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Convolutional sparse coding is an interesting alternative to standard sparse coding in modeling shift-
invariant signals, giving impressive results for example in unsupervised learning of visual features. In 
state-of-the-art methods, the most time-consuming parts include inversion of a linear operator related 
to convolution. In this article we show how these inversions can be computed non-iteratively in the 
Fourier domain using the matrix inversion lemma. This greatly speeds up computation and makes 
convolutional sparse coding computationally feasible even for large problems. The algorithm is derived in 
three variants, one of them especially suitable for parallel implementation. We demonstrate algorithms 
on two-dimensional image data but all results hold for signals of arbitrary dimension.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Sparse coding methods learn a dictionary of basis vectors or 
functions so that observed data could be expressed as a linear 
combination of only a small number of these atoms [1]. Sparse 
coding first appeared in neuroscience as a model of visual cortex 
[2] but found applications in many classification and signal recon-
struction tasks. In machine learning sparsity avoids over-fitting and 
can be thought of as a tool for feature extraction. In signal recon-
struction sparse coding can serve as a form of Bayesian prior for 
image denoising [3], inpainting [4], deblurring [5], super-resolution 
[6] and audio signal representation [7]. Although finding the dic-
tionary with which the training signals can be represented with 
optimal sparsity is strongly NP-hard [8], there is a number of ef-
fective heuristic algorithms giving an approximate solution in poly-
nomial time [9,10]. Sparse coding is closely related to compressed 
sensing [11], with results showing that for incoherent dictionaries 
only a small number of projections is sufficient to exactly recon-
struct the original signal [12,13]. Efficient sparse coding algorithms 
with provable guarantees appeared only recently [14–16].

In image processing applications, both the observed data and 
dictionary atoms correspond to image patches. A fundamental dis-
advantage of sparse coding is the assumption that image patches 
are independent, which typically leads to many atoms being trans-
lated versions of one another. The same issue can be expected in 
audio signals. Convolutional sparse coding, also called shift-invariant 
sparse coding [17–19], is an interesting alternative that found its 
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use in audio classification [20], deconvolutional networks [21] and 
predictive sparse coding by neural networks [22]. In contrast to 
standard sparse coding that models a signal as a sparse combina-
tion of dictionary vectors, convolutional sparse coding models the 
signal as a sum of several convolutions of kernels and sparse fea-
ture maps.

The goal of this article is to describe a new fast algorithm for 
convolutional sparse coding. Our solution is based on the fact that 
the main problem of state-of-the-art algorithms [21,23] is a time 
consuming inversion of an operator related to convolution. This 
problem was sidestepped in [24] by using FISTA [25], where the in-
version step is essentially replaced by one gradient descent step at 
the cost of much larger number of iterations necessary to achieve 
the same precision. In this paper, we adopt an approach close to 
[23] but show how the most time-consuming step of their algo-
rithm can be computed non-iteratively in the Fourier domain using 
the matrix inversion lemma, which greatly speeds up computation. 
Derivation is relatively straightforward for one input signal [26] but 
more complicated for multiple inputs [27]. As our main contribu-
tion, we show three solutions of the multiple-input case, which are 
all equivalent for the single-input case. One of them is especially 
suitable for parallel implementation. We also compare efficiency of 
[21,23] and our algorithm under various conditions and demon-
strate the ability of the proposed algorithms to learn kernels at 
several scales simultaneously. A paper using similar ideas to solve 
the problem of convolution sparse coding from incomplete data 
appeared recently in [28].

The rest of the paper is organized as follows. Sec. 2 states the 
problem of convolutional sparse coding. Sec. 3 shortly explains 
the main optimization tool we use, which is the alternating direc-
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Table 1
Notation.

zk feature maps 1 . . . K
dk convolutional kernels 1 . . . K
K number of kernels and feature maps
N number of pixels
L number of input images
di

k kth convolution kernel for input image i used in the consensus 
version of the algorithm

Zk, Dk operators corresponding to convolution with zk and dk

β parameter of convolutional sparse coding balancing sparsity 
and accuracy

uz, ud ADMM auxiliary variables for feature maps and convolution 
kernels

vz, vd ADMM dual variables
λ ADMM parameter
P number of ADMM iterations

tion method of multipliers. Algorithms are derived in Sec. 4. Time 
complexity of the algorithms is summarized in Sec. 5 followed by 
experiments in Sec. 6 and conclusions in Sec. 7.

2. Convolutional sparse coding

Building on the analogy with compressed sensing, where the 
sparse representation is provably recoverable using l1 norm [13], 
the convolutional sparse coding can be stated as a bi-convex prob-
lem

min
d,z

1

2

∥∥∥∥∥y −
K∑

k=1

dk ∗ zk

∥∥∥∥∥
2

+ β

K∑
k=1

‖zk‖1 s.t. ‖dk‖ ≤ 1, (1)

where y is an observed signal, zk are sparse feature maps and dk
corresponding convolution kernels. The number of convolution ker-
nels K and positive scalar β are user parameters. Complete list 
of used variables is provided in Table 1. In this paper, we as-
sume circular boundary conditions, i.e. equivalence of convolution 
with element-wise multiplication in the Fourier domain, therefore 
the feature maps are of the same size and dimension as the ob-
served signal. Motivated by applications in learning visual features 
and modeling image data, we use two-dimensional images in our 
experiments but convolutional sparse coding can be applied to sig-
nals of arbitrary dimension.

Analogously to standard sparse coding and other machine 
learning and signal modeling approaches, we are interested in 
two different modes of operation. First we learn convolution ker-
nels from training data by solving the optimization problem (1) as 
stated above. We call this phase kernel learning. Second, in feature 
extraction phase, the kernels are fixed and features are computed 
only by minimization over feature maps. Even though the terms 
feature extraction and kernel learning come from machine learn-
ing, the same operations are important even for signal modeling 
and reconstruction. The role of kernel learning is to estimate an 
a priori signal distribution and feature extraction corresponds to 
Bayesian inference from noisy measurements.

As in sparse coding [10,29], all efficient methods of kernel 
learning in the literature [21,23,24] alternately minimize over the 
feature maps zk while keeping the filters dk fixed and over the fil-
ters while keeping the feature maps fixed, taking the advantage 
that both sub-problems are convex. In this way the feature ex-
traction is essentially run in each iteration of the kernel learning 
algorithm.

3. Alternating direction method of multipliers

The main optimization tool we use in both convex sub-
problems, which was less efficiently used already in [23], is the 
alternating direction method of multipliers (ADMM) [30]. Here 
we present its simplified form, which is equivalent to Douglas–
Rachford splitting algorithm [31]. ADMM is a method to minimize 
the sum of two convex not necessarily differentiable functions

min
x

f (x) + g(x). (2)

The algorithm is especially useful, if we can efficiently compute a 
so-called proximal or proximity operator of both functions, defined 
for f as

proxλ f (a) = arg min
x

λ f (x) + 1

2
‖x − a‖2 (3)

and similarly for g , where scalar λ > 0 is a parameter. ADMM con-
sists of iteratively executing three update steps

x ← proxλ f (v − u) (4)

v ← proxλg (x + u) (5)

u ← u + x − v (6)

two of them being computations of proximal operators for f
and g , and (6) is a simple update of an auxiliary variable. Stop-
ping criteria for ADMM are discussed in [30], Section 3.3.1.

4. Algorithm

In this section, we show that both convolutional sparse coding 
sub-problems can be written as a sum of two functions suitable 
for ADMM and derive how to efficiently compute their proximal 
operators. The main difference with respect to [23] is much faster 
computation of one of the proximal operators.

4.1. Minimization over feature maps

We start with the minimization of (1) over feature maps zi , 
which can be written in short as

min
z

1

2
‖y − Dz‖2 + β ‖z‖1 (7)

where D = [D1, . . . , D K ] is an operator composed of convolutions 
with K kernels dk and z = [

zT
1 , . . . , zT

K

]T
is a vector of vectorized 

feature maps. K denotes the number of feature maps and β is a 
parameter balancing model accuracy and sparsity of the represen-
tation. The number of elements in y will be denoted by N . Note 
that from this place on, we use vector notation, where quantities 
y, z, etc. are vectors and convolutions with dk and zk are expressed 
as multiplications with circulant (for 2D data block-circulant) ma-
trices Dk and Zk , respectively.

This is a special case of l1-regularized linear regression also 
called Lasso [32]. Authors of [21] solved (7) by a continuation ap-
proach, [23,33] used ADMM, decomposing (7) into two functions

f z(z) = 1

2
‖y − Dz‖2 and (8)

gz(z) = β ‖z‖1 . (9)

The proximal operator of l1 norm

arg min
x

α ‖x‖1 + 1

2
‖x − a‖2 (10)

is a very fast element-wise operation called soft thresholding [30]

proxα|x| (a) = Sα (a) =

⎧⎪⎨
⎪⎩

a − α a > α

0 |a| ≤ α

a + α a < α,

(11)

where in our case α = λβ .
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The critical and most time-consuming part of the algorithm is 
the proximal operator of the term f z

proxλ f z
(a) = arg min

z

λ

2
‖y − Dz‖2 + 1

2
‖z − a‖2 (12)

=
(
λDT D + I

)−1 (
λDT y + a

)
(13)

where DT D + λI is a K N × K N matrix. The same inversion is 
needed also in the continuation approach of [21]. Both [21] and 
[23] solve the inversion by the method of conjugate gradients (CG). 
[23] shows that the inversion can be decomposed into N indepen-
dent K × K matrices inverted separately. The inversion is still com-
putationally very demanding (see Sec. 5). Authors of [24] sidestep 
(13) by the accelerated proximal gradient method, basically replac-
ing (13) by one gradient descent step zk+1 = zk − γ DT (Dzk − y). 
This avoids the expensive inversion at the cost of slower conver-
gence.

Next, we present the first contribution of this paper. We show 
that inversion (13) can be computed very cheaply in the Fourier 
domain, in a time comparable to one step of gradient descent. In-
deed, the Sherman–Morrison–Woodbury inversion lemma gives(
λDT D + I

)−1 = I − λDT
(

I + λD DT
)−1

D (14)

implying

proxλ f z
(a) =

(
I − λDT

(
I + λD DT

)−1
D

)(
λDT y + a

)
(15)

Inversion 
(

I + λD DT
)−1 = (

I + λ
∑

Dk DT
k

)−1
can be computed in 

the Fourier domain as element-wise multiplication by

1

1 + λ
∑K

k=1

∣∣∣d̂k

∣∣∣2
, (16)

where 
∣∣∣d̂k

∣∣∣2
are squared magnitudes of the coefficients of the 

Fourier transform of dk . Moreover, K Fourier transforms in (16)
are computed only once at the beginning of the algorithm, since 
they are either reused (for multiple iterations of feature extraction) 
or computed in the minimization over kernels. Note that circular 
boundary conditions needed for computation in the Fourier do-
main in most cases do not harm the learned kernels as commented 
in [23] (p. 5).

The algorithm for optimization over feature maps, which also 
serves as the feature extraction algorithm is summarized in Algo-
rithm 1.

Algorithm 1 Feature extraction algorithm.
1: Initialize i ← 0, u0

z ← 0, v0
z ← 0

2: Pre-compute Fourier transforms d̂
3: repeat
4: Solve for z ← prox λ

2 ‖y−Dz‖2 (vz − uz) using (15) and (16)

5: Update vz ← Sλ (z + uz), where thresholding Sλ is defined by (11)
6: Dual variable update uz ← uz + z − vz

7: until convergence.

4.2. Minimization over convolution kernels

Minimization of (1) over convolution kernels

min
{dk}

1

2

∥∥∥∥∥y −
K∑

k=1

Zkdk

∥∥∥∥∥
2

, s.t. ‖dk‖2
2 ≤ 1, (17)

where Zi are operators of convolution with feature maps zi , is a 
convex problem with convex constraints.
In [21] and [24], optimization problem (17) was solved by gra-
dient descent, ignoring the constraint ‖dk‖2

2 ≤ 1. Similarly to [23], 
we adopt again the ADMM (4)–(6), with f and g corresponding to 
fd(d) = 1

2

∥∥y − ∑
i Zidi

∥∥2
and the indicator function1 of convex set 

‖dk‖2
2 ≤ 1, respectively. Since kernels are finally computed in the 

Fourier domain, we work with kernels of the same size as the ob-
servation y and enforce their support as an additional constraint. 
Formally, g could be expressed as

gd(d) =
{

0 if ∀k ‖dk‖2
2 ≤ 1 and supp(d) ⊂ S

+∞ otherwise
, (18)

where S is kernel support, typically a finite size square. The indi-
cator function gd is convex and its proximal operator is equivalent 
to projection on the intersection of the support and a unit ball

proxgd
(a) =

{
a1S/‖a1S‖ if ‖a1S‖ > 1

a1S otherwise,
(19)

where 1S is a mask taking on 1 on supp(d) and 0 otherwise. Proof 
is straightforward by the method of Lagrange multipliers.

Similarly to minimization over feature maps, the proximal op-
erator for fd

proxλ fd
(a) = arg min

{di}
λ

2

∥∥∥∥∥y −
K∑

k=1

Zkdk

∥∥∥∥∥
2

+ 1

2

∑
k

‖dk − ak‖2

= arg min
{d}

λ

2
‖y − Zd‖2 + 1

2
‖d − a‖2

=
(
λZ T Z + I

)−1 (
λZ T y + a

)
(20)

was computed in [23] as N separable linear systems of size K × K
by conjugate gradients with the same problem of excessive time 
complexity as in the first sub-problem. Again, applying the inver-
sion formula (14) on Z gives

proxλ fd
(a) =

(
I − λZ T

(
I + λZ Z T

)−1
Z

)(
λZ T y + a

)
, (21)

where 
(

I + λZ Z T
)−1 = (

I + λ
∑

Zk Z T
k

)−1
can be computed in the 

Fourier domain by element-wise multiplication with

1

1 + λ
∑K

k=1

∣∣ẑk
∣∣2

. (22)

The resulting algorithm is shown in Algorithm 2. In practice, we 
iterate several times for each of the optimization sub-problems but 
in some applications one iteration may be sufficient. To distinguish 
two levels of iterations, we call the outer iterations global iterations
and the inner iterations ADMM iterations. In the following sections, 
the number of inner ADMM iterations will be denoted as P and 
will be common for both sub-problems. Influence of parameters 
on convergence and learned kernels is discussed in [33].

Algorithm 2 Kernel learning algorithm.

1: Initialize u0
z = 0, v0

z = z0, u0
d = 0 and v0

d = d0 randomly
2: repeat
3: Solve for z ← arg minz

1
2 ‖y − Dz‖2 + β ‖z‖1 using Algorithm 1

4: for iteration = 1 . . . P do
5: Solve for kernels d ← prox λ

2

∥∥y−Z i+1d
∥∥2 (vd − ud) by (21) and (22)

6: Update vd ← proxgd
(d + ud) by projection (19) or (25)

7: Dual variable update ud ← ud + d − vd

8: end for
9: until convergence.

1 Indicator function of a set as defined in convex analysis takes on zero on the 
set and plus infinity elsewhere.
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Table 2
Time complexity of feature extraction and kernel learning per iteration for [21,23]
and three versions of our method. N denotes the number of pixels, K the number 
of convolution kernels, L the number of input images, P the number of ADMM 
iterations and Q the number of CG iterations in [21]. The time of feature extraction 
is given for one input image, therefore does not contain the factor L.

Feature extraction

Zeiler et al. [21] O (K N log N + Q K N)

Bristow et al. [23] O
(

K N log N + 1
P K 3 N + K 2 N

)
Proposed O (K N log N + K N)

Kernel learning
Zeiler et al. [21] O (K LN log N + Q K LN)

Bristow et al. [23] O
(

K LN log N + 1
P K 3 N + K 2 LN

)
Proposed (tiling, 3D) O (K LN (log N + log L) + K LN)

Proposed (consensus) O (K LN log N + K LN)

4.3. Extension to multiple input images

Definition of the convolutional sparse coding problem (1) can 
be naturally extended to multiple input images as

1

2

L∑
l=1

∥∥∥∥∥yl −
K∑

k=1

dk ∗ zl
k

∥∥∥∥∥
2

+ β

L∑
l=1

K∑
k=1

∥∥∥zl
k

∥∥∥
1
, s.t. ‖dk‖ ≤ 1,

(23)

where yl are input images, zl
k the corresponding feature maps 

and L > 1 the number of input images. Minimization over feature 
maps works independently for each image and algorithm does not 
change. Unfortunately, it is not the case for the minimization over 
convolution kernels (17), since the kernels are shared by all feature 
maps. As the second main contribution of this paper, we propose 
three solutions working even in this more complicated situation.

First, we can tile all the images into one large image, pos-
sibly padded by zeros, and use the algorithm for one input 
image described in the previous section. Time complexity is 
O  (LN(log N + log L)), i.e. the algorithm is slightly more than lin-
ear in the number of input images. An obvious advantage of this 
solution is that it is easy to implement and disadvantage possi-
ble interference on image boundaries. This algorithm is denoted as 
“tiling” in Table 2 and Fig. 4.

Second, we can use the original formulation (1) with three-
dimensional feature maps and kernels, with images stacked along 
the third dimension. For signals of other dimensions we anal-
ogously lift their dimension by one. The only difference in the 
algorithm is three-dimensional Fourier transform and kernels con-
strained to zero not only outside its two-dimensional support but 
also everywhere else along the third dimension, except the central 
plane. Asymptotic time complexity per iteration is the same as in 
the previous case, because three-dimensional convolutions, in ad-
dition to two-dimensional FFT for each image, i.e. O (LN log N), re-
quire for each pixel one-dimensional convolution, i.e. O (N L log L). 
This variant is denoted as “3D” in Table 2 and Fig. 4.

A difficulty that typically arises in kernel learning is high mem-
ory consumption, since the input, auxiliary variables vd , ud and 
result d are all of size K LN . Whereas the feature extraction phase 
of learning can be easily divided between for example multiple 
GPU’s or computed sequentially, it is difficult for kernels in both 
approaches described above. This problem can be alleviated using 
ADMM in a slightly modified way as a special case of so-called 
global consensus problem [34].

The idea of this third solution is to split computation to work 
with only one input image at once, by the algorithm described in 
Sec. 4.2. For this purpose, we consider separate kernels dl

k for each 
image yl and reformulate the problem of optimization (23) over 
convolution kernels to equivalent
min{
dl

k

} 1

2

L∑
l=1

∥∥∥∥∥yl −
K∑

k=1

dl
k ∗ zl

k

∥∥∥∥∥
2

s. t.
∥∥∥dl

k

∥∥∥2

2
≤ 1 and d1

k = d2
k = . . . = dL

k (24)

To apply ADMM, we split (24) very similarly to the case of one 
input to the sum of two functions f and g , where the function 
f now corresponds to the first term of (24) and g to the indica-
tor function of the set given by the new constraints. Since f is 
separable, prox f can be computed for each image separately us-
ing (21) and (22). New constraints form again a convex set and 
corresponding projection is nothing else than averaging the values 
updated independently for each input image before projecting by 
the original equation (19), i.e.

proxgd
(a) =

{
ā1S/‖ā1S‖ if ‖ā1S‖ > 1

ā1S otherwise,
(25)

where ā = 1
K

∑
k ak . Eq. (25) can be again proved by the method of 

Lagrange multipliers.
As a result, the only part, where the algorithm requires interac-

tion between input images and therefore cannot be simply run in 
parallel is the element-wise operation (25), i.e. averaging auxiliary 
variables ak and computing the projection. Therefore, in theory, 
parallelization can speed up the algorithm up to L-times. An addi-
tional advantage of the third solution is that input images can be 
of different sizes. In Table 2 and Fig. 4, this variant is denoted as 
“consensus”.

5. Time complexity

Asymptotic time complexity of both algorithms (feature ex-
traction and kernel learning) in O (.) notation is summarized in 
Table 2. Note that where convenient we use a longer form than 
necessary. For example, in the last line of the table we have 
O  (K LN log N + K LN) instead of equivalent O (K LN log N) to keep 
track of additional asymptotically negligible operations that re-
place more demanding steps used in Bristow’s algorithm two lines 
above.

We start our analysis by feature extraction (Algorithm 1); first 
three lines in Table 2. The learning phase contains the same com-
putation as a subset (line 3) of Algorithm 2). Time complexity of 
our algorithm is dominated by the inversion in line 4, since com-
plexity of lines 5 and 6 is linear for each feature map, i.e. in total 
O (K N).

Operator (15) requires 2K Fourier transforms to get to the 
Fourier domain and back (O (K N log N)) and then negligible 2K N
multiplications on Fourier coefficients. This takes approximately 
the same time as one iteration of conjugate gradients used in [21]. 
Method [23] needs the same 2K Fourier transforms per iteration 
as we do but on top of that requires solution of N linear systems 
with matrices of size K × K , which requires O (K 3N) operations in 
the first ADMM iteration. This grows very quickly with K and dom-
inates the computational time even for only a moderate number of 
kernels (see Fig. 1). For the following ADMM iterations, complex-
ity decreases to O (K 2N), which is still more than O (K N) of the 
proposed algorithm.

The time complexity of kernel minimization has two compo-
nents. The time spent in the minimization over feature maps (per 
input image) is the same as for feature extraction, except that we 
usually need just one or a small number of ADMM iterations. Time 
of this phase is always proportional to the number of input images, 
because all operations are basically repeated L times.
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Fig. 1. Computation time of feature extraction for K = 100 feature maps for baseline 
CG based method of Zeiler et al. [21] (dotted line), for Bristow et al. [23] (dashed 
line) and the proposed (dash–dot line) algorithm. For 50 iterations, our method is 
10 and 25 times faster than [23] and [21], respectively.

Asymptotic time complexity of kernel learning per iteration is 
the same O  (LN(log N + log L)) for the first two proposed variants, 
slightly more than O (LN log N) in the last variant. Similarly to fea-
ture extraction, the main speedup is achieved by avoiding slow 
inversion O (K 3N), instead computing just O (K N) multiplications 
on Fourier coefficients. Even for a large number of ADMM itera-
tions, where the term O (K 2N) dominates, our algorithm is O (K )

times faster.
Care must be taken not to mix time complexity per iteration 

with convergence. While the first tiling variant converges like [23]
(with negligible differences due to boundary conditions) and the 
second variant does not usually depart much, the third variant may 
behave differently, see Fig. 4. Exact behavior depends on parame-
ters and input data.

6. Experiments

The main goal of this section is to compare speed of the pro-
posed algorithm with our implementation of methods [21,23]. We 
also demonstrate how the kernels can be learned simultaneously 
on several scales. Note that our version of [21] has the same com-
plexity per iteration as the original but as a rule converges faster, 
because we use ADMM instead of continuation. In our implemen-
tation of [23], we reuse the inverted matrices if more than one 
iteration of ADMM is needed, which is typically the case in feature 
extraction. All our experiments were implemented in Matlab. In 
our experiments we work with a set of high-quality images of ur-
ban environment (Fig. 5) in ideal sunny-day conditions taken with 
an SLR camera. RAW data were scaled down four-times in both di-
mensions to eliminate noise. As a rule we finally cropped images 
to work with regions of size 128 × 128 pixels.

Feature extraction, common for all three variants of the pro-
posed algorithm, and [23] give exactly the same results (up to 
machine precision) and the only difference is speed. Relative toler-
ance of conjugate gradients in [21] was set to 10−9, which makes 
the results indistinguishable from [23] and us as well.

In Fig. 1, we show the time of feature extraction as a function 
of the number of ADMM iterations for K = 100 kernels and input 
image of size 128 × 128. Notice the slowness of [23] for a small 
number of iterations (our method is 200 times faster in the first 
iteration), because of the term O (K 3 N). The inverted matrices are 
Fig. 2. Computation time of kernel learning algorithm for K = 10 kernels and one 
input image (128 × 128 pixels). The proposed method (dash–dot line) is about 22
times faster than Bristow et al. [23] (dashed line).

reused, which speeds up algorithm in the following ADMM itera-
tions but our method is still asymptotically K times faster. For 50
iterations, we are 10 and 25 times faster than [23] and [21], re-
spectively.

Fig. 2 shows the computation time per iteration for learning 
of K = 10 kernels from the same image. Our algorithm is about 
22 times faster than [23]. It is interesting to observe behavior of 
conjugate gradients, which progressively decreases the number of 
necessary iterations, which makes the algorithm relatively less in-
efficient for higher numbers of global iterations. For large K , it can 
be even faster than [23]. Note that this experiment works with one 
input image, so there is no difference between the variants of the 
algorithm.

Conjugate gradients become extremely slow for more than a 
small number of input images, therefore we do not show them in 
the next experiment, demonstrating efficiency of learning for dif-
ferent numbers of input images. Fig. 3 shows speedup with respect 
to Bristow et al. [23]. For K = 100 kernels, 5 global iterations and 
L = 1, 10, 100 input images, the speedup is about 83, 20 and 
17 times. In this experiment we used the “3D” variant of the al-
gorithm. Note that the erratic behavior of the solid curve (L = 1) 
depends on computer architecture and probably is connected to 
memory operations.

Fig. 4 compares convergence of all three variants of our algo-
rithm for K = 50 kernels, L = 10 input images and P = 5 ADMM 
iterations. In this case the tiling and 3D variant behave almost the 
same, the consensus converges slower.

Finally, in Fig. 6, we show the kernels estimated from L = 50
images. In this experiment, we demonstrate the possibility to learn 
simultaneously kernels on different scales. Here, we chose 8 ker-
nels of size 8 × 8, 32 kernels of size 16 × 16 and 64 kernels of 
size 32 × 32. We used P = 10 inner ADMM iterations and 1000
global iterations. The number of kernels on different scales was 
chosen to grow with their dimension but exact number was set 
arbitrarily. On individual scales, we sorted the kernels according to 
the average energy contained in the corresponding feature maps. 
As expected, the highest energy is typically contained in relatively 
simple edges, followed by kernels we could identify as textures 
(walls, trees) and the lowest energy is in kernels containing either 
noise or highly specialized patterns.



M. Šorel, F. Šroubek / Digital Signal Processing 55 (2016) 44–51 49
Fig. 3. Speedup of the proposed algorithm with respect to [23] for an increasing 
number of kernels. For K = 100 kernels and L = 1, 10, 100 images, the speedup is 
about 83, 20 and 17 times.

7. Conclusion

In this article we proposed three versions of fast algorithm 
to solve convolutional sparse coding problem, with the consen-
sus variant especially suitable for parallel implementation. The 
choice of the algorithm may depend on available memory and 
convergence in a particular application. Proposed solution makes 
convolutional sparse coding computationally feasible even for large 
problems.

Even though our research was motivated by modeling image 
priors and computation of image features, and all experiments 
were performed with image data, the same algorithm can be used 
for signals of arbitrary dimension.
Fig. 4. Energy as a function of time for three variants of the proposed algorithm 
(K = 50, L = 10, P = 5). In this particular experiment the tiling and 3D variants 
overlap.

To help both researchers and practitioners further to investigate
potential of convolutional sparse coding, we provide a Matlab im-
plementation of all variants of the proposed algorithm along with 
our implementation of methods used in [21] and [23]. The code is 
available at http :/ /zoi .utia .cas .cz /convsparsecoding.
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