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Abstract—We propose a general data acquisition model with
volatile random displacement of measured samples. Discrepancies
between recorded and true positions of the original data is
due to the nature of measured data or the acquisition device
itself. A reconstruction method based on the Variational Bayesian
inference is proposed, which estimates the original data from
samples acquired with the acquisition model, and its relation
to Jensen’s inequality is discussed. A model variant of 2D image
reconstruction is analyzed in detail. Further, we outline a relation
between the proposed method and the classic deconvolution
problem, and illustrate superiority of the Variational Bayesian
approach in the case of small number of samples.

I. INTRODUCTION

A data acquisition process is influenced by many imperfec-
tions related to the measuring device and the setup itself. The
resulting data exhibit degradation of various forms such as
blur, noise, low contrast, incomplete measurements or spatial
deformations. In this paper we address the degradation caused
by random spatial displacement of measured samples. Due
to the nature of studied objects or the measuring device,
the acquired data can have erroneous spatial correspondences
between recorded and true positions of individual object parts.
Such random localization discrepancies negatively influence
further data analysis if they are not taken into consideration.

We distinguish two types of position discrepancies: dis-
placement induced by the measured object itself, and dis-
placement caused by the acquisition sensor. The first type of
position uncertainty is common in devices that record low-
energy radiation (such as single photons) with strong scatter-
ing phenomena. Examples are positron emission tomography
(PET) or some types of fluorescence microscopy, such as
photo-activated localization microscopy (PALM) [1]. A scat-
tered incident radiation coming from a scanned object activates
different sensor segments, which results in the disrupted spatial
relationship of the object and its captured representation.
The resulting dataset then exhibits jitters as shown, e.g., in
Fig. 1(b).

An example of the second type is free-hand 3D ultrasound
(US) imaging [2]. A sequence of 2D slice images acquired
by a hand-held ultrasound probe is used to generate a 3D
volume. One option is to estimate the geometrical relationship
of slices from the data itself or, which is more accurate, to
use a tracking system to record the probe position in time. In
both cases uncertainty in estimating the probe position causes
blur artifacts in 3D volume reconstruction and should be

thus considered in the model [3]. Another example, e.g. from
computer vision, is the structure-from-motion problem [4]. An
inaccurate estimation of camera position implies artifacts in
3D object reconstruction. In compressed sensing the problem
of grid mismatch [5] is also related to our formulation.

In this work, we formalize an acquisition model with
uncertainty that describes random displacement of measured
samples, and propose a reconstruction method based on the
Variational Bayesian (VB) inference, which inverts the acqui-
sition process and estimates latent data. We compare with
a reconstruction method based on Jensen’s inequality and
provide detailed analysis of 2D image reconstruction, which
is one variant of the acquisition model. In this case the
uncertainty is in pixel localization, i.e., each pixel is randomly
displaced. If a large number of measurements is acquired,
we show that the proposed method converges to the classic
deconvolution problem. The challenging part is when the
number of measurements is small, which is the case when
the Variational Bayesian approach proves to be advantageous.

The paper is organized as follows. Sec. II introduces the
acquisition model with the uncertainty in measurement local-
ization and defines necessary probability density functions,
such as likelihood and priors. Sec. III presents a solution
to the reconstruction problem using Jensen’s inequality and
Variational Bayes. In Sec. IV, we apply the proposed solution
to the 2D image reconstruction and derive corresponding
equations. Experimental Sec. V compares performance using
both subjective (visual perception) and objective measures.
Sec. VI concludes the paper.

II. MODEL WITH UNCERTAINTY

We assume the following acquisition model. Let u denotes
latent data of any dimension (typically 2D or 3D). Suppose
we have a device that measures samples of u at some location
i but the localization of samples is imprecise. The device can
repeat measurements at the presumed location i and for each
k-th measurement acquires a sample gk(i) corrupted by an
additive noise nk. Since the location randomly varies, the true
location during the k-th measurement is i + tk, where tk is
a random variable of some known distribution. Let S(i, tk)
denote a linear sampling operator modeling the k-th measuring
process at the location i, then the acquisition model takes the
form

gk(i) = S(i, tk)u+ nk .
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For example, let us consider the 2D image reconstruction
from pixel samples with uncertainty in the pixel position.
In this case, u represents a 2D image and gk(i) is a single
pixel measured at the 2D position i. The sampling opera-
tor S(i, tk) returns a value at the (i + tk)-th position, i.e.
S(i, tk)u = u(i + tk). In the case of free-hand US 3D
reconstruction, the same model holds with variables residing
in higher dimensions. Latent data u represents a 3D volume,
gk(i) is a 2D image acquired with the US device, and i is
a vector of six parameters (6 DOF) defining the US probe
position measured by a tracking system. The sampling operator
S(i, tk) extracts from u an image in a 2D plane defined by
parameters (i + tk). Various other measuring scenarios can
be represented by this model. The following derivation of
VB reconstruction is general and independent of the chosen
scenario, but we will demonstrate its application on 2D image
reconstruction (in Sec. IV).

The total number of measurements is K and we will con-
sider a single location i. Simplifying the notation by omitting
i, the acquisition model becomes a set of K equations

gk = S(tk)u+ nk , k = 1, . . . ,K . (1)

Let g = 1
K

∑
k gk denote the mean observed sample.

The Bayesian paradigm starts with defining the posterior
distribution

p(u, t|g) ∝ p(g|u, t)p(u)p(t) (2)

assuming that u and t are independent. We are interested in u
and the random displacement t is a nuisance variable. First, we
have to find expressions for the likelihood and priors. Let t =
[t1, . . . , tk] and nk be white Gaussian noise with distribution
N (nk|0, γ−1), then the likelihood of g is

p(g|u, t) ∝ exp

{
−Kγ

2

∥∥∥[ 1
K

∑
k

S(tk)
]
u− g

∥∥∥2} . (3)

We can assume that measurements are independent and thus
priors of random displacements p(tk) are independent. The
distribution of p(tk) is fully defined by the measuring setup
and must be known in advance. As will be clear later, the
derivation is independent of the used distribution, we can use
any type. e.g. N (tk|0, α−1) gives

p(t) =
∏
k

p(tk) ∝ exp

{
−α
2

∑
k

‖tk‖2
}

(4)

For simplicity, we consider a normal distribution of image
derivatives as an image prior p(u),

p(u) ∝ exp

{
−β
2
‖Du‖2

}
, (5)

where D is a differential operator. For natural images it would
be more appropriate to use heavy-tailed distributions (Lapla-
cian, Gaussian mixtures, Student’s t) instead. The derivation
would be still tractable, following a guideline outlined in [6],
but the final equations become slightly more complicated.

Our ultimate goal is to estimate u with the highest posterior
probability. The displacement t is a nuisance variable and so

our inference approach is to marginalize over t to obtain a
conditional distribution

p(u|g) ∝
∫
p(g|u, t)p(u)p(t)dt (6)

and then estimate u by minimizing − log p(u|g). The displace-
ment t appears non-trivially in S(tk) and thus solving the
integral analytically is intractable.

III. APPROXIMATION AND INFERENCE

To perform inference in our model, one option is to linearize
S using a Taylor series, as done e.g. in [3], and solve the
integral in (6). Another option, which we will investigate in
more detail later, is to calculate a lower bound on log p(u|g)
using Jensen’s inequality:

− log p(u|g) ≤∫
Kγ

2

∥∥∥[∑
k

S(tk)
K

]
u− g

∥∥∥2p(t)dt+ β

2
‖Du‖2 + const. (7)

Integration is still generally intractable, but for example in the
case of 2D image reconstruction as shown in the next section it
is solvable and leads to relatively simple equations. However,
Jensen’s inequality is a lower bound on the marginalized
probability, which causes sub-optimal performance in the case
of small number of measurement K.

If we want a method that performs better for small K,
ideally K = 1, we need a better approximation of the posterior
probability p(u, t|g). A natural choice is to apply the VB
framework [7] and approximate the posterior by a factorized
probability q(u)q(t), where q(t) =

∏
k q(tk). The individual

factors are then calculated iteratively:

− log q(u) = −Eq(t)[log p(u, t|g)] =∫
Kγ

2

∥∥∥[∑
k

S(tk)
K

]
u− g

∥∥∥2q(t)dt+ β

2
‖Du‖2 + const. (8)

and

− log q(tk) = −Eq(u),q(tl6=k)[log p(u, t|g)] =
γ

2K
‖S(tk)u− gk‖2 +

α

2
‖tk‖2 + const. (9)

where by q(tl 6=k) we mean all factors q(t1), . . . , q(tK) except
q(tk). A few remarks should be made here. The calculation
of q(u) in (8) is equivalent to Jensen’s inequality (7) ex-
cept marginalization is not over the prior p(t) but over q(t)
estimated in the previous iteration. To avoid the calculation
of q(u) covariance, we constrain q(u) to a delta distribution
δ(u−u), where u = Eq(u)[u] = argminu− log q(u). The last
equality of the factor q(tk) in (9) was then derived by ignoring
the covariance of u and assuming that

Eq(tl6=k)

[
Kg −

∑
l 6=k

Slu
]
= gk , (10)

which holds only if u and t are equal to the correct values.
At initial iterations this is definitely not true and thus (10) is
a simplification. Nevertheless, we adopt this formula to make
the calculation of q(t) tractable.
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(a) latent image u (b) measurement g
Fig. 1. 2D image reconstruction example: (a) original latent image, (b) one
degraded measurement.

IV. 2D IMAGE RECONSTRUCTION

To get a better understanding of the proposed acquisition
model and its solution, we derive discrete equations for the
case of the 2D image reconstruction. As mentioned earlier, in
this case gk(i) is a measurement of a single pixel of u at the
position (i+ tk). Typical prior distributions p(tk) give lower
probabilities to larger displacements and can be thus assumed
to have finite support. Then tk is limited and if discretized it
takes a state from a finite list of integer values. We rewrite the
acquisition model (1) to consider all pixels simultaneously:

gk = S(tk)u + nk , (11)

were gk is a column vector representing the k-th measurement
of all pixels of u, tk is a corresponding vector of 2D random
displacements, and S(tk) is a matrix, which in every row i has
all elements equal to zero except one at the position i+ tk(i),
which is equal to one; see an example of the latent image u and
one degraded measurement g in Fig. 1(a) and (b), respectively.

A. Jensen’s inequality

We first start with the derivation of discrete equations for
Jensen’s inequality in (7). Let h denote a discrete version of the
prior p(t) and H denote a matrix performing correlation with
h, i.e. Hu = vec(h ? u). For example for the displacement
prior in (4), h would be a 2D discrete Gaussian function
with precision α. Measurements at different positions i’s are
independent and thus p(tk) =

∏
i p(tk(i)). It is important to

discern that ∑
tk

p(tk)S(tk)T = HT ,∑
tk

p(tk)S(tk)TS(tk) = I ,∑
tk

∑
tl

p(tk)p(tl)S(tk)TS(tl) = HTH .

(12)

The latent image u is estimated by solving d
du [− log p(u|g)] =

0, where for − log p(u|g) we substitute Jensen’s inequality
from (7). After some manipulation and using relations in (12),
we conclude that the solution is the following linear system:

[I + (K − 1)HTH + β
γDTD]u = KHT g . (13)

We can see that the above equation is similar to regularized
deconvolution of g with the blur kernel h (rotated by 180◦,
since in our formulation H is a correlation and not convolution
matrix). The difference is in the identity matrix I. As K (the
number of measurements in every pixel) grows we approach
the classic deconvolution problem. The mean image g of many
independent measurements reaches h ? u in the limit; see
Fig. 2(e). Deconvolution is thus the best possible solution,
which Jensen’s inequality is consistent with; see Fig. 2(f).
As K increases the effect of the regularization term DTD
diminishes, which is rational since the noise variance in g
is inversely proportional to K. However, (13) provides a sub-
optimal solution for small K. In the limit case K = 1, the
solution would be simply h?g1, if the regularization term was
ignored; see Fig. 2(a). If the displacement t is ignored, then h
becomes a delta function and (13) simplifies to a regularized
least-squares denoising.

B. Variational Bayesian Inference

We can do better for small K using the VB inference. VB
alternates between two steps1: (8) and (9). The first step is
similar to Jensen’s inequality, but this time we marginalize
over estimated q(tk), which is in general different for every
measurement k and location i, whereas in Jensen’s inequality
we marginalize over the displacement prior, which is the
same everywhere. Let Hq(tk) denote a space-variant correlation
matrix, which generalizes the original H by having on every
row i the corresponding discrete version of q(tk(i)). Similar
to equalities in (12) we have now∑

tk

q(tk)S(tk)T = HT
q(tk) ,∑

tk

q(tk)S(tk)TS(tk) = diag(HT
q(tk)1) ,∑

tk

∑
tl

q(tk)q(tl)S(tk)TS(tl) = HT
q(tk)Hq(tl) ,

(14)

where 1 denotes a column vector of ones and diag(·) builds
a diagonal matrix from its vector argument. Since q(u) is
constrained to delta distributions, we only need to solve
u = argminu− log q(u) in (8), which turns out to be a
solution of a linear system[

1
K

∑
k

diag(HT
q(tk)1) +

1
K

∑
k

∑
l 6=k

HT
q(tk)Hq(tl) +

β
γDTD

]
u

=
∑
k

HT
q(tk)g . (15)

We apply conjugate gradients to solve this linear system. Since
Hq(tl) is space-variant, we can not use the Fourier transform
to speed up multiplication with this matrix and the inversion
is therefore relatively lengthy. A complete knowledge of the
discrete distribution q(t) is required to solve this first step. The
second step (8) give us means to find q(t). The displacement

1More precisely, the second step consists of multiple steps and in each we
update one factor q(tk)
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t is discrete and bounded and we thus evaluate (8) on a finite
set of integer points:

q(tk(i)) ∝ exp
(
− γ

2K

(
S(i, tk(i))u− gk(i)

)2 − α

2

(
tk(i)

)2)
,

(16)
where S(i, tk(i)) denotes the i-th row of the matrix S(tk). The
above equation provides discrete displacement distributions for
every pixel and measurement.

The VB inference then iteratively runs (15) and (16). We can
notice that p(t) could be a “black box”, since we require only
its direct evaluation in (16). For large K, the VB inference
converges to Jensen’s inequality in (13), since the first term
of the exponent in (16) diminishes and q(t) will resemble
more the displacement prior p(t). The superiority of VB over
Jensen is apparent for a small number of measurements K as
we demonstrate in the next section. In this case VB resembles
space-variant blind deconvolution as q(t) is estimated from the
data and varies in space.

V. EXPERIMENTS

First, we visually compare the performance of Jensen’s
inequality and VB on the following example. Fig. 1(a) shows
the original latent image u and Fig. 1(b) shows one measured
image g using acquisition model (11) and displacement distri-
bution (4) with the precision α = 1. If we estimate the original
image from this measurement using Jensen’s inequality in (13),
we obtain only a blurred version of the measurement as shown
in Fig. 2(a). However, if VB is applied and the empirical dis-
placement distribution is estimated simultaneously, we obtain
a perceptually more accurate estimate in Fig. 2(b). We have
also compared the denoising output if t is completely ignored
and the results were less accurate, which is an indication that
the displacement modeling helps the image prior. In the case of
two measurements (K = 2), both results in Fig. 2(c,d) improve
but visually VB still outperforms Jensen. If a large number,
e.g. K = 100, of independent measurements is available,
then the mean observed image g in Fig. 2(e) approaches the
blurred version of u. Both Jensen and VB converge to the same
solution shown in Fig. 2(f) by performing deconvolution of g.

In addition to the visual comparison, we compare perfor-
mance using two well-known objective quality metrics, the
peak-signal-to-noise ratio (PSNR) and the structural similarity
index measure (SSIM) [8]. We summarize the performance
for two sets of parameters. Fig. 3 shows results for moderate
weights γ = 10 and β = 1. Fig. 4 shows results for γ = 104

and β = 103, which corresponds to a more aggressive behavior
of the VB inference, i.e., relying more on data and less on the
displacement prior p(t). The parameters were chosen such that
the ratio β/γ in both sets was constant to keep the same effect
of image regularization in (13) and (15). Each graph plots
PSNR or SSIM versus the number of measurements K for
three methods: mean image g (dotted line), Jensen’s inequality
(13) (dashed line), and VB (15)-(16) (solid line). The mean-
image performance is a baseline and both Jensen and VB
perform better by a large margin. For moderate parameters
(Fig. 3), VB outperforms Jensen both in terms of PSNR and

(a) Jens. (K = 1) (b) VB (K = 1)

(c) Jens. (K = 2) (d) VB (K = 2)

(e) mean (K = 100) (f) VB/Jens. (K = 100)
Fig. 2. 2D image reconstruction results: (a) inference with Jensen’s inequality
from a single measurement, (b) Variational Bayesian inference from a single
measurement, (c) inference with Jensen’s inequality from two measurements,
(d) Variational Bayesian inference from two measurements, (e) mean image
of 100 measurements, (f) inference from 100 measurements with Variational
Bayes (or Jensen’s inequality, which provides almost identical results).

SSIM for small K ≤ 4, and the VB gain vanishes for large K
as predicted. In the case of the aggressive parameter setting
(Fig. 4), the advantage of VB is even more apparent but only
in terms of SSIM. PSNR is biased towards over-smoothed
results and therefore it favors images obtained with Jensen’s
inequality, which are overly blurred; compare K = 2 Jensen’s
result in Fig. 1(c) with the VB result in Fig. 1(d). In terms of
PSNR both images are almost identical but we can see that
the VB result is sharper, which is reflected by better SSIM in
Fig. 4(b).

VI. CONCLUSION

We have introduced an acquisition model with localization
uncertainty that we believe describes a measurement phe-
nomenon present in many different scientific fields. We have
derived a general Bayesian solution to the model through
marginalization over nuisance variables using either Jensen’s
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Fig. 3. Performance evaluation for parameters γ = 10 and β = 1: (a) PSNR
versus number of measurements K, (b) SSIM versus number of measurements
K. Curves represent performance of the mean image g (blue dotted), Jensen’s
inequality (yellow dashed), and Variational Bayesian inference (red solid).

inequality or Variational Bayesian inference. Final discrete
equations were presented for the 2D image reconstruction case
and the relation with deconvolution was hinted.

We plan to validate the model and its Bayesian solution
on 3D volume reconstruction in free-hand 2D ultrasound
imagery. A possible extension of the model is to incorporate
interpolation in the sampling operator to allow for continues
values of displacement. We also seek to explore the possibility
to use this approach for image blind deconvolution.
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