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ABSTRACT 

Clinical islet transplantation programs rely on the capacities of individual centers to 

quantify isolated islets. Current computer-assisted methods require input from human 

operators. Here, we describe two machine learning algorithms for islet quantification, the 

trainable islet algorithm (TIA) and the non-trainable purity algorithm (NPA). These 

algorithms automatically segment pancreatic islets and exocrine tissue on microscopic 

images in order to count individual islets, and calculate islet volume and purity. 

References for islet counts and volumes were generated by the fully manual segmentation 

(FMS) method, which was validated against the internal DNA standard. References for 

islet purity were generated via the expert visual assessment (EVA) method, which was 

validated against the FMS method. The TIA is intended to automatically evaluate 

micrographs of isolated islets from future donors, after being trained on micrographs 

from a limited number of past donors. Its training ability was first evaluated on 46 images 

from four donors. The pixel-to-pixel comparison, binary statistics, and islet DNA 

concentration indicated that the TIA was successfully trained, regardless of the color 

differences of the original images. Next, the TIA trained on the four donors was validated 

on an additional 36 images from nine independent donors. The TIA was fast (67 

sec/image), correlated very well with the FMS method (R2 = 1.00 and 0.92 for islet 

volume and islet count, respectively), and had small REs  (0.06 and 0.07 for islet volume 

and islet count, respectively). Validation of the NPA against the EVA method using 70 

images from 12 donors revealed that the NPA had a reasonable speed (69 sec/image), an 

acceptable RE (0.14), and correlated well with the EVA method (R2 = 0.88). Our results 

demonstrate that a fully automated analysis of clinical-grade micrographs of isolated 
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pancreatic islets is feasible. The algorithms described herein will be freely available as a 

Fiji platform plugin. 

KEY WORDS: islet transplantation, enumeration of islets, quality control, image 

processing, image segmentation, machine-learning 

 

INTRODUCTION 

Since the breakthrough clinical trial published by the Edmonton group in 2000, 

transplantation of isolated pancreatic islets has become a promising therapeutic approach 

for patients with type 1 diabetes (24). Other centers have also reported good results with 

respect to protection from severe hypoglycemic episodes, and even insulin independence  

(2,13). However, these results are not globally consistent. Clinical islet transplantation 

programs rely on the capacities of individual centers to evaluate the grafts they produce; 

an inconsistent quantity of islets in the graft is a potential factor contributing to variation 

in the success rate. 

 

The methodology for the quantification of islets was first developed and standardized by 

Ricordi  (19). While many centers still count islets manually using a microscope and a 50 

µm grid, over the past two decades the methodology has become computerized and 

partially automated (4,7-10,12,17,18,27,31). Some centers have designed their own 

macros using various semi-automated algorithms for digital image analysis, built for their 

respective microscope systems (8,10). Other centers have developed dedicated software 

applications for semi-automated digital image analysis using different, and sometimes 

costly, platforms such as MetaMorph (9,15,17). However, none of these technologies is 
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fully automated, freely available, or widely used. To date, only one inter-laboratory study 

has been conducted, which found considerable inter-operator variation in islet count 

among 35 technicians using the grid-assisted manual count method. The study also 

showed reduced count variation among three technicians using a computer-assisted 

method  (15). In addition to operator-related variation, Friberg et al. (8) found significant 

error associated with islet graft sampling. Sampling error can potentially be reduced by 

evaluating a sufficient number of samples. However, efficiency of current computer-

assisted methods is limited by required manual input from operators. The only currently 

available fully automated analysis of digital images of islets is a dedicated islet cell 

counter  (4). However, it is  expensive and comparisons among operators and centers 

regarding count precision have yet to be undertaken. A common automated tool could 

improve good laboratory practice, especially for international clinical trials. 

 

Clinically important islet graft parameters include the islet volume (measured in IE, islet 

equivalents), islet count, and islet size distribution. It has been shown  (4,7-10,17,27,31) 

that this information can be extracted from islet micrographs using two-step image 

analysis. In the first step, the islets are distinguished from non-islet tissue via a process 

called 'segmentation'. Historically, the techniques used for segmentation have included 

manual thresholding  (9) and watershed transformation (10). In the second step, areas of 

the segmented images attributed to islets are converted into individual islet volumes using 

a 3D islet model. Sphere (8,10,17,19) or prolate spheroid  (9,17) models have 

traditionally been used for this purpose. 
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In this paper we evaluate the feasibility of a novel approach to the segmentation step of 

islet image analysis which becomes fully automated after an initial training period. We 

show that the trainable islet algorithm (TIA) can automatically segment a large number of 

previously unseen images in a short time, and with a high degree of accuracy, after been 

trained on a limited number of images. We also show that our non-trainable purity 

algorithm (NPA) can fully and automatically assess the purity of islets with an acceptable 

degree of accuracy. 

 

MATERIALS AND METHODS 

Study design 

All work with animal and human tissue was performed in accordance with the Approval 

712a/13 (G 13-04-10) issued by the Ethics Committee of the Institute for Clinical and 

Experimental Medicine and Thomayerova Hospital. 

 

Original micrographs of isolated pancreatic islets were segmented, either manually or 

automatically, into islets and exocrine tissue in order to count the islets and calculate islet 

volume and purity. First, the manual methods used to generate the reference data (ground 

truth) were validated. Next, the automated methods were validated. The TIA for islet-

counting was trained and validated using 82 original micrographs from 13 different 

donors (Figure 1A). The automated NPA, which calculates islet purity, was validated on 

a subset of 70 micrographs from 12 donors (Figure 1B).  

 

Isolation of rat islets  
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Islets from Wistar rats (450 g, 5 months old) were harvested using a previously described 

method (22). Briefly, the main pancreatic duct was cannulated in an anesthetized animal. 

After sacrifice, the pancreas was filled with 15 mL of 1 mg/mL collagenase 

(Sevapharma, Czech Republic) before being excised and incubated for 22 min at 37ºC. 

Pure islets were then harvested from the layer of 1094 g/L of a discontinuous Ficoll 

gradient. Islets were stabilized overnight in 5 mL CMRL (Cellgro, MediaTech, VA, 

USA) medium supplemented with 10% Fetal Bovine Serum (FBS). 

 

Isolation of human islets  

Human islets were isolated from cadaver donors following a protocol based on that 

described in (20). Briefly, a mixture of collagenase (Serva, Germany or VitaCyte, IN, 

USA) and neutral protease (Serva, Germany) was instilled into the main duct of the 

pancreas. After incubation in a Ricordi chamber (20), the islets were separated from the 

exocrine tissue via centrifugation using a Cobe 2991 cell processor (Terumo BCT, Japan) 

and continuous Ficoll gradient (Biochrom, UK). The isolated islets were stabilized in a 

CMRL-based medium. Routine test samples were taken to assess graft quantity and 

quality. 

 

Sample preparation, microscopy, and digital imaging 

Isolated islets (100 µL) were stained in Petri dish with 10-25 µL of dithizone (DTZ). 50 

mg of DTZ was dissolved in 800 µL of 70% ethanol with 400 µL 1 M NaOH, mixed and 

diluted with 15 mL phosphate-buffered saline (PBS) or Hanks' balanced salt solution 

(HBSS, Sigma-Aldrich, MO, US) or PBS supplemented with 0.2% albumin. After 1 min, 
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4 mL of HBSS/albumin was added and the dye dispersed. The islets were gently swirled 

towards the center. Samples were imaged using a zoom stereo microscope (model SZ60, 

Olympus, Japan) with inclined incident illumination on a white background, and a digital 

camera equipped with a CMOS 1/2'' 3 MP image sensor (MicroCam, Bresser, Germany). 

Each RGB image was 2048 x 1536 pixels in size. The pixel size ranged from 2.4-4.9 µm 

for magnifications between 10 and 20x. 

 

Determination of DNA content  

After imaging, dithizone-stained pure islets were handpicked and washed, before being 

individually picked up in a total volume of 10-15 µL and placed into 150 µL of lysis 

buffer (1% SDS, 10mM EDTA and Proteinase K 50 µg/mL in 20 mM Tris-HCl, pH 7.4), 

sealed, and incubated overnight at 37ºC. DNA content in the vortexed lysate, diluted to at 

least 1:200, was determined using a Synergy-2 fluorometer (Ex 485/20 nm, Em 528/20 

nm) (Bio-Tek, VT, USA). PicoGreen (1) fluorescent intercalating dye (P7589, Molecular 

Probes, OR, USA) was used as the probe because it is highly specific for dsDNA and 

suitable for cell lysates. Neither dithizone nor albumin would interfere with the assay at 

such a dilution. Lambda phage DNA was used to prepare the standard dilution curve 

(Molecular Probes, OR, USA). 

 

The fully manual segmentation (FMS) method 

Ground truth segmentations of islets were created using the fully manual segmentation 

method (FMS). An expert in islet counting used the GNU image manipulation program 

(GIMP 2.8.4) to manually delineate individual islets (25). Segmentation layers were 
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exported as png files and converted to 1-bit images. The best-quality standard 

segmentations were determined via the majority-vote method, based on the consensus of 

three independently created segmentations. Individual pixels were labeled as islets if they 

were marked as islets in at least two out of three sessions. Areas attributed to individual 

segmented islets were converted into normalized islet volumes, taking 1.767146 nL as 1 

islet equivalent (IE) and using a table of IEs for discrete sets of islet diameters that 

increase in 50 µm increments  (19). Islet diameter 'd' was calculated from individual islet 

area, assuming a circular shape where d=2√(area/π) (8,15). Islets with a diameter smaller 

than 50 µm were not included in the assessment because they could not be reliably 

distinguished due to image resolution. Exocrine tissue was segmented using the same 

procedure described above. The total areas of exocrine tissue (Ae) and islets (Ai) were 

determined from each segmentation. Purity (Pu) was calculated as the ratio of the total 

area of the islets to the total tissue area: Pu=Ai/(Ai+Ae). 

 

Expert visual assessment (EVA) method 

Five experienced operators were separately given images of dithizone-stained islets with 

varying purity. Each operator visually estimated purity as the fraction of islet tissue in the 

total tissue amount. The procedure involved two complementary steps. In the first step, 

the operator estimated the percentage of exocrine tissue in the total tissue and subtracted 

that percentage from 1.0 to obtain the percentage of remaining tissue. In the second step, 

the operator estimated the percentage of islets in the total tissue amount. The final 

estimated purity was calculated as average of the two steps. For each image, the average 

purity obtained from the five operators was used as a reference. 
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Automated algorithms 

The TIA segments individual islets from an input image. To eliminate differences in 

illumination and camera settings, the algorithm first color-normalizes the images by 

assuming that the most common color is the background. The whole image is then color-

transformed, such that the background becomes white and the dynamic range is fully 

used. Uneven illumination was corrected by fitting a second-order polynomial to 

approximately identified background pixels  (29). The algorithm then uses a random 

forest classifier (3) to create a probability map of islets based on individual pixels, using 

RGB color components as features  (30). A final binary classification (islets versus non-

islets) is derived from the probability map by employing spatial regularization using 

GraphCut (16). The TIA calculates the volumes of the islets from the segmentations 

using the same model described for the FMS method. 

 

For the assessment of islet purity by the NPA, binary segmentation is extended to a three-

class segmentation (islets, exocrine tissue, background). We chose to use an unsupervised 

k-means clustering algorithm (14) for this task due to image variability, and a limited 

amount of available training data. After over-clustering the image pixels into seven color-

based clusters, clusters corresponding to the three classes of interest are identified using 

two descriptors; the centroid ratio of the G and R channels (Gc/Rc) and the normalized 

cluster area (i.e., the area of every cluster divided by the maximum cluster area). Use of 

these descriptors was motivated by the observation that the largest image component is 

usually the background, and that islets and exocrine tissue are best distinguished by their 
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respective reddish and yellowish colors. Optimal descriptor value thresholds are 

determined empirically using a training set of images with known purities. In the final 

step, purity is calculated as the ratio of the islet area to the total area of the tissue. 

 

The above-described algorithms were implemented for use on the Fiji platform (ImageJ 

1.48e) (23) and can be requested for free from the authors. 

 

Data evaluation and statistics 

To compare the automatic and ground true segmentations, a pixelwise analysis method 

was developed using the statistical performance measures for the binary classification 

task. These measures included the number of true positives (TP), false positives (FP), true 

negatives (TN), and false negatives (FN). The sensitivity (Se), specificity (Sp), precision 

(P), relative error (RE), and relative islet area (RIA) were calculated as: 

Se=TP/(TP+FN)  

Sp=TN/(TN+FP) 

P=TP/(TP+FP) 

RE=|(TP+FP)-(TP+FN)|/(TP+FP) 

RIA=(TP+FP)/(TP+FN) 

The performance of the trained TIA was evaluated via leave-one-out cross-validation  

(6). 

Receiver operating characteristic (ROC) curves were generated using all data obtained 

from individual classifiers (in the cross-validation) (21). 
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Repeatability was assessed from coefficients of variation (CV). The results are expressed 

here as medians, 95% mean confidence intervals (CI), or by the mean ± standard 

deviation (SD). Means were compared using two-tailed unpaired Student's t-tests. Tukey 

box plots were used to visualize the data (26). 

 

RESULTS 

Validation of the FMS method 

The repeatability of the FMS method was separately assessed on 135 pure rat islets and 

1117 non-pure human islets (Table 1, sets A and B, respectively). Completely and 

partially embedded islets were present in about half of the images from set B (Figure 2, 

arrows). The results, summarized in Table 2, showed good repeatability of the FMS 

method with respect to islet area, count, and volume, irrespective of the presence or 

absence of exocrine tissue (CVs ranged from 0.02-0.05 for sets A and B). The limitations 

of the FMS method were tested by evaluating repeatability for a subclass of fully 

embedded islets from the same 12 images (set B, Table 1). The mean CV increased to 

0.12 (95% CI: 0.04-0.20) when the triplicate FMS segmentations were evaluated 

exclusively for 35 fully embedded islets, indicating that such islets must not dominate 

images if high-precision ground truth data are required.  

 

The accuracy of the FMS method was validated against the DNA standard. A total of 135 

handpicked pure rat islets (Table 1, donor A) were distributed across 10 samples with 

increasing numbers of islets. The DNA content was determined for each sample  (1), and 

islet volume was calculated using the FMS method. The correlation between DNA 
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content and the volume of islets present in the sample is shown in Figure 3A (R2=0.98, 

with three independent volume estimates per image). The average DNA concentration 

was 8.4 ng/IE (95% CI: 7.8-9.0 ng/IE, n=30), which is in agreement with previously 

published values (11,12,18). 

 

Validation of the EVA method 

Applying the FMS method to exocrine tissue is possible, but extremely time-consuming. 

We therefore tested the robustness of a visual assessment of purity using the EVA 

method, based on the results of five experts. To validate this approach, the exocrine tissue 

was manually segmented by the FMS on a total of 36 images with varying islet purity, 

from three donors (Table 1, donors B-D). The mean CV for purity estimated by the five 

experts for the same images, was 0.18 (n=36).  The EVA-based estimation of islet purity 

and the FMS-based purity determination were strongly correlated (R2=0.95) (Figure 3B), 

and the slope of the regression line was close to one (1.01). The EVA method was 

therefore used to produce reference purities for NPA validation. 

 

Training time of the TIA 

To reduce the computational time required for TIA training, images and their 

corresponding ground truth segmentations were downsampled to 512 x 384 pixels. 

Receiver operating characteristic curves for the full size and downsampled images were 

generated for 12 images with various islet purities (donor B, Table 1) using leave-one-

out cross-validation. The ROC curves generated for the full size and downsampled 

images were virtually identical (Figure 4), demonstrating that downsampling in training 
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does not lead to an appreciable loss of useful information. Downsampling reduced the 

average training time required on a standard laptop computer (Intel Core Duo CPU 2.54 

GHz, 8 GB RAM) from 1200 s/image to 28 s/image. The segmentations created from full 

size and downsampled images were compared using pixel-wise measures of sensitivity 

(0.95±0.02), specificity (0.996±0.003), and precision (0.94±0.03). These measures were 

all close to one, indicating a very good agreement. 

 

Trainability of the TIA 

The TIA was developed to automatically segment clinical-grade islet images based on 

training data. Variation in image quality is expected in the clinical setting, despite 

standardized image acquisition. To establish the feasibility and robustness of our 

approach, we tested the hypothesis that training the TIA on images from several donors, 

with different acquisition set-ups, would impart the capacity to automatically segment 

similar images from multiple donors. Two training/testing schemes were designed to test 

this hypothesis. 

 

In the first training scheme, the TIA was separately trained four times, each time on a 

single donor using all its image-segmentation pairs, producing trained tools TIA-A, TIA-

B, TIA-C, and TIA-D. Each trained TIA was then applied to all of the images from the 

other three donors. Each trained TIA produced 32-36 automated segmentations, 

depending on the donor (donors A-D, Table 1). In total, 136 automatic segmentations 

were produced from 46 images. In the second training scheme, the TIA was trained 50 

times; each time on a randomly selected half of the image-segmentation pairs from each 
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donor (A-D, Table 1). Each trained TIA tool (TIA-R-No.) was then applied to the other 

half of the images (i.e., the images not used for training the algorithm). The image-

segmentation pairs were randomized to avoid selection bias. As a result, individual 

images were presented 16-36 times during 50 training iterations, and a similar number 

(14-34) of times during testing. An example of a randomized allocation for one of the 

trained TIA-R tools is shown in Table 3. In total, 1150 segmentations of 46 images were 

produced. 1286 automated segmentations were compared in a pixel-wise manner to the 

ground truth segmentations via direct visual comparisons (Figure 5A), and the relevant 

statistics calculated. For the TIA trained on single donors, the RE of the islet area ranged 

from 0.05-0.17, and the RIA ranged from 0.89-1.17 (Figure 5B a-d).  

 

These data demonstrated that the image groups differed in appearance, and that the TIA 

trained on a single group of images did not consistently produce good-quality 

segmentations of images from other donors (Figure 5B a-d). However, the mean RIA for 

the TIA trained on half of images from all four donors was 0.99 and the RE was 0.07, 

indicating a clear improvement in the quality of the segmentations (Figure 5B r). Only 

three images (out of 46), representing 51 observations (out of 1150), were incorrectly 

segmented (outliers in Figure 5B r). The results indicate that, given a suitable training 

set, the TIA is able to provide correct segmentations of images taken under different 

conditions from multiple donors. 

 

Repeatability and validation of the TIA against the DNA standard  

The repeatability of the TIA from the above experiment was evaluated for 46 images and 
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50 randomizations. The mean CV was 0.02 (n=16-26). For three of the images (out of 

46), the CV ranged from 0.05 to 0.15. These images were the above-mentioned outliers. 

 

The accuracies of the 50 trained TIA-R tools described above were validated against the 

internal DNA standard in a manner similar to that undertaken for FMS validation, using 

the same set of images of pure islets (Table 1, donor A) and corresponding DNA 

samples. Here, each original image was automatically segmented approximately 25 times 

(range: 21-36 times, depending on the random allocation of each image to either the 

training or testing group). The resulting 250 randomized TIA-R segmentations were 

compared to the ground truth (for each of the 10 images, 14-29 of the 50 random 

assignments did not contain the image being evaluated). The RE of the islet area was 0.04 

(95% CI: 0.03-0.05), and the correlation between the automatically estimated islet 

volumes and the corresponding DNA contents was R2=0.99. The average islet DNA 

content was 8.6±1.7 ng/IE (95% CI: 7.6-9.6 ng/IE), which was in good agreement with 

the ground truth, and is within the previously published range (11,12,18). 

 

Evaluation of the TIA on independent donors 

The TIA is intended to be trained on a limited number of images from several donors, 

before being able to automatically analyze images from other donors not included in the 

training set (called here "independent donors"). This generalization ability of the TIA was 

tested here (the training ability of the algorithm tested above used different images, but 

the same donors for training and evaluation). The TIA was trained on 46 images from 

four donors (A-D, Table 1), producing a trained tool called TIA-ABCD. The trained tool 
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TIA-ABCD was then applied to 36 images of islets from nine independent donors (E1-

E9, Table 1, Figure 6). The group of images was heterogeneous, created using two 

different stereo microscopes equipped with the same type of the camera but using various 

settings. The automatic segmentations, counts, and islet volumes were compared to 

ground truth data produced by the FMS method. The pixel-wise comparison revealed an 

acceptable RE (median RE=0.04, n=36). The automatically determined islet volumes and 

counts correlated well with the ground truth (R2=1.0 and 0.92, for volumes and counts, 

respectively, n=36, Figure 7A,B). Finally, the automatically determined volumes and 

counts were expressed relative to the ground truth (TIA/FMS ratio) for each image 

(Figure 7C). Automatically determined islet volumes were marginally overestimated by 

the TIA-ABCD (median ratio 1.03, n=36), and islet counts were the same as the ground 

truth (median ratio 1.00, n=36). Figure 7B shows very good agreement between the two 

methods in the number of islets for all images, with the exception of the two images with 

the greatest numbers of islets. In these cases it was sometimes difficult to distinguish one 

islet from two closely spaced smaller ones. Exocrine tissue was also occasionally 

erroneously classified as islets. The automatic determination of islet parameters for all 36 

images took 40 min (mean: 67 s/image). 

 

Validation of the NPA for automatic purity assessment 

The NPA was designed to automatically estimate islet graft purity from micrographs. The 

algorithm does not require training; the parameters used to identify the classes of interest 

(see the section on automated algorithms in the Methods) were determined using 12 islet 

images of varying purity (Table 1, donor B). The FMS segmentations with three classes 
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(islets, exocrine tissue and background) were used as reference data. The NPA was 

validated on 70 images from the remaining 12 donors (A,C,D,E1-E9, Table 1). For 

validation, five experts estimated purities using the EVA method. The degree of 

variability among the experts was similar to that observed during validation of the EVA 

method (CV=0.19, n=70). The automatically determined and reference purities were 

strongly correlated (R2=0.88), and the slope of the regression line was close to one 

(Figure 8A). The median relative NPA purity for all 70 images was close to one (1.01) 

and the mean purity was 1.11. A Tukey box plot identified 7 image outliers (out of 70 

images) (Figure 8B). The automatic purity assessment of all 70 images was 

accomplished within 80 min (mean: 69 s/image). 

DISCUSSION 

In this work we developed, implemented, and validated two algorithms (i.e., the TIA and 

the NPA) designed to automatically segment pancreatic islets and exocrine tissue from 

microscopic images for the purposes of enumerating individual islets, estimating islet 

volumes, and islet purities.  

 

The islet count and volume are major determining factors for the transplantability of 

grafts to human recipients. Another factor that could potentially restrict graft 

transplantability is the degree of contamination by the exocrine tissue. In this case the 

limiting factor is not the purity itself, but the total volume of the graft tissue in mL; the 

maximum allowable volume is a multiple of the necessary volume of islets. Therefore, 

while the highest possible purity is desirable, its precise determination is not essential. 

Instead, the ability to categorize samples as having a high, intermediate, or low purity is 
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acceptable. Supervised training of a machine learning algorithm can greatly improve the 

precision of automated image segmentation. However, training requires the creation of 

reference segmentations, which is time-consuming and apparently not necessary for 

purity assessment. These facts led us to develop two different automatic tools, the TIA 

and the NPA. Our strategy involved using a trainable algorithm for automated islet 

segmentation (TIA), and an unsupervised algorithm for segmentation of the exocrine 

tissue (NPA).  

The TIA and NPA tools were developed as plugins for the free, professional image 

analysis software program ImageJ. High-quality ground truth segmentations are 

necessary to employ machine learning, and the methods used for their generation need to 

be validated. We consider the manual delineation of islets (i.e., the FMS method) to be a 

preferable approach for creating ground truth segmentations because it allows experts to 

treat islets individually, despite variation in the color composition of islets on the same 

image. We chose two objectively measurable parameters for validation of the FMS 

method; islet DNA content, and the repeatabilities of islet count and volume 

determination. The first parameter is based on a sensitive and robust DNA measurement 

and the determination of islet volume by the validated method. Three other independent 

assessments have been previously reported, ranging from 4 and 10 ng/IE (11,12,18). The 

FMS method yielded a high degree of correlation between islet volume and DNA content 

(Figure 3A), and was in good agreement with previously reported absolute values 

(8.4±1.6 ng/IE). Pure rat islets (not human) were used for two reasons; first, to avoid 

DNA degradation (rat islets have easier logistics and are not so easily damaged by 

extensive handling), and second, to minimize the likelihood of false overestimation due 
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to interference by non-segmented exocrine tissue with its own DNA. The images of rat 

islets were acquired at a similar magnification to the clinical-grade images (Table 1). The 

borders of the rat islets were visually similar to those of human islets, for the purpose of 

manual delineation. That the similarity in the islet images from the two species was 

sufficient was also supported by the similar repeatabilities obtained for pure rat islets and 

non-pure human islets (sets A and B, Table 2). The second parameter, the repeatability of 

the FMS method was high (Table 2), even for images containing a small number of 

embedded islets.  

 

The training ability of the TIA tool was validated in two steps. The first step used 46 

images from donors included in the training of 50 TIA tools (Figure 5B, r). These 50 

trained TIA tools demonstrated that, provided that a sufficient qualitative range of images 

is used for training, the algorithm is capable of segmenting islet images from various 

donors with high precision (islet DNA content was 8.6±1.7 ng/IE), good repeatability 

(CV=0.02), and a low RE (0.07). In the second step, the application of the TIA to future 

images was modeled using 36 images from nine additional donors that were not included 

in the training set (Figure 6). Based on our experience with the FMS method, we 

excluded images unsuitable for manual analysis. Excluded images had borders that were 

difficult to define by the expert producing the manual segmentation: islets substantially 

covered by exocrine tissue, small islets embedded within large pieces of exocrine tissue 

(Figure 9A), large and thick chunks of exocrine tissue (Figure 9A), and grossly over-

digested islets with many small fragments or blurred borders (Figure 9B). Micrographs 

containing unevenly stained islets with pale interiors (Figure 9C), or very weakly stained 
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islets (Figure 9D) were also problematic. Furthermore, images of islets cultured for 

several days were excluded due to the gradual, uneven, and patchy loss of the dithizone 

staining, which made the reliable delineation of islets very difficult. However, images 

with very different color compositions (Figure 6), such as a greenish or bluish 

background or purple islets, were included in the analysis as long as the FMS method 

could be applied with confidence. These color variations can be likely attributed to 

incorrect camera settings. Given these limitations, the TIA trained on four donors (TIA-

ABCD) and applied to nine other donors correlated well with the ground truth in terms of 

islet volume and count (Figure 7A,B). The mean and median relative islet volume and 

count were close to one (Figure 7C).  

 

The TIA is trained once on a range of images at a reasonable training speed (two images 

per minute). Following training, the algorithm can be used to analyze future images at a 

pace of one image per minute and with an accuracy that makes it useful in a clinical 

setting. At present, images with multiple islets in spatial contact with one another should 

be avoided because they risk being segmented as a single unit, leading to an 

overestimation of islet volume and an underestimation of islet count. Future upgrades of 

the TIA tool currently under development may be able to automatically resolve the 

separation of closely spaced islets (28). Another area of future study is the complicated 

relationship between islet shape in 2D images and islet volume; here we simply apply the 

currently used classical spherical islet shape model (19). An effort to obtain more 

accurate automated estimates of the volumes of islets from their 2D images is underway 

(5), to complement the automated segmentation process described in this work.  
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The manual delineation of exocrine tissue by the FMS method is laborious; therefore, for 

this study a substitute method was needed. The data obtained by the FMS method were 

used as a standard to validate a less work-intensive approach, the EVA method. The 

experts compared reasonably well among themselves, with a CV of 0.19, (which was 

expected for a visual assessment), and with the FMS method (Figure 3B). Given the less 

stringent requirement for purity assessment (i.e., the use of purity categories rather than 

percentages), the EVA method with a CV<0.20 was considered acceptable for creating 

the reference dataset for NPA validation. The NPA compared well with this reference 

dataset (Figure 8). However, the spread of the observed values was expectedly wider, 

compared to the TIA. The performance of the NPA (one image per minute) is comparable 

to that observed for the EVA method and can be considered for clinical practice. 

In future work it would be interesting to compare our TIA and NPA tools to already 

established computer-assisted methods  (8,10,17). Currently, it is not possible for us to 

undertake such a comparison because those methods are not readily available to us. 

 

We conclude that it is feasible to combine a trainable algorithm for the high-precision 

determination of islet parameters with an unsupervised algorithm for the assessment of 

graft purity, for a fully automated assessment of clinical-grade images of isolated 

pancreatic islets. Our tools provide an objective and rapid way of analyzing multiple islet 

microscopy images before transplantation. Currently, we are actively looking for 

collaborating institutions to assist in improving these tools further by assembling a larger 

dataset of qualitatively diverse images from different laboratories.  
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FIGURE LEGENDS 

 

Figure 1:  Study design. The TIA and NPA, two algorithms for the automated assessment 

of islet images, are shown in the black boxes. The TIA (A) was trained using the original 

islet images and the corresponding ground truth segmentations, produced by the FMS 

method. The training set consisted of a number of image-segmentation pairs. The dashed 

arrow represents downsampling of the images during training. The TIA was validated 

using image-segmentation pairs (i.e., the testing set) composed of images not used for 

training. The individual islets were counted and their volumes calculated from the TIA 

and the FMS method, and compared for TIA validation. The NPA (B) was not trained. 

This method of purity assessment was validated against results generated by the EVA 

method. 

 

Figure 2: Images and their segmentations. Dithizone-stained islet graft images (A-D) 

representing images from four donors (A-D, Table 1). Arrows (B-D) indicate fully 

embedded islets. Panel (E) shows the ground truth segmentation of image (C). In (F), the 

same image was segmented automatically by the trained TIA. 

 

Figure 3: Validation of the FMS and EVA methods. (A) The FMS was validated against 

an internal DNA standard. Ten samples of 1-58 pure rat islets were stained with 

dithizone, and microscope images of the samples were acquired and segmented in 

triplicate by the FMS method. The DNA content of each sample was determined using 

the PicoGreen method. Islet volumes (IE) were calculated from the triplicate 
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segmentations. The extent of the correlation between DNA content and islet volume was 

assessed by linear regression. (B) The EVA method was validated against the validated 

FMS method. Five independent experts visually assessed the purity of 46 islet images. 

The mean expert-determined purities (y-axis) were calculated and correlated with the 

purities determined by the FMS method (x-axis).  

 

Figure 4: Image downsampling for rapid training. The TIA was trained on full size and 

downsampled image-segmentation pairs. The possible loss of useful information was 

assessed by the leave-one-out cross-validation method on 12 images from set B, Table 1. 

Receiver operating characteristic (ROC) curves were constructed for three image sizes 

and compared. Circle: full size images, cross: half-size images, X: quarter-size images. 

The false positive rate (FPR=1-specificity) is on the x-axis. The true positive rate 

(TPR=sensitivity) is on the y-axis. 

 

Figure 5: Training capability of TIA. Training capability was assessed via a pixel-to-

pixel comparison between the automatically determined and ground truth segmentations. 

(A) Visual output of the pixel-wise analysis for a single image (Figure 2B): true negative 

(blue), true positive (red), false negative (green), and false positive (white) pixels are 

visualized. Islets segmented by the FMS method are comprised of red and green pixels. 

Islets segmented by the TIA method are comprised of red and white pixels. The long and 

short arrows indicate fully and partially embedded islets, respectively. (B) The TIA was 

trained, either on images from a single donor (a-d, x-axis), or on a randomly selected half 

of each donor's images (50 randomized allocations, r, x-axis). Trained tools TIA-A, -B, -
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C, and -D were tested on 34, 36, 32, and 34  images from three (out of 4) donors not used 

for training (a-d, x-axis). The 50 trained TIA-R were tested on a total of 46 images from 

all four donors, where each image was used 14-34 times, producing 1150 segmentations 

(r, x-axis). The Tukey box plot depicts the pixels attributed to islets by the TIA, relative 

to the pixels assigned to islets by the FMS method (y-axis); median (horizontal line), 1st 

and 3rd quartiles (box), 1.5 interquartile range (whiskers). 

 

Figure 6: Images from the independent donors. Eight images (E1-E9) representing eight 

of the nine donors of 36 images used for validation of the TIA-ABCD tool. Details of 

these images are given in Table 1. 

 

Figure 7: Validation of the TIA on independent donors. The TIA-ABCD tool was trained 

on 46 images from four donors (A-D, Table 1), and tested on 36 images from nine other 

donors (E1-E9, Table 1, Figure 6), which were ground truthed via the FMS method. (A) 

The correlation between the values for islet volume obtained by the TIA and the FMS 

method. (B) The correlation between the values for islet count obtained by the TIA and 

the FMS method. The Tukey box plot in (C) shows TIA-ABCD volumes and counts 

relative to the ground truth (y-axis); mean (cross), median (horizontal line), 1st and 3rd 

quartiles (box), 1.5 interquartile range (whiskers). 

 

Figure 8: Automatic purity assessment by the NPA. Islet purities were assessed by the 

NPA for 70 islet micrographs from 12 donors, and compared to reference purities 

produced via the EVA method. (A) Correlation between automatically estimated islet 
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purities (y-axis, purities determined via the NPA) and the reference purities (x-axis, 

purities determined via the EVA method). (B) The Tukey box plot shows the relative 

NPA purities for 70 donors; mean (cross), median (central line), 1st and 3rd quartiles 

(box), 1.5 interquartile range (whiskers). 

 

Figure 9: Examples of images unsuitable for the TIA. Unsuitable images contain (A) 

large chunks of exocrine tissue (arrow) or small islets embedded within large pieces of 

exocrine tissue (arrowheads), (B) over-digested islets with blurred borders, (C) poorly 

stained islets with pale centers, and (D) weakly stained islets. 
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Figure 1 
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Figure 2 
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Figure 3 
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Table 1:  The image-segmentation pairs used in the study     

Donor 

      Images       

No. of 

images 

Magni- 

ficanion 

No. of islets 

per image 

Islet size    

(µm) 

Median 

purity   (%) 
Species   

A 10 20x 1-58 50-600 99 rat   

B 12 10x,15x 63-149 50-600 75 human   

C 14 15x 4-13 50-250 15 human   

D 10 20x 24-67 50-300 65 human   

E1 4 10x 16-38 50-450 62 human   

E2 4 10x 12-20 50-300 37 human   

E3 3 10x 10-23 50-350 12 human   

E4 4 20x 29-70 50-550 46 human   

E5 4 20x,30x 21-57 50-550 40 human   

E6 4 20x 24-58 50-550 37 human   

E7 5 15x 8-27 50-350 13 human   
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E8 4 12x 17-31 50-500 36 human   

E9 4 25x 20-92 50-250 60 human   

* high quality reference segmentation by the majority vote method 
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Table 2: Repeatability of the FMS method 
    

  Experts' coefficient of variation     

Set 
Islet area 
median        
(95% CI) 

Islet count 
median         
(95% CI) 

Islet volume 
median          
(95% CI) 

No. of 
islets 

n 

A 
0.02                   
(0.01 - 0.03) 

0.02                   
(0.01 - 0.07) 

0.05                   
(0.01 - 0.13) 

135 30 

B 
0.03               
(0.03 - 0.04) 

0.03               
(0.02 - 0.04) 

0.03               
(0.03 - 0.05) 

1117 36 

n, number of standard segmentations 
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Table 3: Trained tool TIA-R-21/50   

Donor                 

(Image ID) 

Images and Ground truth segmentations 

Training group Testing group 

image ID image ID 

A (1-10)   2,5,7,8,9,10 1,3,4,6,11,12 

B (11-22) 15,17,18,19,21 13,14,16,20,22 

C (22-36) 24,25,26,27,29,33,34 23,28,30,31,32,35,36 

D (37-46) 38,39,42,43,44 37,40,41,45,46 

total 46 random 23 remaining 23 

ID, identification code.  

 


