
Digital Signal Processing 55 (2016) 44–51
Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

Fast convolutional sparse coding using matrix inversion lemma

Michal Šorel ∗, Filip Šroubek

Institute of Information Theory and Automation, Czech Academy of Sciences, Pod Vodárenskou věží 4, 182 08 Prague 8, Czech Republic

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 3 May 2016

Keywords:
Convolutional sparse coding
Feature learning
Deconvolution networks
Shift-invariant sparse coding

Convolutional sparse coding is an interesting alternative to standard sparse coding in modeling shift-
invariant signals, giving impressive results for example in unsupervised learning of visual features. In
state-of-the-art methods, the most time-consuming parts include inversion of a linear operator related
to convolution. In this article we show how these inversions can be computed non-iteratively in the
Fourier domain using the matrix inversion lemma. This greatly speeds up computation and makes
convolutional sparse coding computationally feasible even for large problems. The algorithm is derived in
three variants, one of them especially suitable for parallel implementation. We demonstrate algorithms
on two-dimensional image data but all results hold for signals of arbitrary dimension.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Sparse coding methods learn a dictionary of basis vectors or
functions so that observed data could be expressed as a linear
combination of only a small number of these atoms [1]. Sparse
coding first appeared in neuroscience as a model of visual cortex
[2] but found applications in many classification and signal recon-
struction tasks. In machine learning sparsity avoids over-fitting and
can be thought of as a tool for feature extraction. In signal recon-
struction sparse coding can serve as a form of Bayesian prior for
image denoising [3], inpainting [4], deblurring [5], super-resolution
[6] and audio signal representation [7]. Although finding the dic-
tionary with which the training signals can be represented with
optimal sparsity is strongly NP-hard [8], there is a number of ef-
fective heuristic algorithms giving an approximate solution in poly-
nomial time [9,10]. Sparse coding is closely related to compressed
sensing [11], with results showing that for incoherent dictionaries
only a small number of projections is sufficient to exactly recon-
struct the original signal [12,13]. Efficient sparse coding algorithms
with provable guarantees appeared only recently [14–16].

In image processing applications, both the observed data and
dictionary atoms correspond to image patches. A fundamental dis-
advantage of sparse coding is the assumption that image patches
are independent, which typically leads to many atoms being trans-
lated versions of one another. The same issue can be expected in
audio signals. Convolutional sparse coding, also called shift-invariant
sparse coding [17–19], is an interesting alternative that found its

* Corresponding author.
E-mail addresses: sorel@utia.cas.cz (M. Šorel), sroubekf@utia.cas.cz (F. Šroubek).
http://dx.doi.org/10.1016/j.dsp.2016.04.012
1051-2004/© 2016 Elsevier Inc. All rights reserved.
use in audio classification [20], deconvolutional networks [21] and
predictive sparse coding by neural networks [22]. In contrast to
standard sparse coding that models a signal as a sparse combina-
tion of dictionary vectors, convolutional sparse coding models the
signal as a sum of several convolutions of kernels and sparse fea-
ture maps.

The goal of this article is to describe a new fast algorithm for
convolutional sparse coding. Our solution is based on the fact that
the main problem of state-of-the-art algorithms [21,23] is a time
consuming inversion of an operator related to convolution. This
problem was sidestepped in [24] by using FISTA [25], where the in-
version step is essentially replaced by one gradient descent step at
the cost of much larger number of iterations necessary to achieve
the same precision. In this paper, we adopt an approach close to
[23] but show how the most time-consuming step of their algo-
rithm can be computed non-iteratively in the Fourier domain using
the matrix inversion lemma, which greatly speeds up computation.
Derivation is relatively straightforward for one input signal [26] but
more complicated for multiple inputs [27]. As our main contribu-
tion, we show three solutions of the multiple-input case, which are
all equivalent for the single-input case. One of them is especially
suitable for parallel implementation. We also compare efficiency of
[21,23] and our algorithm under various conditions and demon-
strate the ability of the proposed algorithms to learn kernels at
several scales simultaneously. A paper using similar ideas to solve
the problem of convolution sparse coding from incomplete data
appeared recently in [28].

The rest of the paper is organized as follows. Sec. 2 states the
problem of convolutional sparse coding. Sec. 3 shortly explains
the main optimization tool we use, which is the alternating direc-

http://dx.doi.org/10.1016/j.dsp.2016.04.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:sorel@utia.cas.cz
mailto:sroubekf@utia.cas.cz
http://dx.doi.org/10.1016/j.dsp.2016.04.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2016.04.012&domain=pdf

M. Šorel, F. Šroubek / Digital Signal Processing 55 (2016) 44–51 45
Table 1
Notation.

zk feature maps 1 . . . K
dk convolutional kernels 1 . . . K
K number of kernels and feature maps
N number of pixels
L number of input images
di

k kth convolution kernel for input image i used in the consensus
version of the algorithm

Zk, Dk operators corresponding to convolution with zk and dk

β parameter of convolutional sparse coding balancing sparsity
and accuracy

uz, ud ADMM auxiliary variables for feature maps and convolution
kernels

vz, vd ADMM dual variables
λ ADMM parameter
P number of ADMM iterations

tion method of multipliers. Algorithms are derived in Sec. 4. Time
complexity of the algorithms is summarized in Sec. 5 followed by
experiments in Sec. 6 and conclusions in Sec. 7.

2. Convolutional sparse coding

Building on the analogy with compressed sensing, where the
sparse representation is provably recoverable using l1 norm [13],
the convolutional sparse coding can be stated as a bi-convex prob-
lem

min
d,z

1

2

∥∥∥∥∥y −
K∑

k=1

dk ∗ zk

∥∥∥∥∥
2

+ β

K∑
k=1

‖zk‖1 s.t. ‖dk‖ ≤ 1, (1)

where y is an observed signal, zk are sparse feature maps and dk
corresponding convolution kernels. The number of convolution ker-
nels K and positive scalar β are user parameters. Complete list
of used variables is provided in Table 1. In this paper, we as-
sume circular boundary conditions, i.e. equivalence of convolution
with element-wise multiplication in the Fourier domain, therefore
the feature maps are of the same size and dimension as the ob-
served signal. Motivated by applications in learning visual features
and modeling image data, we use two-dimensional images in our
experiments but convolutional sparse coding can be applied to sig-
nals of arbitrary dimension.

Analogously to standard sparse coding and other machine
learning and signal modeling approaches, we are interested in
two different modes of operation. First we learn convolution ker-
nels from training data by solving the optimization problem (1) as
stated above. We call this phase kernel learning. Second, in feature
extraction phase, the kernels are fixed and features are computed
only by minimization over feature maps. Even though the terms
feature extraction and kernel learning come from machine learn-
ing, the same operations are important even for signal modeling
and reconstruction. The role of kernel learning is to estimate an
a priori signal distribution and feature extraction corresponds to
Bayesian inference from noisy measurements.

As in sparse coding [10,29], all efficient methods of kernel
learning in the literature [21,23,24] alternately minimize over the
feature maps zk while keeping the filters dk fixed and over the fil-
ters while keeping the feature maps fixed, taking the advantage
that both sub-problems are convex. In this way the feature ex-
traction is essentially run in each iteration of the kernel learning
algorithm.

3. Alternating direction method of multipliers

The main optimization tool we use in both convex sub-
problems, which was less efficiently used already in [23], is the
alternating direction method of multipliers (ADMM) [30]. Here
we present its simplified form, which is equivalent to Douglas–
Rachford splitting algorithm [31]. ADMM is a method to minimize
the sum of two convex not necessarily differentiable functions

min
x

f (x) + g(x). (2)

The algorithm is especially useful, if we can efficiently compute a
so-called proximal or proximity operator of both functions, defined
for f as

proxλ f (a) = arg min
x

λ f (x) + 1

2
‖x − a‖2 (3)

and similarly for g , where scalar λ > 0 is a parameter. ADMM con-
sists of iteratively executing three update steps

x ← proxλ f (v − u) (4)

v ← proxλg (x + u) (5)

u ← u + x − v (6)

two of them being computations of proximal operators for f
and g , and (6) is a simple update of an auxiliary variable. Stop-
ping criteria for ADMM are discussed in [30], Section 3.3.1.

4. Algorithm

In this section, we show that both convolutional sparse coding
sub-problems can be written as a sum of two functions suitable
for ADMM and derive how to efficiently compute their proximal
operators. The main difference with respect to [23] is much faster
computation of one of the proximal operators.

4.1. Minimization over feature maps

We start with the minimization of (1) over feature maps zi ,
which can be written in short as

min
z

1

2
‖y − Dz‖2 + β ‖z‖1 (7)

where D = [D1, . . . , D K] is an operator composed of convolutions
with K kernels dk and z = [

zT
1 , . . . , zT

K

]T
is a vector of vectorized

feature maps. K denotes the number of feature maps and β is a
parameter balancing model accuracy and sparsity of the represen-
tation. The number of elements in y will be denoted by N . Note
that from this place on, we use vector notation, where quantities
y, z, etc. are vectors and convolutions with dk and zk are expressed
as multiplications with circulant (for 2D data block-circulant) ma-
trices Dk and Zk , respectively.

This is a special case of l1-regularized linear regression also
called Lasso [32]. Authors of [21] solved (7) by a continuation ap-
proach, [23,33] used ADMM, decomposing (7) into two functions

f z(z) = 1

2
‖y − Dz‖2 and (8)

gz(z) = β ‖z‖1 . (9)

The proximal operator of l1 norm

arg min
x

α ‖x‖1 + 1

2
‖x − a‖2 (10)

is a very fast element-wise operation called soft thresholding [30]

proxα|x| (a) = Sα (a) =

⎧⎪⎨
⎪⎩

a − α a > α

0 |a| ≤ α

a + α a < α,

(11)

where in our case α = λβ .

46 M. Šorel, F. Šroubek / Digital Signal Processing 55 (2016) 44–51
The critical and most time-consuming part of the algorithm is
the proximal operator of the term f z

proxλ f z
(a) = arg min

z

λ

2
‖y − Dz‖2 + 1

2
‖z − a‖2 (12)

=
(
λDT D + I

)−1 (
λDT y + a

)
(13)

where DT D + λI is a K N × K N matrix. The same inversion is
needed also in the continuation approach of [21]. Both [21] and
[23] solve the inversion by the method of conjugate gradients (CG).
[23] shows that the inversion can be decomposed into N indepen-
dent K × K matrices inverted separately. The inversion is still com-
putationally very demanding (see Sec. 5). Authors of [24] sidestep
(13) by the accelerated proximal gradient method, basically replac-
ing (13) by one gradient descent step zk+1 = zk − γ DT (Dzk − y).
This avoids the expensive inversion at the cost of slower conver-
gence.

Next, we present the first contribution of this paper. We show
that inversion (13) can be computed very cheaply in the Fourier
domain, in a time comparable to one step of gradient descent. In-
deed, the Sherman–Morrison–Woodbury inversion lemma gives(
λDT D + I

)−1 = I − λDT
(

I + λD DT
)−1

D (14)

implying

proxλ f z
(a) =

(
I − λDT

(
I + λD DT

)−1
D

)(
λDT y + a

)
(15)

Inversion
(

I + λD DT
)−1 = (

I + λ
∑

Dk DT
k

)−1
can be computed in

the Fourier domain as element-wise multiplication by

1

1 + λ
∑K

k=1

∣∣∣d̂k

∣∣∣2
, (16)

where
∣∣∣d̂k

∣∣∣2
are squared magnitudes of the coefficients of the

Fourier transform of dk . Moreover, K Fourier transforms in (16)
are computed only once at the beginning of the algorithm, since
they are either reused (for multiple iterations of feature extraction)
or computed in the minimization over kernels. Note that circular
boundary conditions needed for computation in the Fourier do-
main in most cases do not harm the learned kernels as commented
in [23] (p. 5).

The algorithm for optimization over feature maps, which also
serves as the feature extraction algorithm is summarized in Algo-
rithm 1.

Algorithm 1 Feature extraction algorithm.
1: Initialize i ← 0, u0

z ← 0, v0
z ← 0

2: Pre-compute Fourier transforms d̂
3: repeat
4: Solve for z ← prox λ

2 ‖y−Dz‖2 (vz − uz) using (15) and (16)

5: Update vz ← Sλ (z + uz), where thresholding Sλ is defined by (11)
6: Dual variable update uz ← uz + z − vz

7: until convergence.

4.2. Minimization over convolution kernels

Minimization of (1) over convolution kernels

min
{dk}

1

2

∥∥∥∥∥y −
K∑

k=1

Zkdk

∥∥∥∥∥
2

, s.t. ‖dk‖2
2 ≤ 1, (17)

where Zi are operators of convolution with feature maps zi , is a
convex problem with convex constraints.
In [21] and [24], optimization problem (17) was solved by gra-
dient descent, ignoring the constraint ‖dk‖2

2 ≤ 1. Similarly to [23],
we adopt again the ADMM (4)–(6), with f and g corresponding to
fd(d) = 1

2

∥∥y − ∑
i Zidi

∥∥2
and the indicator function1 of convex set

‖dk‖2
2 ≤ 1, respectively. Since kernels are finally computed in the

Fourier domain, we work with kernels of the same size as the ob-
servation y and enforce their support as an additional constraint.
Formally, g could be expressed as

gd(d) =
{

0 if ∀k ‖dk‖2
2 ≤ 1 and supp(d) ⊂ S

+∞ otherwise
, (18)

where S is kernel support, typically a finite size square. The indi-
cator function gd is convex and its proximal operator is equivalent
to projection on the intersection of the support and a unit ball

proxgd
(a) =

{
a1S/‖a1S‖ if ‖a1S‖ > 1

a1S otherwise,
(19)

where 1S is a mask taking on 1 on supp(d) and 0 otherwise. Proof
is straightforward by the method of Lagrange multipliers.

Similarly to minimization over feature maps, the proximal op-
erator for fd

proxλ fd
(a) = arg min

{di}
λ

2

∥∥∥∥∥y −
K∑

k=1

Zkdk

∥∥∥∥∥
2

+ 1

2

∑
k

‖dk − ak‖2

= arg min
{d}

λ

2
‖y − Zd‖2 + 1

2
‖d − a‖2

=
(
λZ T Z + I

)−1 (
λZ T y + a

)
(20)

was computed in [23] as N separable linear systems of size K × K
by conjugate gradients with the same problem of excessive time
complexity as in the first sub-problem. Again, applying the inver-
sion formula (14) on Z gives

proxλ fd
(a) =

(
I − λZ T

(
I + λZ Z T

)−1
Z

)(
λZ T y + a

)
, (21)

where
(

I + λZ Z T
)−1 = (

I + λ
∑

Zk Z T
k

)−1
can be computed in the

Fourier domain by element-wise multiplication with

1

1 + λ
∑K

k=1

∣∣ẑk
∣∣2

. (22)

The resulting algorithm is shown in Algorithm 2. In practice, we
iterate several times for each of the optimization sub-problems but
in some applications one iteration may be sufficient. To distinguish
two levels of iterations, we call the outer iterations global iterations
and the inner iterations ADMM iterations. In the following sections,
the number of inner ADMM iterations will be denoted as P and
will be common for both sub-problems. Influence of parameters
on convergence and learned kernels is discussed in [33].

Algorithm 2 Kernel learning algorithm.

1: Initialize u0
z = 0, v0

z = z0, u0
d = 0 and v0

d = d0 randomly
2: repeat
3: Solve for z ← arg minz

1
2 ‖y − Dz‖2 + β ‖z‖1 using Algorithm 1

4: for iteration = 1 . . . P do
5: Solve for kernels d ← prox λ

2

∥∥y−Z i+1d
∥∥2 (vd − ud) by (21) and (22)

6: Update vd ← proxgd
(d + ud) by projection (19) or (25)

7: Dual variable update ud ← ud + d − vd

8: end for
9: until convergence.

1 Indicator function of a set as defined in convex analysis takes on zero on the
set and plus infinity elsewhere.

M. Šorel, F. Šroubek / Digital Signal Processing 55 (2016) 44–51 47
Table 2
Time complexity of feature extraction and kernel learning per iteration for [21,23]
and three versions of our method. N denotes the number of pixels, K the number
of convolution kernels, L the number of input images, P the number of ADMM
iterations and Q the number of CG iterations in [21]. The time of feature extraction
is given for one input image, therefore does not contain the factor L.

Feature extraction

Zeiler et al. [21] O (K N log N + Q K N)

Bristow et al. [23] O
(

K N log N + 1
P K 3 N + K 2 N

)
Proposed O (K N log N + K N)

Kernel learning
Zeiler et al. [21] O (K LN log N + Q K LN)

Bristow et al. [23] O
(

K LN log N + 1
P K 3 N + K 2 LN

)
Proposed (tiling, 3D) O (K LN (log N + log L) + K LN)

Proposed (consensus) O (K LN log N + K LN)

4.3. Extension to multiple input images

Definition of the convolutional sparse coding problem (1) can
be naturally extended to multiple input images as

1

2

L∑
l=1

∥∥∥∥∥yl −
K∑

k=1

dk ∗ zl
k

∥∥∥∥∥
2

+ β

L∑
l=1

K∑
k=1

∥∥∥zl
k

∥∥∥
1
, s.t. ‖dk‖ ≤ 1,

(23)

where yl are input images, zl
k the corresponding feature maps

and L > 1 the number of input images. Minimization over feature
maps works independently for each image and algorithm does not
change. Unfortunately, it is not the case for the minimization over
convolution kernels (17), since the kernels are shared by all feature
maps. As the second main contribution of this paper, we propose
three solutions working even in this more complicated situation.

First, we can tile all the images into one large image, pos-
sibly padded by zeros, and use the algorithm for one input
image described in the previous section. Time complexity is
O (LN(log N + log L)), i.e. the algorithm is slightly more than lin-
ear in the number of input images. An obvious advantage of this
solution is that it is easy to implement and disadvantage possi-
ble interference on image boundaries. This algorithm is denoted as
“tiling” in Table 2 and Fig. 4.

Second, we can use the original formulation (1) with three-
dimensional feature maps and kernels, with images stacked along
the third dimension. For signals of other dimensions we anal-
ogously lift their dimension by one. The only difference in the
algorithm is three-dimensional Fourier transform and kernels con-
strained to zero not only outside its two-dimensional support but
also everywhere else along the third dimension, except the central
plane. Asymptotic time complexity per iteration is the same as in
the previous case, because three-dimensional convolutions, in ad-
dition to two-dimensional FFT for each image, i.e. O (LN log N), re-
quire for each pixel one-dimensional convolution, i.e. O (N L log L).
This variant is denoted as “3D” in Table 2 and Fig. 4.

A difficulty that typically arises in kernel learning is high mem-
ory consumption, since the input, auxiliary variables vd , ud and
result d are all of size K LN . Whereas the feature extraction phase
of learning can be easily divided between for example multiple
GPU’s or computed sequentially, it is difficult for kernels in both
approaches described above. This problem can be alleviated using
ADMM in a slightly modified way as a special case of so-called
global consensus problem [34].

The idea of this third solution is to split computation to work
with only one input image at once, by the algorithm described in
Sec. 4.2. For this purpose, we consider separate kernels dl

k for each
image yl and reformulate the problem of optimization (23) over
convolution kernels to equivalent
min{
dl

k

} 1

2

L∑
l=1

∥∥∥∥∥yl −
K∑

k=1

dl
k ∗ zl

k

∥∥∥∥∥
2

s. t.
∥∥∥dl

k

∥∥∥2

2
≤ 1 and d1

k = d2
k = . . . = dL

k (24)

To apply ADMM, we split (24) very similarly to the case of one
input to the sum of two functions f and g , where the function
f now corresponds to the first term of (24) and g to the indica-
tor function of the set given by the new constraints. Since f is
separable, prox f can be computed for each image separately us-
ing (21) and (22). New constraints form again a convex set and
corresponding projection is nothing else than averaging the values
updated independently for each input image before projecting by
the original equation (19), i.e.

proxgd
(a) =

{
ā1S/‖ā1S‖ if ‖ā1S‖ > 1

ā1S otherwise,
(25)

where ā = 1
K

∑
k ak . Eq. (25) can be again proved by the method of

Lagrange multipliers.
As a result, the only part, where the algorithm requires interac-

tion between input images and therefore cannot be simply run in
parallel is the element-wise operation (25), i.e. averaging auxiliary
variables ak and computing the projection. Therefore, in theory,
parallelization can speed up the algorithm up to L-times. An addi-
tional advantage of the third solution is that input images can be
of different sizes. In Table 2 and Fig. 4, this variant is denoted as
“consensus”.

5. Time complexity

Asymptotic time complexity of both algorithms (feature ex-
traction and kernel learning) in O (.) notation is summarized in
Table 2. Note that where convenient we use a longer form than
necessary. For example, in the last line of the table we have
O (K LN log N + K LN) instead of equivalent O (K LN log N) to keep
track of additional asymptotically negligible operations that re-
place more demanding steps used in Bristow’s algorithm two lines
above.

We start our analysis by feature extraction (Algorithm 1); first
three lines in Table 2. The learning phase contains the same com-
putation as a subset (line 3) of Algorithm 2). Time complexity of
our algorithm is dominated by the inversion in line 4, since com-
plexity of lines 5 and 6 is linear for each feature map, i.e. in total
O (K N).

Operator (15) requires 2K Fourier transforms to get to the
Fourier domain and back (O (K N log N)) and then negligible 2K N
multiplications on Fourier coefficients. This takes approximately
the same time as one iteration of conjugate gradients used in [21].
Method [23] needs the same 2K Fourier transforms per iteration
as we do but on top of that requires solution of N linear systems
with matrices of size K × K , which requires O (K 3N) operations in
the first ADMM iteration. This grows very quickly with K and dom-
inates the computational time even for only a moderate number of
kernels (see Fig. 1). For the following ADMM iterations, complex-
ity decreases to O (K 2N), which is still more than O (K N) of the
proposed algorithm.

The time complexity of kernel minimization has two compo-
nents. The time spent in the minimization over feature maps (per
input image) is the same as for feature extraction, except that we
usually need just one or a small number of ADMM iterations. Time
of this phase is always proportional to the number of input images,
because all operations are basically repeated L times.

48 M. Šorel, F. Šroubek / Digital Signal Processing 55 (2016) 44–51
Fig. 1. Computation time of feature extraction for K = 100 feature maps for baseline
CG based method of Zeiler et al. [21] (dotted line), for Bristow et al. [23] (dashed
line) and the proposed (dash–dot line) algorithm. For 50 iterations, our method is
10 and 25 times faster than [23] and [21], respectively.

Asymptotic time complexity of kernel learning per iteration is
the same O (LN(log N + log L)) for the first two proposed variants,
slightly more than O (LN log N) in the last variant. Similarly to fea-
ture extraction, the main speedup is achieved by avoiding slow
inversion O (K 3N), instead computing just O (K N) multiplications
on Fourier coefficients. Even for a large number of ADMM itera-
tions, where the term O (K 2N) dominates, our algorithm is O (K)

times faster.
Care must be taken not to mix time complexity per iteration

with convergence. While the first tiling variant converges like [23]
(with negligible differences due to boundary conditions) and the
second variant does not usually depart much, the third variant may
behave differently, see Fig. 4. Exact behavior depends on parame-
ters and input data.

6. Experiments

The main goal of this section is to compare speed of the pro-
posed algorithm with our implementation of methods [21,23]. We
also demonstrate how the kernels can be learned simultaneously
on several scales. Note that our version of [21] has the same com-
plexity per iteration as the original but as a rule converges faster,
because we use ADMM instead of continuation. In our implemen-
tation of [23], we reuse the inverted matrices if more than one
iteration of ADMM is needed, which is typically the case in feature
extraction. All our experiments were implemented in Matlab. In
our experiments we work with a set of high-quality images of ur-
ban environment (Fig. 5) in ideal sunny-day conditions taken with
an SLR camera. RAW data were scaled down four-times in both di-
mensions to eliminate noise. As a rule we finally cropped images
to work with regions of size 128 × 128 pixels.

Feature extraction, common for all three variants of the pro-
posed algorithm, and [23] give exactly the same results (up to
machine precision) and the only difference is speed. Relative toler-
ance of conjugate gradients in [21] was set to 10−9, which makes
the results indistinguishable from [23] and us as well.

In Fig. 1, we show the time of feature extraction as a function
of the number of ADMM iterations for K = 100 kernels and input
image of size 128 × 128. Notice the slowness of [23] for a small
number of iterations (our method is 200 times faster in the first
iteration), because of the term O (K 3 N). The inverted matrices are
Fig. 2. Computation time of kernel learning algorithm for K = 10 kernels and one
input image (128 × 128 pixels). The proposed method (dash–dot line) is about 22
times faster than Bristow et al. [23] (dashed line).

reused, which speeds up algorithm in the following ADMM itera-
tions but our method is still asymptotically K times faster. For 50
iterations, we are 10 and 25 times faster than [23] and [21], re-
spectively.

Fig. 2 shows the computation time per iteration for learning
of K = 10 kernels from the same image. Our algorithm is about
22 times faster than [23]. It is interesting to observe behavior of
conjugate gradients, which progressively decreases the number of
necessary iterations, which makes the algorithm relatively less in-
efficient for higher numbers of global iterations. For large K , it can
be even faster than [23]. Note that this experiment works with one
input image, so there is no difference between the variants of the
algorithm.

Conjugate gradients become extremely slow for more than a
small number of input images, therefore we do not show them in
the next experiment, demonstrating efficiency of learning for dif-
ferent numbers of input images. Fig. 3 shows speedup with respect
to Bristow et al. [23]. For K = 100 kernels, 5 global iterations and
L = 1, 10, 100 input images, the speedup is about 83, 20 and
17 times. In this experiment we used the “3D” variant of the al-
gorithm. Note that the erratic behavior of the solid curve (L = 1)
depends on computer architecture and probably is connected to
memory operations.

Fig. 4 compares convergence of all three variants of our algo-
rithm for K = 50 kernels, L = 10 input images and P = 5 ADMM
iterations. In this case the tiling and 3D variant behave almost the
same, the consensus converges slower.

Finally, in Fig. 6, we show the kernels estimated from L = 50
images. In this experiment, we demonstrate the possibility to learn
simultaneously kernels on different scales. Here, we chose 8 ker-
nels of size 8 × 8, 32 kernels of size 16 × 16 and 64 kernels of
size 32 × 32. We used P = 10 inner ADMM iterations and 1000
global iterations. The number of kernels on different scales was
chosen to grow with their dimension but exact number was set
arbitrarily. On individual scales, we sorted the kernels according to
the average energy contained in the corresponding feature maps.
As expected, the highest energy is typically contained in relatively
simple edges, followed by kernels we could identify as textures
(walls, trees) and the lowest energy is in kernels containing either
noise or highly specialized patterns.

M. Šorel, F. Šroubek / Digital Signal Processing 55 (2016) 44–51 49
Fig. 3. Speedup of the proposed algorithm with respect to [23] for an increasing
number of kernels. For K = 100 kernels and L = 1, 10, 100 images, the speedup is
about 83, 20 and 17 times.

7. Conclusion

In this article we proposed three versions of fast algorithm
to solve convolutional sparse coding problem, with the consen-
sus variant especially suitable for parallel implementation. The
choice of the algorithm may depend on available memory and
convergence in a particular application. Proposed solution makes
convolutional sparse coding computationally feasible even for large
problems.

Even though our research was motivated by modeling image
priors and computation of image features, and all experiments
were performed with image data, the same algorithm can be used
for signals of arbitrary dimension.
Fig. 4. Energy as a function of time for three variants of the proposed algorithm
(K = 50, L = 10, P = 5). In this particular experiment the tiling and 3D variants
overlap.

To help both researchers and practitioners further to investigate
potential of convolutional sparse coding, we provide a Matlab im-
plementation of all variants of the proposed algorithm along with
our implementation of methods used in [21] and [23]. The code is
available at http :/ /zoi .utia .cas .cz /convsparsecoding.

Acknowledgments

The work of Michal Šorel and Filip Šroubek on this research was
funded by the Grant Agency of the Czech Republic under project
GA13-29225S. The authors would like to thank Brendt Wohlberg
from Los Alamos National Laboratory who proposed using the ma-
Fig. 5. 25 of 50 input images used to learn kernels in Fig. 6.

http://zoi.utia.cas.cz/convsparsecoding

50 M. Šorel, F. Šroubek / Digital Signal Processing 55 (2016) 44–51
Fig. 6. Kernels learned by the proposed algorithm simultaneously on three different
scales (K = 104, L = 50, P = 10). Kernels are sorted by energy of the corresponding
feature map in a descending order from top-left to bottom-right. We can observe
that the high energy kernels contain meaningful structures whereas the low energy
ones resemble noise.

trix inversion formula to speed up convolutional sparse coding for
the first time for the helpful discussion regarding this paper.

References

[1] S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit,
SIAM J. Sci. Comput. 20 (1) (1998) 33–61.

[2] B.A. Olshausen, D.J. Field, Sparse coding with an overcomplete basis set: a strat-
egy employed by v1?, Vis. Res. 37 (23) (1997) 3311–3325.

[3] M. Elad, M. Aharon, Image denoising via sparse and redundant representations
over learned dictionaries, IEEE Trans. Image Process. 15 (12) (2006) 3736–3745.

[4] M. Aharon, M. Elad, A.M. Bruckstein, On the uniqueness of overcomplete dic-
tionaries, and a practical way to retrieve them, Linear Algebra Appl. 416 (1)
(2006) 48–67.

[5] F. Couzinie-Devy, J. Mairal, F. Bach, J. Ponce, Dictionary learning for deblurring
and digital zoom, preprint, arXiv:1110.0957.

[6] J. Yang, J. Wright, T. Huang, Y. Ma, Image super-resolution as sparse representa-
tion of raw image patches, in: IEEE Conference on Computer Vision and Pattern
Recognition, 2008, CVPR 2008, IEEE, 2008, pp. 1–8.
[7] M.G. Jafari, M.D. Plumbley, Fast dictionary learning for sparse representations
of speech signals, IEEE J. Sel. Top. Signal Process. 5 (5) (2011) 1025–1031.

[8] A.M. Tillmann, On the computational intractability of exact and approximate
dictionary learning, IEEE Signal Process. Lett. 22 (1) (2015) 45–49.

[9] K. Engan, S.O. Aase, J. Hakon Husoy, Method of optimal directions for frame
design, in: Proceedings of 1999 IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 5, IEEE, 1999, pp. 2443–2446.

[10] M. Aharon, M. Elad, A. Bruckstein, K-SVD: an algorithm for designing overcom-
plete dictionaries for sparse representation, IEEE Trans. Signal Process. 54 (11)
(2006) 4311–4322.

[11] E.J. Candès, M.B. Wakin, An introduction to compressive sampling, IEEE Signal
Process. Mag. 25 (2) (2008) 21–30.

[12] D.L. Donoho, X. Huo, Uncertainty principles and ideal atomic decomposition,
IEEE Trans. Inf. Theory 47 (7) (2001) 2845–2862.

[13] D.L. Donoho, For most large underdetermined systems of linear equations the
minimal l1-norm solution is also the sparsest solution, Commun. Pure Appl.
Math. 59 (6) (2006) 797–829.

[14] B. Barak, J.A. Kelner, D. Steurer, Dictionary learning and tensor decomposition
via the sum-of-squares method, preprint, arXiv:1407.1543.

[15] S. Arora, A. Bhaskara, R. Ge, T. Ma, More algorithms for provable dictionary
learning, preprint, arXiv:1401.0579.

[16] S. Arora, R. Ge, T. Ma, A. Moitra, Simple, efficient, and neural algorithms for
sparse coding, preprint, arXiv:1503.00778.

[17] M.S. Lewicki, T.J. Sejnowski, Coding time-varying signals using sparse, shift-
invariant representations, Adv. Neural Inf. Process. Syst. (1999) 730–736.

[18] E. Smith, M.S. Lewicki, Efficient coding of time-relative structure using spikes,
Neural Comput. 17 (1) (2005) 19–45.

[19] T. Blumensath, M. Davies, Sparse and shift-invariant representations of music,
IEEE Trans. Audio Speech Lang. Process. 14 (1) (2006) 50–57.

[20] R.B. Grosse, R. Raina, H. Kwong, A.Y. Ng, Shift-invariant sparse coding for audio
classification, in: Proceedings of the Twenty-Third Conference on Uncertainty
in Artificial Intelligence, UAI 2007, Vancouver, BC, Canada, July 19–22, 2007,
2007, pp. 149–158.

[21] M.D. Zeiler, D. Krishnan, G.W. Taylor, R. Fergus, Deconvolutional networks, in:
2010 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, IEEE,
2010, pp. 2528–2535.

[22] K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor, M. Mathieu, Y.L. Cun,
Learning convolutional feature hierarchies for visual recognition, in: Advances
in Neural Information Processing Systems, 2010, pp. 1090–1098.

[23] H. Bristow, A. Eriksson, S. Lucey, Fast convolutional sparse coding, in: CVPR,
IEEE, 2013, pp. 391–398.

[24] R. Chalasani, J.C. Principe, N. Ramakrishnan, A fast proximal method for convo-
lutional sparse coding, in: IJCNN, IEEE, 2013, pp. 1–5.

[25] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear
inverse problems, SIAM J. Imaging Sci. 2 (1) (2009) 183–202.

[26] B. Wohlberg, Efficient convolutional sparse coding, in: 2014 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, ICASSP, 2014,
pp. 7173–7177.

[27] B. Wohlberg, Efficient algorithms for convolutional sparse representations, IEEE
Trans. Image Process. 25 (1) (2016) 301–315.

[28] F. Heide, W. Heidrich, G. Wetzstein, Fast and flexible convolutional sparse cod-
ing, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR, 2015, pp. 5135–5143.

[29] J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dictionary learning for sparse cod-
ing, in: Proceedings of the 26th Annual International Conference on Machine
Learning, ACM, 2009, pp. 689–696.

[30] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and
statistical learning via the alternating direction method of multipliers, Found.
Trends® Mach. Learn. 3 (1) (2011) 1–122.

[31] J. Douglas, H.H. Rachford, On the numerical solution of heat conduction prob-
lems in two and three space variables, Trans. Am. Math. Soc. (1956) 421–439.

[32] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. B
58 (1994) 267–288.

[33] B. Kong, C.C. Fowlkes, Fast convolutional sparse coding (FCSC), Tech. rep., UCI,
2014.

[34] N. Parikh, S. Boyd, Proximal algorithms, Found. Trends Optim. 1 (3) (2014)
127–239, http://dx.doi.org/10.1561/2400000003.

Michal Šorel received the M.Sc. and Ph.D. degrees in computer sci-
ence from the Charles University in Prague, Czechia, in 1999 and 2007,
respectively. In 2012 and 2013 he worked at the Heriot-Watt University in
Edinburgh, Scotland and the University of Bern, Switzerland. Currently he
is a research fellow in the Institute of Information Theory and Automation,
Czech Academy of Sciences. His research interests lie on the interface of
computational mathematics, machine learning and image processing. His
research work currently concentrates on development of efficient image
restoration algorithms. He is a member of the IEEE.

http://refhub.elsevier.com/S1051-2004(16)30027-6/bib436865446F6E3A3938s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib436865446F6E3A3938s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4F6C734669653A3937s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4F6C734669653A3937s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib456C614168613A3036s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib456C614168613A3036s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib416861456C613A303662s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib416861456C613A303662s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib416861456C613A303662s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib436F754D61693A3131s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib436F754D61693A3131s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib59616E5772693A3038s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib59616E5772693A3038s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib59616E5772693A3038s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4A6166506C753A3131s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4A6166506C753A3131s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib54696C3A3135s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib54696C3A3135s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib456E674161733A3939s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib456E674161733A3939s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib456E674161733A3939s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib416861456C613A3036s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib416861456C613A3036s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib416861456C613A3036s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib43616E57616B3A3038s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib43616E57616B3A3038s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib446F6E48756F3A3031s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib446F6E48756F3A3031s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib446F6E3A3036s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib446F6E3A3036s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib446F6E3A3036s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4261724B656C3A3134s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4261724B656C3A3134s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib41726F4268613A3134s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib41726F4268613A3134s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib41726F526F6E3A3135s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib41726F526F6E3A3135s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4C657753656A3A3939s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4C657753656A3A3939s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib536D694C65773A3035s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib536D694C65773A3035s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib426C754461763A3036s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib426C754461763A3036s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib47726F5261693A3037s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib47726F5261693A3037s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib47726F5261693A3037s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib47726F5261693A3037s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib5A65694B72693A3130s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib5A65694B72693A3130s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib5A65694B72693A3130s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4B61765365723A3130s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4B61765365723A3130s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4B61765365723A3130s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4272694572693A3133s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4272694572693A3133s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4368615072693A3133s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4368615072693A3133s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4265635465623A3039s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4265635465623A3039s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib576F683A3134s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib576F683A3134s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib576F683A3134s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib576F683A3136s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib576F683A3136s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4865693A3135s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4865693A3135s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4865693A3135s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4D61694261633A3039s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4D61694261633A3039s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4D61694261633A3039s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib506172426F793A3131s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib506172426F793A3131s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib506172426F793A3131s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib446F755261633A3536s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib446F755261633A3536s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib5469623A3934s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib5469623A3934s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4B6F6E466F773A3134s1
http://refhub.elsevier.com/S1051-2004(16)30027-6/bib4B6F6E466F773A3134s1
http://dx.doi.org/10.1561/2400000003

M. Šorel, F. Šroubek / Digital Signal Processing 55 (2016) 44–51 51
Filip Šroubek received the M.Sc. degree in computer science from the
Czech Technical University, Prague, Czech Republic in 1998 and the Ph.D.
degree in computer science from Charles University, Prague, Czech Repub-
lic in 2003. From 2004 to 2006, he was on a postdoctoral position in the
Instituto de Optica, CSIC, Madrid, Spain. In 2010 and 2011, he was the
Fulbright Visiting Scholar at the University of California, Santa Cruz. He
is currently with the Institute of Information Theory and Automation, the
Czech Academy of Sciences. Filip Sroubek is an author of eight book chap-
ters and over 80 journal and conference papers on image fusion, blind
deconvolution, super-resolution, and related topics.

	Fast convolutional sparse coding using matrix inversion lemma
	1 Introduction
	2 Convolutional sparse coding
	3 Alternating direction method of multipliers
	4 Algorithm
	4.1 Minimization over feature maps
	4.2 Minimization over convolution kernels
	4.3 Extension to multiple input images

	5 Time complexity
	6 Experiments
	7 Conclusion
	Acknowledgments
	References

