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Abstract: Classification is one of the frequently demanded tasks in data analysis. There exists a series of approaches in
this area. This paper is oriented towards classification using the mixture model estimation, which is based on
detection of density clusters in the data space and fitting the component models to them. A chosen function
of proximity of the actually measured data to individual mixture components and the component shape play
a significant role in solving the mixture-based classification task. This paper considers definitions of the
proximity for several types of distributions describing the mixture components and compares their properties
with respect to speed and quality of the resulting estimation interpreted as a classification task. Normal,
exponential and uniform distributions as the most important models used for describing both Gaussian and
non-Gaussian data are considered. Illustrative experiments with results of the comparison are provided.

1 INTRODUCTION

Mixture models are a powerful class of models used
for description of multi-modal systems, which work
in different switching regimes. Detection of an ac-
tive regime is a significant task in various applica-
tion fields such as, for example, fault detection, diag-
nostics systems, medicine, big data related problems,
etc., see, e.g., (Yu, 2012a; Yu, 2011; Yu, 2012b).

This task is often solved within (supervised) clas-
sification issues, which distribute data observed on
the described system among some categories, using
the training set of already classified data. A range of
such methods is rather wide and includes, e.g., deci-
sion trees, Bayesian classifiers, rule-based methods,
including fuzzy rules, neural networks, k-nearest-
neighbor classifiers, genetic algorithms and other
techniques. The detailed overview of these numeri-
cal techniques can be found, e.g., in sources (Larose,
2005; Han et al., 2011; Zaki and Meira, 2014; Calders
and Verwer, 2010; Zhang, 2000; Ishibuchi et al.,
2000), etc.

Unlike them, the unsupervised classification me-
thods are directly based on clustering solutions look-
ing for data clusters in the untrained data set, such
as hierarchical and partitioning methods (centroid-,
density-based) and many others, see an overview, in
e.g., (Berkhin, 2006; Jain, 2010; Ester et al., 1996).

A separate group of such methods is created by
model-based clustering and classification algorithms
presented e.g., by (Bouveyron and Brunet-Saumard,
2014; Zeng and Cheung, 2014; Ng and McLachlan,
2014), etc. These methods are more complex and de-
manding.

Specific methods of this type of classification ap-
proaches are based on estimation of mixture models.
The mixture model consists of components in the
form of probability density functions (pdfs) describ-
ing individual system regimes and a model of their
switching. The mixture-based classification starts
from some pre-specified (mostly resulted from the ini-
tial data analysis) locations of components and per-
forms a search for density clusters in the data space
with the aim of fitting component models to data. The
search for the data clusters is one of the most critical
parts of the mixture estimation algorithms.

Fundamental approaches in this area mostly fo-
cus on: (i) the use of the EM algorithm (Gupta and
Chen, 2011), see, e.g., (Boldea and Magnus, 2009;
Wang et al., 2004); (ii) Variational Bayes methods
(McGrory and Titterington, 2009; Šmı́dl and Quinn,
2006); (iii) Markov Chain Monte Carlo (MCMC) me-
thods (Frühwirth-Schnatter, 2006; Doucet and An-
drieu, 2001; Chen and Liu, 2000), often used for
mixtures of state-space models; and (iv) recursive
Bayesian estimation algorithms (Kárný et al., 1998;
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Peterka, 1981; Kárný et al., 2006; Nagy et al., 2011;
Suzdaleva et al., 2015), etc.

The present paper deals with the mixture-based
classification using the last part of the enumerated
approaches, which is directed at algebraic computing
the statistics of the involved component distributions
avoiding applying the numerical techniques. A signi-
ficant role in this process is played by the chosen func-
tion of the proximity of the actually measured data
item and individual mixture components.

This paper considers several definitions of a func-
tion used as the proximity and compares their proper-
ties with respect to speed and quality of the resulting
mixture estimation interpreted as a classification task.
Three types of components are considered: the nor-
mal distribution as the most important type of compo-
nents, and also exponential and uniform distributions,
which are essential in modeling non-Gaussian data.

The paper is organized in the following way. The
preparative Section 2 introduces the used models and
recalls necessary basic facts about their individual re-
cursive estimation under the Bayesian methodology.
Section 3 is devoted to introducing the proximity
within the mixture estimation algorithm and its cho-
sen definitions. Section 3.4 specifies the algorithm
in the unified form for all types of components and
proximity definitions. Section 4 provides results of
their experimental comparison. Conclusions and open
problems are given in Section 5.

2 MODELS

Let’s consider a multi-modal system, which at each
discrete time instant t = 1,2, .... generates the continu-
ous data vector yt . It is assumed that the observed sys-
tem works in mc working modes, each of them is indi-
cated at the time instant t by the value of the unmea-
sured dynamic discrete variable ct ∈ {1,2, . . . ,mc},
which is called the pointer (Kárný et al., 1998).

The observed system is supposed to be described
by a mixture model, which (in this paper) consists of
mc components in the form of the following pdfs

f (yt |Θ,ct = i), i ∈ {1,2, . . . ,mc}, (1)

where Θ = {Θi}mc
i=1 is a collection of unknown

parameters of all components, and Θi includes
parameters of the i-th component in the sense that
f (yt |Θ,ct = i) = f (yt |Θi) for ct = i.

The component, which describes data generated
by the system at the time instant t is said to be active.

2.1 Dynamic Pointer Model

Switching the active components (1) is described by
the dynamic model of the pointer

f (ct = i|ct−1 = j,α) , i, j ∈ {1,2, . . . ,mc}, (2)

which is represented by the transition table

ct = 1 ct = 2 · · · ct = mc
ct−1 = 1 α1|1 α2|1 · · · αmc|1
ct−1 = 2 α1|2 · · ·
· · · · · · · · · · · · · · ·

ct−1 = mc α1|mc · · · αmc|mc

where the unknown parameter α is the (mc ×mc)-
dimensional matrix, and its entries αi| j are non-
negative probabilities of the pointer ct = i (express-
ing that the i-th component is active at time t) under
condition that the previous pointer ct−1 = j.

According to (Kárný et al., 2006), the parameter α
of the pointer model (2) is estimated using the conju-
gate prior Dirichlet pdf in the Bayes rule, recomputing
its initially chosen statistics and its normalizing.

Depending on the nature of the measured data, the
pdfs of components can be specified as follows.

2.2 Normal Components

Under assumption of normality of measurements, the
pdf (1) can be specified as

(2π)−N/2|ri|−1/2 exp
{
−1

2
[yt −θi]

′r−1
i [yt −θi]

}
, (3)

where N denotes a dimension of the vector yt ; for each
i ∈ {1,2, . . . ,mc} the parameter θi represents the cen-
ter of the i-th component; ri is the covariance matrix
of the involved normal noise, which defines the shape
of the component, and here {θi,ri} ≡Θi.

The point estimates of parameters θi and ri of in-
dividual components are used in computing the proxi-
mity (this will be explained later). Necessary ba-
sic facts about calculation of the point estimates are
briefly given below.

According to (Peterka, 1981; Kárný et al., 1998),
parameters θi and ri of the individual i-th component
(3) (omitting here for simplicity the subscript i) are
estimated via the Bayes rule using the conjugate prior
Gauss-inverse-Wishart pdf with the reproducible (ini-
tially chosen) statistics Vt−1 and kt−1 of the appropri-
ate dimensions. The statistics are updated as follows:

Vt = Vt−1 +

[
yt
1

]
[yt , 1] , (4)

κt = κt−1 +1, (5)
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and the point estimates of parameters are respectively

θ̂t =V−1
1 Vy, r̂t =

Vyy−V
′
yV−1

1 Vy

κt
(6)

with the help of partition Vt =

[
Vyy V

′
y

Vy V1

]
, (7)

where Vyy is the square matrix of the dimension
(N×N), V ′y is N-dimensional column vector and V1
is scalar, see details in (Peterka, 1981).

2.3 Exponential Components

The exponential distribution of components (1),
which is often suitable for situations, where the as-
sumption of normality brings a series of limitations
(non-negative, bounded data, etc.) can be specified as

(
N

∏
l=1

(al)i

)
exp
{
−a′i(yt −bi)

}
, (8)

i.e., here {ai,bi} ≡Θi, and (al)i > 0 and (bl)i ∈ R are
the l-th entries of the N-dimensional vectors ai and
bi respectively with l = {1,2 . . . ,N}. Currently the
independence of entries of the vector yt is assumed.

Basic facts about the recursive estimation of the
parameters ai and bi, which are necessary to obtain
the proximity (explained later) are recalled below.
With the help of the Bayes rule and the prior expo-
nential pdf, the parameters of the individual i-th ex-
ponential component (8) are obtained, using the al-
gebraic update of the initially chosen statistics St−1,
Kt−1 and Bt−1. It is done at each time instant t as
follows (omitting here the subscript i for simplicity):

St = St−1 + yt , (9)
Kt = Kt−1 +1, (10)
δl = Bl;t−1− yl;t , (11)

where, denoting δl for the l-th entry yl;t of yt ,

if δl > 0, Bl;t = Bl;t−1−δl ; (12)
else Bl;t = Bl;t + ε, (13)

where Bl;t is the l-th entry of the statistics Bt , and ε
can be taken as 0.1. The point estimates of parameters
are obtained from

âl;t =
Kt

Sl;t −KtBl;t
, (14)

b̂l;t = Bl;t , (15)

where âl;t and b̂l;t are entries of vectors ât and b̂t re-
spectively, see, e.g., (Yang et al., 2013), and Sl;t is the
l-th entry of the statistics St .

2.4 Uniform Components

The pdf (1) with the uniform distribution often serves
as an appropriate tool for description of bounded data.
In this paper the independence of entries of the vector
yt is assumed, and therefore, ∀i ∈ {1,2, . . . ,mc} the
pdf (1) takes the form

f (yt |L,R,ct = i) =

{
1

Ri−Li
for yt ∈ (Li,Ri) ,

0 otherwise,
(16)

i.e., here {Li,Ri} ≡ Θi, and their entries (Ll)i and
(Rl)i are respectively minimal and maximal bounds
of the l-th entry yl;t of the vector yt for the i-th uni-
form component.

The estimation of parameters of the individual i-
th uniform component (16) in the case of independent
data entries is performed using the initially chosen
statistics Lt−1 and Rt−1 with the update of their l-th
entries for each l ∈ {1, . . . ,N} in the following form,
see, e.g., (Casella and Berger, 2001):

if yl;t < Ll;t−1, then Ll;t = yl;t , (17)
if yl;t > Rl;t−1, then Rl;t = yl;t , (18)

where the subscript i is omitted for simplicity. The
point estimates of parameters are computed via

L̂t = Lt , R̂t = Rt . (19)

3 PROXIMITY DEFINITIONS

3.1 General Estimation Algorithm

The mixture estimation algorithm is derived using the
joint pdf for all variables to be estimated, i.e., Θ,
α and ct , and its gradual marginalization over all of
them. In general, based on (Kárný et al., 1998; Kárný
et al., 2006; Peterka, 1981; Nagy et al., 2011), after
initialization, the recursive mixture estimation algo-
rithm includes the following steps at each time instant
t (here they are given only to help a reader to be ori-
ented in the discussed field):
1. Measure new data.

2. Compute the proximity of the current data item
to each component. It is done by substituting the
measured data item and the point parameter esti-
mates from the previous time instant into corre-
sponding components.

3. Construct the weighting vector containing the
probabilities of the activity of components at the
actual time instant. It is obtained by using the ob-
tained proximities, the prior pointer pdf and the
previous point estimate of α.
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4. Update the statistics of all components using the
weighting vector, and statistics of the pointer
model, using the weighting matrix joint for the
current pointer ct and the previous one ct−1.

5. Recompute the point estimates of all parameters
and then use them as the initial ones in the first
step of the on-line algorithm.

More detailed information can be also found in (Suz-
daleva et al., 2015).

3.2 Proximity as the Approximated
Likelihood

The proximity appeared in Step 2 of the above algo-
rithm is explained in this section. Originally, accord-
ing to (Kárný et al., 2006) the proximity has been in-
troduced for the normal distribution as the likelihood
for different variants of the model – as the so-called
v-likelihood. In the considered context the variants of
the normal distribution are given by normal compo-
nents (3) labeled by the pointer value ct = i. Gener-
ally the proximity is derived based on the following
scheme. For each i ∈ {1,2, . . . ,mc} under assumption
of the mutual independence of Θ and α, and yt and α,
and ct and Θ it takes the form

f (Θ,ct = i,ct−1 = j,α|y(t))︸ ︷︷ ︸
joint posterior pd f

∝ f (yt ,Θ,ct = i,ct−1 = j,α|y(t−1))︸ ︷︷ ︸
via the chain rule and Bayes rule

= f (yt |Θ,ct = i)︸ ︷︷ ︸
(1)

f (Θ|y(t−1))︸ ︷︷ ︸
prior pd f o f Θ

× f (ct = i|α,ct−1 = j)︸ ︷︷ ︸
(2)

f (α|y(t−1))︸ ︷︷ ︸
prior pd f o f α

× f (ct−1 = j|y(t−1)),︸ ︷︷ ︸
prior pointer pd f

(20)

where y(t) = {y0,y1, . . . ,yt} represents the collection
of data available up to the time instant t, and y0 de-
notes the prior knowledge. With the help of integrals
of (20) over Θ, α and summation over ct−1, the v-
likelihood denoted by Lv for the pointer value ct = i
is obtained as

Lv(ct = i|y(t−1)) =
mc

∑
ct−1=1

∫

Θ∗

∫

α∗
f (yt |Θ,ct = i)︸ ︷︷ ︸

(1)

× f (Θ|y(t−1))︸ ︷︷ ︸
prior pd f o f Θ

f (ct = i|α,ct−1 = j)︸ ︷︷ ︸
(2)

× f (α|y(t−1))︸ ︷︷ ︸
prior pd f o f α

f (ct−1 = j|y(t−1))︸ ︷︷ ︸
prior pointer pd f

dΘdα. (21)

The considered approximation via the Dirac delta
function consists in substituting the point estimates of
parameters Θi and α into (21), which gives

Lv(ct = i|y(t−1)) .
= f

(
yt |Θ̂i;t−1,ct = i

)

× f
(
ct = i|α̂i| j;t−1,ct−1 = j

)
, (22)

where Θ̂i;t−1 is the point estimate of Θ from the pre-
vious time instant t − 1, and α̂i| j;t−1 is the entry of
the point estimate α̂t−1 at time t − 1. Thus, the re-
sult (22) is the predictive pdf existing for each i, j ∈
{1,2, . . . ,mc} with the substituted current data item yt
and the available parameter point estimates. This pdf
is defined as the proximity of the actual data item and
the i-th component.

For normal components (3) the predictive pdf has
the Student distribution. It is chosen as one of defi-
nitions of the proximity to be used during the recur-
sive mixture estimation.

3.3 Proximity as Decreasing Functions

Distinguishing the individual components is a compli-
cated part of the mixture estimation. The used proxi-
mity can unambiguously assign the measured data
item (if possible) to one of the components. Since
components in the data space can be of a different
shape and located on a different distance from each
other, and also with a variously decreasing density of
data items on their edges, it is important to choose a
suitable distance measure. This is determined by the
chosen definition of the proximity.

The main requirement for the proximity function
is to be at its maximum at the center of a component
and to decrease rapidly with the increasing distance.
The speed of decreasing should be fast enough. That’s
is why it is advantageous to apply the proximity func-
tion with a curve of the normal distribution.

Other functions also have similar properties and
thus can be explored as the proximity. Generally a
power function can decrease in the beginning of its
course faster than an exponential function, but at a
larger distance the exponential function is closer to
zero. Comparison of these functions as the proximity
is the main task of the presented research.

Based on this idea, different definitions of the
proximity can be chosen using a rapidly decreasing
function depending on

∆t = yt −E[yt ], (23)

where the expectation E[yt ] is computed for the cor-
responding type of components.

For the i-th normal component (3) the expectation
is given by the point estimate of θi according to (6).
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For the i-th exponential component the expecta-
tion can be obtained as

1
(âl;t−1)i

+(b̂l;t−1)i (24)

using the point estimates (14)–(15) for the l-th entries
of the vector yt .

For the i-th uniform component the expectation is
a simple average of the component bounds Li and Ri
for corresponding entries of the vector yt .

Using ∆t from (23) the following rapidly de-
creasing functions (as combinations of the mentioned
above) are considered:
1. The polynomial of the form

1/∆5
t . (25)

2. The normal approximation of other distributions,
optimal in the sense of the Kullback-Leibler diver-
gence, see, e.g., (Kárný et al., 2006), which is the pdf
(3) with the substituted expectation of the correspond-
ing type of the components instead of θi. The covari-
ance matrices can be either used from individual dis-
tributions or chosen as the diagonal ones in case only
the expectations should be estimated.
3. The polynomial in the form

exp{−(2∆t)
5}. (26)

4. The Student distribution based relation
(

1+
∆2

t

t

)− t
2

. (27)

3.4 Algorithm

The mixture estimation algorithm tailored to the
above proximity definitions is summarized as follows.

Initialization (for t=1)

• Set the number of components mc.

• Set the initial statistics for the corresponding type
of components, i.e., either for (3) or (8), or (16),
see Section 2.

• Set the initial Dirichlet statistics of the pointer
model (2) according to (Kárný et al., 2006) as the
(mc×mc)-dimensional matrix denoted by γ0.

• Using the initial statistics, compute the initial
point estimates of parameters of all components
using either (6) or (14)–(15), or (19).

• Compute the initial point estimate of α by norma-
lizing the Dirichlet statistics γ0.

• Set the initial mc-dimensional weighting vector
w0.

On-line part (for t=2,. . . )

1. Measure the new data item yt .

2. Compute the expectations E[yt ] of all components
using the corresponding point estimates.

3. For all components, obtain (23) by substituting yt
and the expectations E[yt ].

4. For all components, substitute the obtained ∆t into
the chosen type of the proximity, i.e., either (25),
(3), (26) or (27).

5. In each case the result is the mc-dimensional vec-
tor of proximities, which has one entry for each
component. These entries are proportional to the
inverse distance of the data item to the individual
components. The higher the number is, the closer
the data item is to the component.

6. Multiply entry-wise the resulted vector from the
previous step, the previous weighting vector wt−1
and the previous point estimate of α. The result of
the multiplication is the matrix of weights denoted
by Wi, j;t joint for ct and ct−1.

7. Perform the summation of the normalized matrix
from the previous step over rows and obtain the
updated weighting vector wt . The maximal entry
of the weighting vector gives the point estimate of
the pointer ct , i.e., the currently active component.

8. For all components, update the statistics with the
help of multiplying the data-dependent increment
in each statistics by the corresponding entry from
the actualized weighting vector wt , see (Kárný et
al., 1998; Kárný et al., 2006; Peterka, 1981; Nagy
et al., 2011; Suzdaleva et al., 2015; Nagy et al.,
2016).

9. Update the statistics of the pointer model as

γi| j;t = γi| j;t−1 +Wi, j;t (28)

based on (Kárný et al., 1998; Nagy et al., 2011).

10. Recompute the point estimates of all parameters
and use them for Step 1 of the on-line part.

4 EXPERIMENTS

This section provides the experimental comparison
of evolution of the proximities (25), (3), (26) and
(27) for all three discussed types of components ac-
cording to the above algorithm. The simulated two-
dimensional data were used, which is quite sufficient
for adequate judging the proximity evolution. Three
components of each type were simulated. A series of
experiments with the various number of data was per-
formed. Here typical results are demonstrated.
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The quality of classification as the detection of the
active component at each time instant according to the
maximal weights was compared. Firstly, easily distin-
guishable components as a simple case were tested.
Results for them are provided in Table 1. Then, a
case with two components closer to each other and
the third at a larger distance was tested, see Table 2.
Finally, the most complicated case with overlapped
components was tested, see results in Table 3.

Table 1: Average number of incorrect pointer point esti-
mates (%) for easily distinguishable components.

Proximities / components (3) (8) (16)
1/∆5

t 1.2 0 3.4
Approximation (3) 0 65.5 0.4

exp{−(2∆t)
5} 0 0 0.4

(
1+ ∆2

t
t

)− t
2

26.4 0 0.4

Table 2: Average number of incorrect pointer point esti-
mates (%) for variously located components.

Proximities / components (3) (8) (16)
1/∆5

t 7.4 6.6 15.8
Approximation (3) 27.2 67.4 11.2

exp{−(2∆t)
5} 15.8 3.6 11.2

(
1+ ∆2

t
t

)− t
2

21.4 4.6 12

Table 3: Average number of incorrect pointer point esti-
mates (%) for overlapped components.

Proximities / components (3) (8) (16)
1/∆5

t 39.4 39.2 19.2
Approximation (3) 37.8 67.4 15.4

exp{−(2∆t)
5} 39.6 33.4 15.4

(
1+ ∆2

t
t

)− t
2

39.2 37.2 16

These tables briefly (due to a lack of space)
present results of comparison. Nevertheless, to sum-
marize results obtained for variously noised data (that
determines distances among components) the follow-
ing trend is observed.

For easily distinguishable components all the
proximity definitions are similarly successful with the
insignificant difference, excepting the Student distri-
bution based function (27) for normal components,
and the normal approximation of the exponential dis-
tributions.

Variously located components, where two compo-
nents are closer to each other and the third is at a
larger distance, is a more challenging task. In this
case the trend in success of classification of exponen-
tial and uniform components is preserved. However,

Figure 1: The most successful classification results with
normal components from Tables 1, 2 and 3.

significant worsening can be seen for the proximity
(3) for normal components. The proximity 1/∆5

t gives
the best results.

For strongly overlapped components (which is the
most complicated and also realistic case) the situation
changes. For normal components all results are simi-
lar, but now the proximity definition (3) is the most
successful.

It seems that a decision about a choice of the
proximity definition is suitable to make in accordance
to the noise covariance matrix estimation. For the less
noised data the distance-based proximities 1/∆5

t and
exp{−(2∆t)

5} can be used. The normal approxima-
tion (3) is not suitable for exponential components,
but it can be used for uniformed components. For
more noised data the normal approximation (3) can
be used both for normal and uniform components.

The graphical presentation of the classification re-
sults is given for normal components in Figure 1,
where (due to a lack of space) the most successful
combinations of the proximity definition and a dis-
tance among components are shown. In all figures
three detected components are sharply visible.

Selected results for exponential components can
be seen in Figure 2, where the evolution of the com-
ponent centers during the on-line estimation is plotted
for the proximity (26) (top) and (27) (bottom). The
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Figure 2: Evolution of exponential component centers du-
ring the estimation with the proximity exp{−(2∆t)

5} (top)
and the Student based proximity (bottom).

initial centers are denoted by the circle, the final – by
’x’. The figures show that although the success of the
estimation according to Table 1 were the same for the
proximity (26) and (27), the stabilization of compo-
nent centers took a different time. In the top figure the
centers were correctly located just in the beginning of
estimation, while in the bottom figure the search for
correct locations was performed a bit longer.

For uniform components the classification results
were close to each other for all tested types of loca-
tion of components. It is worth noting that the nor-
mal approximation (3) and the distance-based proxi-
mity (26) were similarly successful. Results with one
of them for variously located components are demon-
strated in Figure 3 (top).

The proximity evolution during the chosen time
interval is shown in Figure 3 (bottom). The distance-
based proximity 1/∆5

t demonstrates the strongest
sharpness. The normal approximation has a smoother
course. The third proximity from Table 1 is in-
fluenced by the constant, which allows to move its
course as necessary. The Student distribution based
proximity is close to flat.

5 CONCLUSIONS

The aim of the described recursive classification is the
analysis of real data in real time, which suggests that
the detected clusters can be of various shapes. Thus
solutions with mixtures of different components are
highly desired.

Using the point estimates directly in the exponen-
tial and uniform models as the proximity gives unsuc-
cessful results during the mixture estimation, which
can be explained by asymmetric distributions. One

Figure 3: Detected uniform components with the proximity
(3) (top) and the proximity evolution for a selected interval
(bottom).

of the attempts was the use of the normal approxima-
tion optimal from the point of view of the Kullback-
Leibler divergence. The important property of the
proximity is its rapidly decreasing course. This is sat-
isfied by the normal approximation, but other func-
tions can be also relevant for the considered task. The
results of the comparison show that for different types
of components a choice of the proximity is not un-
ambiguous and influences the classification results.
Thus, the significance of the proximity choice is con-
firmed.

However, there is still a series of open problems
in this area, including (i) the solution for dependent
entries of the data vector for exponential and uniform
distributions, (ii) extension of the recursive mixture
estimation theory for other distributions describing
non-Gaussian data, and (iii) classification with a mix-
ture of different distributions. This will be the plan of
the future work within the present project.
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