vertices at maximum, a separator can contain an arbitrary high
number of concave cogrid edges (the edges laying in a plane
which is perpendicular to an axis are called cogrid edges).
From this we can see that the 3D version of the optimal
algorithm (if it exists) cannot work in two levels but rather in
𝑚 levels, where 𝑚 depends on (but not necessarily equals to)
the maximum number of the existing cogrid concave edges.
Another difference from 2D is that a separator may split a
perpendicular concave edge into two separate concave edges.
In this way, placing a separator eliminates some concave edges
but may at the same time induce new ones, which is impossible
in 2D (see Fig. 4). The most significant difference is, however,
the following one. Even if we place the separators in order
given by the number of the concave edges they eliminate,
we do not end up with the minimum number of blocks.
Placing a separator which eliminates the maximum possible
number of the concave edges at the particular moment may
not be globally optimal since it may prevent placing some
separator(s) which would finally lead to a better decomposition
(see Fig. 6 for illustration of such simple situation). Before we
fix the separator, we should check the complete subtree of all
other alternatives. This makes the task NP-hard.1

Fig. 4. An example of a separator that splits perpendicular concave edges
and intersects other separators. Cyan-highlighted separator 𝑠 eliminates edges
𝑒3, 𝑒4 and intersects one vertical edge that has been divided into 𝑒1 and 𝑒2.
It also intersects other separators 𝑠1 and 𝑠2 and is adjacent to separators 𝑠3
and 𝑠4

A. The basic version

The basic version of a sub-optimal algorithm is a heuristics
which basically follows from the above thoughts. It works
iteratively in a greedy manner. In each iteration, we place
proper separators and cut the object by them. This eliminates
all edges connected with the chosen separators. We repeat this
step until all concave edges have disappeared.

The tricky part in each iteration is how to choose the proper
separators. We have already shown that the optimal brute force
approach is NP-hard. To overcome this, we choose the sepa-
rators according their weight. The weight 𝑤𝑠 of separator 𝑠 is
a function which estimates how significant (i.e. how useful)
is the particular separator for the decomposition. Intuitively, it
should reflect the number of the concave edges the separator
eliminates and should be easy to evaluate (preferably in a
polynomial time). Two possible particular choices of 𝑤𝑠 will
be discussed later.

In each iteration, the algorithm finds all possible separators
and calculates their weights. Let us denote the highest weight
as 𝛼 and the set of all separators with this weight as 𝑀 . Now
the method tries to place as many separators from 𝑀 as possi-
ble but at the same time it must avoid all mutually intersecting
separators because they are redundant (by ”intersecting” we
understand also adjacent separators, i.e. those which share an
edge), see Figs. 4 and 5. In other words, we are looking for
a maximum subset of 𝑀 of non-intersecting separators.

This task can be reformulated as a task of finding the
maximum independent set in a tripartite graph, which is a well-
known problem in graph theory. We refer to the maximum
independent set in graph 𝐺 as 𝑀𝑎𝑥𝐼𝑆(𝐺) or 𝑀𝑎𝑥𝐼𝑆 for
short.

We construct graph 𝐺 = (𝑉,𝐸′) whose vertices are the
separators from the set 𝑀 . Vertices 𝑢 and 𝑣 form edge
(𝑢, 𝑣) ∈ 𝐸′ iff the corresponding separators intersect each
other. Graph 𝐺 is tripartite because parallel separators (along

1Note that the NP-completeness was formally proven in [18] by transform-
ing the 3SAT3 problem to decomposition problem.
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Fig. 5. An example of a graph construction: On the left there are four
separators of the same weight. On the right we can see the corresponding
tripartite graph. The graph vertices are associated with the separators and the
graph edges reflect their mutual intersections (or adjacency). In this example,
highlighted vertices {1, 2} form the 𝑀𝑎𝑥𝐼𝑆 (compare with corresponding
disjoint separators 1 and 2).

axes 𝑥, 𝑦 and 𝑧) are always disjoint. Example of a graph
construction is shown in Fig. 5. The maximum independent
set of vertices 𝑀𝑎𝑥𝐼𝑆 gives us the largest set of disjoint
separators of weight 𝛼. We split the object by these separators
and proceed to the next iteration. Note that the set of the
separators may not be unique because the graph may contain
more than one 𝑀𝑎𝑥𝐼𝑆 set of the same cardinality. In such a
case we chose the separator set randomly.

We repeat the iterations until all concave edges have been
eliminated. Depending on the particular choice of 𝑤𝑠, 𝛼 may
not monotonically decrease during the iteration process. At the
end, the object has been decomposed into rectangular blocks.
The partitioning may sometimes produce adjacent blocks that
share one side and therefore they can be merged into a single
block. As soon as the iterations have been completed, we find
and merge these adjacent blocks.

B. The weight function

As we already explained, the choice of the weight function
𝑤𝑠 determines the sub-optimal approximation of the full-
search technique. It should describe the significance of the
separator for the decomposition. High weights should be given
to separators, the early placement of which leads to a low
number of blocks. At the same time, the evaluation of the
weight of each separator should be fast enough. This is why
we limit ourselves to two weight functions, both of which can
be evaluated directly on the current level and do not require
any recursive hierarchical calculations.

The first one simply counts the number of the concave edges
which the separator eliminates when placed

𝑤(1)
𝑠 = ∣{𝑒 ∣ 𝑒 ∈ 𝐸 ∧ 𝑒 ⊂ 𝑠}∣. (1)

In the example in Fig. 3, the highlighted separator has the
weight 𝑤(1)

𝑠 = 6 since it contains six concave edges (high-
lighted red).

Fig. 6. An example that neither 𝑤(1)
𝑠 nor 𝑤(2)

𝑠 select the optimal separators.
At the first step, both weight functions prefer 𝑠1 to 𝑠2 because 𝑤(1)

𝑠1 = 6 and

𝑤
(2)
𝑠1 = 4 while 𝑤(1)

𝑠2 = 𝑤
(1)
𝑠2 = 2. However, placing 𝑠1 leads to 8 blocks

(see c)), while using 𝑠2 yields the optimal decomposition into 7 blocks.

A more sophisticated choice (but also slightly more time-
consuming to evaluate) which reflects the fact that the sepa-
rator may also generate some new concave edges is

𝑤(2)
𝑠 = ∣{𝑒 ∣ 𝑒 ⊂ 𝑠}∣ − ∣{𝑒 ∣ 𝑒⊥𝑠}∣, 𝑒 ∈ 𝐸 (2)

which is in fact 𝑤(1)
𝑠 minus the number of the concave edges

perpendicular to and intersected by the separator.
In the experimental section we will compare the perfor-

mance of 𝑤(1)
𝑠 and 𝑤(2)

𝑠 , among others.

C. Implementation

In the following pseudocode, we describe the algorithm
more formally. Placing the separator in the object is imple-
mented in a way that the separator becomes ”final” and forms
a ”wall” that cannot be divided any further. We first search for
all concave edges and all separators that contain them. Then
we iteratively choose maximum sets of disjoint separators with
the highest weight and move them to the set of walls. The
concave edges, eliminated by these separators, are removed
from the list and new edges (if any) are added. As soon as the
iteration process has been completed, the blocks are formed
by original object surface and/or by ”final inner walls” created
by the separators. For each block we store the coordinates of
its upper left front voxel and three block dimensions. The
last step – block merging – is accomplished by lexicographic
sorting the blocks w.r.t. 𝑥, 𝑦, 𝑧, identifying adjacent blocks of
the same side size and updating the data in the block list. The
complexity of the merging is only 𝒪(𝐾 ′ log𝐾 ′) where 𝐾 ′

is the number of blocks produced by the iterative part of the
algorithm. (Note that the block merging step is due to the sub-
optimality of the algorithm. If the decomposition was optimal,
no merging would be possible and this step could be removed
from the algorithm.)

The most time-consuming part is finding the 𝑀𝑎𝑥𝐼𝑆 on
line 9 of the algorithm. For general graphs, this problem is
NP-hard. Although the graph we work with is a tripartite
one, which is much simpler than a general graph, finding the
maximum independent set is still NP-hard w.r.t. the number of
separators of the same weight. Theoretically, this number may
be proportional to the number of all surface voxels. Actually,

254



it is usually much lower namely for high 𝛼, but may become
so high for low 𝛼 that the algorithm may not be feasible. This
is another substantial difference from the 2D case – finding
the maximum independent set in a bipartite graph is of a
polynomial complexity [17]. In the next Section, we propose
an approximation of a polynomial time complexity, which we
use in our implementation.

Algorithm 1 Sub-optimal 3D decomposition
1: 𝐸 ← find concave edges
2: 𝑆 ← find separators
3: 𝑊 ← ∅ // the set of final walls

4: while ∣𝑆∣ > 0 do
5: 𝑤𝑠 ←weight(𝑠), ∀𝑠 ∈ 𝑆 // calc. weight for each sep.

6: 𝛼← max
𝑠∈𝑆

(𝑤𝑠) // calc. the max. weight

7: 𝑀 ← {𝑠 ∣ 𝑤𝑠 = 𝛼 ∧ 𝑠 ∈ 𝑆} // separators of max. weight

8: 𝐺 = (𝑉,𝐸′) ← 𝑣𝑠 ∈ 𝑉 ⇔ 𝑠 ∈ 𝑀, (𝑣𝑠, 𝑣𝑝) ∈ 𝐸′ ⇔
𝑠⊥𝑝 // create graph

9: 𝐼 ←𝑀𝑎𝑥𝐼𝑆(𝐺) // find max. indep. set of vertices

10: 𝐹 ← {𝑠 ∣ 𝑣𝑠 ∈ 𝐼} // seps. chosen in MaxIS become final

11: 𝑊 ←𝑊 ∪ 𝐹 // move final seps. to the set of walls

12: 𝐶 ← {𝑐 ∣ 𝑐⊥𝑠 ∧ 𝑐 ∈ 𝑆 ∧ 𝑠 ∈ 𝐹} // intersecting separators

13: 𝑁 ← new divided separators that replace 𝐶
14: 𝑆 ← (𝑆 ∩ 𝐶 ∩ 𝐹 ) ∪𝑁 // remove final seps., add divided seps.

15: divide all 𝑒 ∈ 𝐸 that intersect any 𝑠 ∈ 𝐹 // split edges that inters.

walls

16: end while
17: convert voxels bounded by walls 𝑤 ∈𝑊 into rectangular

blocks
18: merge adjacent blocks

D. Approximating the maximum independent set

The vertices of graph 𝐺 = (𝑉,𝐸′) can be clustered into
three disjoint subsets 𝑃𝑥, 𝑃𝑦 , 𝑃𝑧 according to the axis that
the corresponding separators are perpendicular to

𝐺(𝑉,𝐸′) = 𝐺(𝑃𝑥 ∪ 𝑃𝑦 ∪ 𝑃𝑧, 𝐸
′). (3)

Clearly, each subset is composed of parallel separators which
cannot intersect each other and hence 𝐺 is a tripartite graph
because there are no graph edges inside the individual subsets.

The complexity of finding the maximum independent set of
vertices of 𝐺 is exponential w.r.t. the number of the vertices
and edges, which varies in individual iterations. If the number
of the vertices is low, which is a typical situation at the
beginning of the algorithm when the maximum weight 𝛼 is
high, the exponential time may be acceptable. Finding the
𝑀𝑎𝑥𝐼𝑆 is equivalent to finding the maximal clique in the
complement graph2, so we adopted the popular Bron-Kerbosch
algorithm [22] for the clique problem to find the 𝑀𝑎𝑥𝐼𝑆. This
is, however, not feasible for large graphs, typically arriving

2Complement graph 𝐻 to the given graph 𝐺 consists of the same set of
vertices and complementary set of edges, i.e. two distinct vertices of 𝐻 are
adjacent if and only if they are not adjacent in 𝐺.

Fig. 7. Finding maximum independent set in a tripartite graph. (a) optimal
solution 𝑀𝑎𝑥𝐼𝑆, (b) an approximative heuristic 𝐼𝑆(1) where only the largest
part is taken, (c) better approximative heuristic 𝐼𝑆(2) as an extension of
bipartite subgraph 𝑀𝑎𝑥𝐼𝑆 completed with the vertex No. 14 from the third
part of the graph.

in case of complex objects with many concave edges at the
iteration levels when the weight approaches one.

Very simple approximation of 𝑀𝑎𝑥𝐼𝑆 is just to take
the largest subset among 𝑃𝑥, 𝑃𝑦, 𝑃𝑧 instead (let us denote
it as 𝐼𝑆(1)). The independence is guaranteed but for most
(especially large) graphs this approximation is far from the
actual 𝑀𝑎𝑥𝐼𝑆.

A better approach is to treat this problem in tripartite graphs
as an extension of the bipartite graph problem. We choose
two largest vertex subsets among 𝑃𝑥, 𝑃𝑦, 𝑃𝑧 and consider a
subgraph of 𝐺 (let us denote it as 𝐺2), which is a bipartite
graph. On 𝐺2 we find the exact maximum independent set
𝐼2 = 𝑀𝑎𝑥𝐼𝑆(𝐺2). This is solvable in a polynomial time
thanks to the König’s theorem [23]. We implemented this
step by means of the maximum network flow algorithm by
Edmonds and Karp [21] of a time-complexity 𝒪(𝑉 𝐸′2) and
also alternatively by the Dinic’s algorithm [24] with the
complexity 𝒪(𝑉 2𝐸′). Our algorithm selects automatically
the method which is more efficient for the particular graph.
Finally, we unify 𝐼2 with those vertices from the remaining
third part of the graph which are not adjacent to any vertex of
the selected independent set. We denote this final independent
set as 𝐼𝑆(2) (see Fig. 7).

The choice of how to calculate/approximate the 𝑀𝑎𝑥𝐼𝑆
can be in our implementation done by the user. It is always
a trade-off between the time efficiency and the size of the
independent set (which consequently influences the number of
blocks). The optimal solution provides the correct maximum
set, but it is NP-hard and thus for complicated objects it can
run unacceptably long time. 𝐼𝑆(1) is retrieved very quickly,
but the set is much smaller and thus leads to more blocks in the
final decomposition. 𝐼𝑆(2) provides a very good compromise,
as demonstrated in the next Section by experiments.

IV. EXPERIMENTS

The main goal of this Section is to compare the proposed de-
composition method with the state of the art Octree algorithm
[25]. The second goal is to study the performance of various
modifications of the proposed algorithm. We verify that the
polynomial heuristic functions 𝐼𝑆(1) and 𝐼𝑆(2) provide good
approximation of the optimal NP-hard solution of the 𝑀𝑎𝑥𝐼𝑆.
Additionally, we compare the two different weight functions
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TABLE I
THE NUMBER OF THE BLOCKS FOR THE ENTIRE DB ACHIEVED BY

VARIOUS METHODS.

Method Graph IS Weight Total No. of Mean time
method function blocks [103] per object [s]

Octree N/A N/A 3413 1.3
Proposed 𝑀𝑎𝑥𝐼𝑆 𝑤(1) 448 88.6
Proposed 𝑀𝑎𝑥𝐼𝑆 𝑤(2) 445 107.5
Proposed 𝐼𝑆(1) 𝑤(2) 450 67.4
Proposed 𝐼𝑆(2) 𝑤(2) 445 83.3

that evaluate the separators’ significance and verify that the
enhanced 𝑤(2) performs significantly better than 𝑤(1).

The experiments were run on a database of 416 voxelized
models from the McGill 3D Shape Benchmark [26] (we denote
this set as ”MDB”). All models have been inscribed into a
128×128×128 cube. Each object has a different volume, but
together the whole MDB contains more than 13.5 millions of
voxels.

We decomposed all shapes by the OTD, and by the proposed
method with various settings (see Fig. 8 for some examples).
The test results are summarized in Table I. In the third and
fourth rows, we used 𝑀𝑎𝑥𝐼𝑆 algorithm with the separa-
tor weights 𝑤(1) and 𝑤(2), respectively. Comparison of the
performance of these two weights was done by Wilcoxon
test. The null hypothesis was that there is no significant
difference between these two sample decompositions. The null
hypothesis was rejected with 𝑝-value < 0.001, which led us to
the conclusion that 𝑤(2) performs significantly better. On the
last two rows of the table we can see the most important results
of the experiment - decomposition achieved by heuristics
𝐼𝑆(1) and 𝐼𝑆(2). In both cases, solely the better weight
𝑤(2) was used. A surprising result is that the polynomial
heuristic 𝐼𝑆(2) yields almost the same number of blocks as
the optimal NP-hard algorithm 𝑀𝑎𝑥𝐼𝑆. This was confirmed
by the Wilcoxon test – the null hypothesis was accepted with
the 𝑝-value > 0.1. This result proves the efficiency of 𝐼𝑆(2)

algorithm. When applying 𝐼𝑆(1) heuristic, the decomposition
works faster but in average it yields slightly higher number
of blocks. Since the differences are more or less consistently
spread over the whole database, the Wilcoxon test rejected the
null hypothesis with 𝑝-value < 0.001.

Summarizing, the most important result of the test is the
following. Polynomial heuristics 𝐼𝑆(2) with the weight 𝑤(2)

is statistically equivalent (in terms of the block number) to NP-
hard 𝑀𝑎𝑥𝐼𝑆 algorithm and is at the same time significantly
better than all other tested methods.

V. APPLICATIONS

Potential applications of the proposed decomposition
method can be found in all areas where decomposition of 3D
shapes is required and where the number of the blocks is the
main issue. This is typically if the decomposition is performed
off-line, if it is then used many times in subsequent calcula-

Fig. 8. Example of the models from the McGill database [26] and their
decomposition by the proposed method.
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tions, and if the number of blocks influences substantially the
time and/or the cost of a subsequent processing.

A. Compression

Our method can be used in 3D shape encoding/compression,
both loss-less and lossy ones. In a loss-less compression, we
store the position and the size of each block. To optimize the
compression ratio, we order the blocks according to their size
such that the blocks of the same size form a substring. Then
we store only the positions of the blocks while the size is
stored only once for each substring. In a lossy compression,
we throw away the smallest blocks, typically from 1× 1× 1
to a certain limit. This significantly improves the compression
ratio but many shape details may disappear when the object
has been reconstructed.

B. Feature calculation

Many features, which have been proposed for 3D shape
description and recognition, are of the form of an integral
transformation

𝑀
(𝑓)
p =

∫

Ω

𝜋p(x)𝑓(x)dx . (4)

where p is a 3D multi-index, {𝜋p(x)} is a set of basis
functions of the image space (transformation kernels), 𝑓(x) is
characteristic function of the shape, and Ω is a bounded subset
of 𝑅3. Fourier coefficients, wavelet coefficients, and image
moments are few popular examples [27]. If we decompose
the object into 𝐾 disjoint blocks 𝐵𝑘, Eq. (4) can be rewritten
as

𝑀
(𝑓)
p =

𝐾
∑

𝑘=1

∫

𝐵𝑘

𝜋p(x)dx . (5)

If the basis functions 𝜋p(x) can be integrated on a rectangular
region by means of primitive functions and Newton-Leibnitz
theorem in 𝒪(1) time (which is the case of all polynomial and
harmonic bases), then the evaluation of 𝑀 (𝑓)

p from Eq. (5) is
of 𝒪(𝐾) complexity while the direct calculation from Eq. (4)
is proportional to the total number of the object voxels.

The object features are typically computed for a large
set of the basis functions and used repeatedly, so the time
benefit of the decomposition may be really huge even if the
decomposition itself might be relatively slow.

C. Fast convolution

When we calculate a convolution of 3D image (graylevel
or color) 𝑓 with a binary kernel ℎ, we can benefit from the
decomposition as well. If we decompose the support of ℎ into
disjoint blocks, then we have

𝑓 ∗ ℎ = 𝑓 ∗
𝐾
∑

𝑘=1

ℎ𝑘 =
𝐾
∑

𝑘=1

𝑓 ∗ ℎ𝑘, (6)

where ℎ𝑘 is a characteristic function of block 𝐵𝑘.
The evaluation of convolution of arbitrary 𝑓 with rectangu-

lar 𝐵𝑘 in a single voxel can be accomplished in 𝒪(1) time

Fig. 9. A sample screen shot of our online decomposition tool.

regardless of the block size, provided that the partial sums of
𝑓 in all three dimensions have been precomputed.

D. Manufacturing

Manufacturing of 3D structures is often done by assem-
bling them from simple components. If these components are
rectangular blocks, then our algorithm can be advantageously
applied because the production cost and time are proportional
to the number of blocks, while durability of the product uses
to be inversely proportional to it. The time of decomposition,
which is performed on a computer model of the product, is
negligible comparing to the total production time.

VI. CONCLUSION

In this paper, we presented an original method of block-wise
decomposition in 3D. The method is a double approximation
of the optimal algorithm, which is NP-complete and practically
infeasible. We proposed the criterion for the separator selection
in the first approximation. In the second approximation, the
maximum independent set in a tripartite graph, the finding
of which is again NP-complete, is replaced by a polynomial
sub-optimal solution. We proved by large-scale experiments
that the proposed method is statistically better than the Octree
algorithm. This determines that potential applications of the
proposed method can be found namely in the tasks where it is
more desirable to keep the number of blocks as low as possible
rather than to minimize the decomposition runtime.

A user-friendly online tool with the implementation is
available at http://goo.gl/hAEuCg (see Fig. 9).
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