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Ústav teorie informace a automatizace, v.v.i.

Academy of Sciences of the Czech Republic
Institute of Information Theory and Automation

RESEARCH REPORT

R. Likhonina, E. Suzdaleva, I. Nagy

Comparison of mixture-based classification with the
data-dependent pointer model for various types of

components

2355 August 2016
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1 Introduction

1.1 Motivation and state of the art

The presented research report deals with a mixture-based classification problem, which is one of domains
of unsupervised model-based classification methods. Often they are based on clustering solutions applied
to the untrained data set, see e.g., [1, 2, 3], etc.

The focus of the report is on classification using the mixture models, which consist of components
in the form of probability density functions (pdfs) describing individual regimes of working a considered
system and a model of their switching. The mixture-based classification starts from some pre-specified
(mostly resulted from the initial data analysis) locations of components and performs a search for density
clusters in the data space with the aim of fitting component models to data.

The key part of the mixture-based classification in this context is determining the component which
describes the active regime of the system. This brings a series of involved subtasks, such as estimation of
parameters of components and of the switching model. Thus the mixture estimation should be applied.
There exists a variety of various approaches in this field, namely: (i) estimation based on the use of the
EM algorithm [4, 5, 6]; (ii) Variational Bayes methods [7, 8]; (iii) Markov Chain Monte Carlo (MCMC)
methods [10, 11, 12]; and (iv) recursive Bayesian estimation algorithms [15, 13, 14, 16, 17, 18], etc. Here,
the last part of the enumerated approaches is used, which is directed at algebraic computing the statistics
of the involved component distributions avoiding applying the numerical techniques.

1.2 Aim of experiments

The research report describes an experimental comparison of the classification quality for a series of types
of mixture components, namely:

• categorical components;

• uniform components;

• exponential components;

• state-space components with known parameters

• and normal components.

The dynamic and static configuration of the data-dependent switching model is used. For the first of them
all types of components are considered. The static switching model is taken with normal components.

The aim of the comparison is to explore advantages of using the data-dependent switching model from
the point of view of classification.

2 Estimation scheme

This section introduces the considered models and schematically summarize the mixture estimation al-
gorithm used for the classification task.

2.1 Models

Let’s consider a multi-modal system, which at each discrete time instant t = 1, 2, .... generates continuous
data yt and/or discrete data zt with the set of its possible values {1, 2, . . . ,mz}. It is assumed that the
observed system works in mc working modes indicated by values of the unmeasured dynamic discrete
variable ct ∈ {1, 2, . . . ,mc}, which is called the pointer [15], and each of the pointer values also depends
on values of the measured variable zt. The variable yt is in general the Ny-dimensional column vector.

The observed system is described by a mixture model consisting of mc components in the form of the
following pdfs

f (the modeled variable |Θ, ct = i), i ∈ {1, 2, . . . ,mc}, (1)

where Θ = {Θi}mci=1 is a collection of unknown parameters of all components, and Θi includes parameters
of the i-th component according to its distribution (see below) in the sense that f (yt|Θ, ct = i) = f (yt|Θi)
for ct = i.
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The component, which describes data generated by the system at the time instant t is said to be
active. A distribution of the component (1) is chosen according to the nature of measurements and made
assumption about modeled variables. Specifically, here the pdf (1) is taken in the following forms.

2.1.1 Components

The categorical components are considered for the case of discrete measurements zt ∈ {1, 2, . . . ,mz}.
Each component (1) is taken as

f(zt = l|ψzt−1 = q, β, ct = i) ≡ (2)

zt = 1 zt = 2 · · · zt = mz

ψzt−1 = 1 (β1|1)i (β2|1)i · · · (βmz|1)i
ψzt−1 = 2 (β1|2)i · · · · · · · · ·
· · · · · · · · · · · · · · ·

ψzt−1 = mψ (β1|mψ )i · · · · · · (βmz|mψ )i

with the regression vector ψzt−1 = [zt−1, . . . , zt−nz ]
′ of the length nz, and with the parameter βi cor-

responding to the component labeled by the value ct = i, such that {βi}mci=1 ≡ β. Denotation q ∈
{1, 2, . . . ,mψ} belongs to a configuration of the used regression vector. Here βi is a matrix of non-negative
probabilities (βl|q)i of the value zt = l conditioned by the regression vector configuration ψzt−1 = q for
ct = i.

The pdf (1) with the uniform distribution under assumption of the independence of entries of the
vector yt is taken ∀i ∈ {1, 2, . . . ,mc} as follows:

f (yt|L,R, ct = i) =

{
1

Ri−Li for yt ∈ (Li, Ri) ,

0 otherwise,
(3)

i.e., here {Li, Ri} ≡ Θi, and their entries (Ll)i and (Rl)i are respectively minimal and maximal bounds
of the l-th entry yl;t of the vector yt for the i-th uniform component, and l = {1, 2 . . . , Ny}.

The exponential distribution of components (1) is specified as(
N∏
l=1

(al)i

)
exp {−a′i(yt − bi)} , (4)

i.e., here {ai, bi} ≡ Θi, and (al)i > 0 and (bl)i ∈ R are the l-th entries of the Ny-dimensional vectors
ai and bi respectively with l = {1, 2 . . . , Ny}. Currently the independence of entries of the vector yt is
assumed.

The state-space components (1) are presented as the following pdfs:

f(xt|xt−1, ut, ct = i), f(yt|xt, ut, ct = i), ∀i ∈ {1, 2, . . . ,mc}, (5)

where xt is the unmeasurable state to be estimated, and (5) are linear models existing for each value of
the categorical state ct. is written as the following two equations:

xt = Mxt−1 +Nut + ωt, (6)

yt = Axt +But + vt, (7)

where M , N , A and B are matrices of parameters of appropriate dimensions supposed to be known;
ωt and vt are the process and the measurement Gaussian white noises with the zero means and the
covariance matrices Rω and Rv respectively, which are supposed to be known.

The normal components are presented as the following pdfs:

(2π)−Ny/2|ri|−1/2 exp

{
−1

2
[yt − θi]′r−1i [yt − θi]

}
, (8)

where θi is the mean vector of the i-th normal component and ri is the covariance matrix.
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2.1.2 Dynamic Data-dependent Pointer Model

Switching the active components (1) can be described by the dynamic data-dependent model of the
pointer

f (ct = i|α, ct−1 = j, zt = k) = (9)

ct = 1 ct = 2 · · · ct = mc

ct−1 = 1 (α1|1)k (α2|1)k · · · (αmc|1)k
ct−1 = 2 (α1|2)k · · ·
· · · · · · · · · · · · · · ·

ct−1 = mc (α1|mc)k · · · (αmc|mc)k

where the unknown parameter α is the (mc ×mc)-dimensional matrix, which exists for each value k ∈
{1, 2, . . . ,mz} of zt. Its entries (αi|j)k are non-negative probabilities of the pointer ct = i under condition
that the previous pointer ct−1 = j with i, j ∈ {1, 2, . . . ,mc} and zt = k.

2.1.3 Static Data-dependent Pointer Model

Switching the components can be also described by the static data-dependent model of the pointer

f (ct = i|α, zt = k) = (10)

ct = 1 ct = 2 · · · ct = mc

zt = 1 α1|1 α2|1 · · · αmc|1
zt = 2 α1|2 · · ·
· · · · · · · · · · · · · · ·

zt = mz α1|mz · · · αmc|mz

where the unknown parameter α is the (mc ×mc)-dimensional matrix, which exists for each value k ∈
{1, 2, . . . ,mz} of zt. Its entries (αi|j) are non-negative probabilities of the pointer ct = i under condition
that zt = k.

2.2 Schematic summary of algorithm

The mixture estimation algorithm is obtained via marginalization of the joint pdf for all unknown variables
to be estimated. Based on [15, 14, 13, 16], after initialization, the recursive mixture estimation algorithm
includes the following steps at each time instant t:

1. Measure new data.

2. Compute the proximity of the current data item to each component. It is done by substituting
the measured data item and the point parameter estimates from the previous time instant into
corresponding components.

3. Construct the weighting vector containing the probabilities of the activity of components at the
actual time instant. It is obtained by using the obtained proximities, the prior pointer pdf and the
previous point estimate of α.

4. Declare the active component according the biggest entry of the vector wt, which is the point
estimate of the pointer ct at time t. Classify the data as belonging to the active component.

5. Update the statistics of all components using the weighting vector, and statistics of the pointer
model, using the weighting matrix joint for the current pointer ct and the previous one ct−1.

6. Recompute the point estimates of all parameters and then use them as the initial ones in the first
step of the on-line algorithm.

Here this information is outlined only verbally for better understanding the sense of performed experi-
ments. The detailed description of algorithms based on [15, 14, 13, 16] is available in [17, 18, 19].
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3 Comparison experiments

The experiments are performed in the open source programming environment Scilab (www.scilab.org),
which presents a powerful tool for engineering computations. All the used codes are completely editable
and can be tailored for different specific tasks (including other components or real data application).
For all types of components firstly three components were simulated with the dynamic data-dependent
pointer model, and one type (normal) was simulated similarly for the static pointer model. Then the
mixture-based classification was performed (i) using the same structure of the pointer model and (ii)
without data in the condition. The quality of classification was compared using the following criteria:

• Number of incorrect classifications (i.e., the point estimates of the pointer);

• The evolution of individual weights (whether they are close to 1 or 0 for each component);

• The error of the data prediction from the components.

All the experiments are performed for a different level of the model noise, which defines location of
components in the data space and a distance among them. The description of experiments is given below
for each type of components.

3.1 Categorical components

3.1.1 Data simulation

To perform simulation, parameters for three categorical components (2) and for a pointer model (9) have
been set. The total number of samples simulated for three components is 150. After simulation data
for the pointer ct and the discrete variable zt with three possible values are available. The example of
simulation results can be seen in Figure 1.

 

Figure 1: Simulation of categorical components

To make comparison of a data-dependent pointer model (with zt) and a data-independent pointer
model (without zt) the different degree of uncertainty both for a component model and a pointer model has
been used. This uncertainly should be understood as closeness of the model parameters (i.e., probabilities)
to the value 1. The closer to the 1, the more deterministic the model is. Such kind of a noise varied
in values 0.0001, 0.001, 0.1, 1 and 5 for the component models and 0.001, 0.1, 1 and 5 for the pointer
models. Thus, there are 20 different combinations of noise for the component and pointer models. For
each combination ten experiments have been performed. The total number of fulfilled experiments is 200.

The results of classification and prediction are presented in the next section.

6



3.1.2 Results

The results of classification and prediction are summarized for the component models with noise 0.0001,
0.001, 0.1, 1 and 5 and the pointer model with noise 0.001, 0.1, 1 and 5 in Table 1 (classification) and
Table 2 (prediction). In the tables the columns are for different variations of noise in a component model.
The columns comprise information about classification resp. prediction results for simulations with a
data-dependent pointer model (with z(t)) and a data-independent pointer model (without z(t)). The
rows are for the pointer model with noise 0.001, 0.1, 1 and 5. The results are ordered from the smallest
number of classification resp. prediction errors for classification resp. prediction with a data-dependent
pointer model. Note, that in table with classification results there are two values via ’/’. The first
value is for wrong classification, the value after ’/’ is for wrong prediction. It is made to show that
the smallest number of incorrectly classified samples does not logically mean the smallest number of
incorrectly predicted data.

Table 1: Categorical components: classification/prediction results
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Table 2: Categorical components: prediction results
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0 
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Further on, the figures illustrating outputs for some component/pointer model noise variations are
presented. Simulation results for the component model with noise 0.0001 and the pointer model with
noise 0.001 are shown in Figure 2.

 

Figure 2: Simulation of categorical components: component model with noise 0.0001/pointer model with
noise 0.001

In the following table the results of classification with z(t) and without z(t) are listed.

Table 3: Comparison of simulation results with a data-dependent and a data-independent pointer model
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The same is made for the component models with noise value 0.0001 and the pointer model with noise
value 5, as well as for the component models with noise value 5 and the pointer models with noise values
0.001 and 5. The results can be seen in the following figures and tables.

 

Figure 3: Simulation of categorical components: component model with noise 5/pointer model with noise
0.001

Table 4: Comparison of simulation results with a data-dependent and a data-independent pointer model
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Figure 4: Simulation of categorical components: component model with noise 0.0001/pointer model with
noise 5

Table 5: Comparison of simulation results with a data-dependent and a data-independent pointer model
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Figure 5: Simulation of categorical components: component model with noise 5/pointer model with
noise 5

Table 6: Comparison of simulation results with a data-dependent and a data-independent pointer model
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3.1.3 Discussion

According to the results listed in tables the number of incorrectly classified samples is the smallest one
for noise values in the component models 0.0001 and 0.001 while the noise of pointer model is 0.001. The
higher a noise value is the greater number of incorrectly classified samples are presented in the model.
The largest number of incorrectly classified data is when the noise value is 5 both for the component and
pointer models. It is valid both for data-dependent and data-independent pointer models.

The number of wrong classifications using a data-dependent model for a component model with noise
value 0.0001 and 0.001 and for a pointer model with noise value 0.001 varies from 0 to 76 samples (i.e.
0 % to 51.01 %) and 0 to 41 samples (0 % to 27.52 %) respectively. The average number of wrong
classifications is 19.5 (13.09 %) and 20 (13.42 %) resp., while standard deviation for the first case is very
large - 31.71 samples (21.28 %). For the second case the standard deviation is 19.65 samples (13.19 %).

As for the data-independent model the number of wrong classifications is a little bit larger for the
same values of noise: from 0 to 38 samples (0 % to 25.50 %) and from 34 to 42 samples (22.82 % to
28.19 %) resp. The average values are 31 samples (20.81 %) and 37.40 samples (25.10 %) resp. And the
standard deviation is 11.79 samples (7.91 %) and 2.32 samples (1.56 %).

It should be noted that though in two discussed cases the average number of incorrectly classified
samples is smaller for a data-dependent pointer model, however, the standard deviation is significantly
higher and not in all experiments performed for these noise values the data-dependent model shows the
best results. There are cases, for example, when the number of wrong classifications is twice greater for
a data-dependent pointer model than for a data-independent pointer model: 75 via 35 samples or 76 via
38 samples (see table below).

Besides, if taking into account all experiments we see that there is no evident prove that a data-
dependent model performs better, as in many cases a data-independent model gives better or similar
results in classification. In the following table the results are presented in more details. Green color in
the table means success of a data-dependent pointer model over a data-independent pointer model. Red
color rows are for the greater number of wrong classifications using a data-dependent pointer model. The
equal number of wrong classifications for both models are colored in blue. In the table the average and
standard deviations are presented.

Table 7: Categorical components: prediction results

Table 3.1.7. Classification results: average and standard deviation 
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o
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el
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o
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Component model - noise 

0.0001 0.001 0.1 1 5 

0
.0

0
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z(t) 

with z(t) without 

z(t) 

with z(t) without 

z(t) 

with z(t) without 

z(t) 

with z(t) without 

z(t) 

19.50±3

1.71 

31±11.7

9 

20±19.6

5 
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32 

42.70±2

8.37 
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97 
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96 
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0
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2 
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8 
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91.10±1

1.82 
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13 
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33 

1
 

49±6.31 49±6.99 
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0.07 
49±8.27 

62±10.4

8 

55.60±2

0.08 

90.10±11

.38 

90.30±9.

09 

97.10±7.

80 
95±6.32 

5
 

52±8.23 
48.30±7.

02 
52±6.32 

51.20±5.

75 
59±6.32 

61.50±8.

29 

86.30±5.

10 

82.90±6.
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As far as prediction is concerned the better results are shown by a data-dependent pointer model in
the majority of cases with different noise values. It should be noted that standard deviation, however, is
very high.

Table 8 lists the outcomes of experiments. It comprises average values of incorrect predictions and
their standard deviations. The greater number of incorrectly predicted samples using a data-dependent
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pointer model in comparison with a data-independent pointer model is in red. Green rows mean the less
number of wrong predictions made by a data-dependent pointer model.

Table 8: Prediction: average and standard deviation

Table 3.1.8. Prediction: average and standard deviation 

P
o

in
te

r 
m

o
d

el
 -

 n
o

is
e
 

Component model - noise 
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20.40±3

8.41 
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8 

2.70±4.8

1 
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3.2 Uniform components

3.2.1 Data simulation

Before making classification the parameters for the pointer model and two parameters of the component
model - a and b, the minimum and maximum values, are defined. For three components the total number
of simulated data is set to 500, including data for component model y(t), data for pointer model c(t),
discrete values for a pointer model z(t) and weights α. The data are saved using SciLab function ”save”
and then used for estimation for both a data-dependent and data-independent pointer model.

During simulation we have changed the values of parameters a and b by multiplying corresponding
matrices by 0.8, 1, 1.8, 3 and 10; thus, making distance between components greater or smaller. The
higher a multiplying value of matrix b is the nearer the components of the component model are and
the harder to perform satisfactory estimation and classification is. The multiplication of matrix a with
higher values results in more compact data location in the component model. The multiplication was
made turn by turn, so there are 25 combinations for different values of a and b. For each combination
ten experiments were performed. The total number of experiments for uniform components is 250.

Some examples of simulated data can be seen in the following figures.
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Figure 6: Simulation of uniform components: a and b matrices are multiplied by 0.8

Figure 7: Simulation of uniform components: a is multiplied by 1, b is multiplied by 0.8
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Figure 8: Simulation of uniform components: a is multiplied by 1, b is multiplied by 1.8

Figure 9: Simulation of uniform components: a is multiplied by 1, b is multiplied by 10

The initial weight vector [0.4, 0.3, 0.3] as well as standard deviation 0.5 for proximity are defined for
both models. The initial statistics and estimation for components and the pointer are performed prior
to estimation. The results of algorithm are presented in the next section.

3.2.2 Results

The results of simulation and estimation both for the data-dependent and data-independent pointer
models are presented in the following table. The table shows the number of incorrectly classified samples
with a data-dependent pointer (with z(t)) via the number of misclassifications with a data-independent
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pointer (without z(t)). The columns are for values of parameter b and the rows are for the values of
parameter a.

Table 9: Classification results for uniform components
Table 3.2.1. Classification results for uniform components. 

 b*0.8 b*1 b*1.8 b*3 b*10 

with z(t) 
without 

z(t) 
with z(t) 

without 

z(t) 
with z(t) 

without 

z(t) 
with z(t) 

without 

z(t) 
with z(t) 

without 

z(t) 

a
*

0
.8

 

7 

13 

25 

27 

37 

49 

51 

60 

64 

70 

8 

14 

34 

27 

41 

49 

52 

62 

66 

71 

16 

29 

29 

43 

45 

46 

49 

55 

60 

65 

17 

30 

31 

43 

45 

47 

50 

56 

60 

68 

49 

51 

57 

62 

63 

64 

70 

79 

85 
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50 

52 

57 

62 

64 

64 

70 

79 

85 

250 

48 

59 

59 

63 

64 

68 

73 

83 

85 
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48 

59 

59 

64 

64 

68 

73 

83 

84 

92 
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115 

118 

129 
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82 

101 
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115 

118 

129 

135 

273 

300 

341 

a
*

1
 

0 

0 

0 

0 

0 

1 

1 

1 

3 

4 

0 

0 

0 

0 

0 

1 

1 

1 

3 

4 

1 

2 

8 

8 

9 

12 

12 

14 

17 

42 

3 

2 

8 

8 

15 

12 

15 

14 

18 

44 

42 

44 

44 

50 

50 

52 

53 

53 

54 

66 

42 

44 

44 

50 

50 

52 

53 

53 

54 

66 

37 

37 

39 

39 

60 

65 

74 

77 

78 

149 

37 

37 

39 

40 

60 

65 

75 

77 

78 
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90 

96 
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11 
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0 

0 

0 

0 
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0 
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Some examples of simulation and estimation are shown in the following figures and tables.
The first example is for multiplication of parameter a with value 1 and parameter b with value 0.8.
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Figure 10: Simulation of uniform components: a ∗ 1, b ∗ 0.8

From the picture it is clearly seen that three components are far from each other and there should
not be difficulties in their classification. The results of estimation and classification both for the data-
dependent and data-independent pointer models are presented in the following table.

Table 10: Simulation results: a ∗ 1, b ∗ 0.8
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The next example is for multiplication values 1 for a and 10 for b.

 

Figure 11: Simulation of uniform components: a ∗ 1, b ∗ 10

The components are very close to each other. The results of classification are listed in table 11.

Table 11: Classification results: a ∗ 1, b ∗ 10
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Simulation with parameters a and b multiplied by 10 and 1 resp. is shown below.

 

Figure 12: Simulation of uniform components: a ∗ 10, b ∗ 1

Table 12: Classification results: a ∗ 10, b ∗ 1

Because the third component was not estimated, the programme gave error and did not generate the
graph of weight evolution.
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The last example presented here is for a and b multiplied by 10.

 

Figure 13: Simulation of uniform components: a ∗ 10, b ∗ 10

Table 13: Classification results: a ∗ 10, b ∗ 10

The results of estimation and classification are discussed in Section 3.2.3.

3.2.3 Discussion

From table 9 in the previous section it is obvious that the greater a value of parameter b is, i.e. the
farther the components from each other are, the more precise the classification is. The higher values
of parameter a also contribute to good performance of the algorithm, as the components become more
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compact and also are far away from each other. However, it is not valid for a ∗ 10, where the number of
wrong classifications is quite high.

If we compare the results while using a data-dependent and data-independent pointer model for a∗0.8
and b ∗ 0.8, we see that the number of misclassifications is from 7 to 70 samples (1.4 % to 14 %) from
total number of 500 samples for a pointer model with z(t) and from 8 to 71 samples from total number
of 500 samples (1.6 % to 14.2 %) for a pointer model without z(t). For a ∗ 1.8 and b ∗ 0.8 the number of
incorrectly classified samples is 0. Thus, there is no much difference in using a pointer model with z(t)
and without z(t). The same situation is for all other cases of parameter multiplications.

To make the results clearer table 14 shows the average value and standard deviation for classification
results with different values of parameters a and b both for the data-dependent and data-independent
pointer models. Green cells in the table mean that the number of incorrectly classified samples is less
for a data-dependent model. The equal number of wrong classifications for models with z(t) and without
z(t) is highlighted in blue colour. The greater number of misclassifications with a data-dependent model
in comparison with a data-independent model is in red colour. From this we see that a data-dependent
pointer model performs slightly better, but in the majority of cases the performance of both models can
be evaluated as more or less similar. The same can be seen also from the figures in the previous section.

Table 14: Classification results: average and standard deviation
Table 3.2.6. Classification results: average and standard deviation 

 b*0.8 b*1 b*1.8 b*3 b*10 
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5.87 
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.53 
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.52 

166.40±0

.52 
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5.17 
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3.3 Exponential components

3.3.1 Data simulation

The first step before the very estimation and classification was to define the parameters of the pointer
model and parameters of the component model a and b. For three components 500 samples were simulated
including data for a component model y(t), data for a pointer model c(t), discrete variables for a pointer
model z(t) and weights α.

The distance between components can be changed by varying parameters of the component model -
a and b in this case. The greater the values of the parameters are the farther the components from each
other are located. To vary the distance the matrices a and b were multiplied by values 0.01, 0.1, 0.2,
0.5, 1 and 1.5 turn by turn. Thus, there are 36 combinations. For each combination ten experiments are
performed. The total number of experiments for exponential components are 360.

Several examples of simulated exponential components are shown in the following figures. The results
are presented and discussed in Sections 3.3.2 and 3.3.3 respectively.
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Figure 14: Simulation of exponential components: a ∗ 0.5, b ∗ 0.01

Figure 15: Simulation of exponential components: a ∗ 1, b ∗ 0.01
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Figure 16: Simulation of exponential components: a ∗ 0.5, b ∗ 0.5

Figure 17: Simulation of exponential components: a ∗ 1, b ∗ 0.5
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3.3.2 Results

The results of estimation and classification both using a data-dependent pointer model and a data-
independent pointer model are presented in the following table. The results are valid for different values
of parameters a and b. The table shows the number of incorrectly estimated samples with a data-
dependent pointer model (with z(t)) via the number of wrong estimations using a data-independent
pointer model (without z(t)).

Table 15: Classification results for exponential components
Table 3.3.1. Classification results for exponential components 

 b*0.01 b*0.1 b*0.2 b*0.5 b*1 b*1.5 

with z(t) without 

z(t) 

with z(t) without 

z(t) 

with 

z(t) 

without 

z(t) 

with 

z(t) 

without 

z(t) 

with 

z(t) 

without 

z(t) 

with z(t) without 

z(t) 

a
*

0
.0
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341 

353 
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316 

313 

304 

318 

317 
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301 

312 

320 

322 

324 

326 

333 

341 

342 

316 

297 

307 

310 

305 

269 

279 

324 

328 

303 

264 

282 

294 

303 

308 

315 

342 

344 

347 

348 

343 

283 

283 

291 

286 

299 

331 

294 

331 

298 

291 

316 

322 

323 

340 

345 

352 

353 

356 

361 

324 

328 

303 

328 

321 

339 

300 

323 

341 

298 

265 

296 

299 

303 

308 

315 

322 

323 

332 

336 

265 

288 

302 

294 

319 
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323 

302 

298 

288 

183 

239 
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295 

327 

344 
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230 
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252 
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241 

286 

312 

198 

182 

203 
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*

0
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287 
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328 

336 
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365 

365 
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316 
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328 

329 
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264 

186 
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331 
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265 
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211 
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184 
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83 

88 

86 

96 
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248 

91 
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118 

155 

57 

184 

180 

191 

36 

60 

68 

70 

79 

79 

88 

113 

165 

199 

190 

50 

50 

38 

32 

49 

71 

72 

47 

185 

25 

28 

36 

38 

44 

48 
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151 

158 
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27 

25 

30 

36 

48 

42 

77 

21 

30 

30 

a
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0
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333 

336 

338 

342 

348 

292 

294 
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322 

292 

297 

271 

345 

296 

172 

214 

235 

259 
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305 

331 

332 

340 

341 

175 

174 

173 

297 

175 
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191 

172 

166 

233 

159 

169 

172 

178 

202 

214 

325 

446 

457 

468 

145 

166 

167 

172 

192 

167 

184 

293 

173 

164 

63 

67 

67 

68 

71 

71 

91 

93 

93 

94 
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85 

74 

56 

55 

33 

41 

45 

45 

55 
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152 
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6 
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2 

5 

5 

3 

6 

3 
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5 
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190 
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353 
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38 

61 

67 

68 

75 

77 

77 

79 

80 

121 

37 

89 

48 

47 

52 

53 

59 

53 

46 

47 

4 

10 

12 

12 

13 

20 

21 

22 

22 

23 

5 

8 

12 

12 

13 

13 

14 

13 

18 

12 

8 

11 

27 

38 
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148 
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161 
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25 

116 

92 

14 

37 
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17 
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35 

29 

1 

1 

3 

5 

10 

19 

19 

20 

39 
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1 

1 

40 

0 
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68 
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1 
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a
*

1
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313 

315 

318 
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355 
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292 

289 

257 

313 

311 

271 
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286 

257 

45 

52 

60 

94 

100 

120 

160 

160 

163 

164 

32 

47 

49 

71 

50 
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37 

98 

49 
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14 

16 

17 

18 

18 

25 
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34 

36 
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16 

16 

13 

18 

17 

14 

16 

17 

17 
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0 

1 

1 

2 

2 

2 

2 

2 

2 

0 

0 

0 

1 

0 

0 

1 

1 

1 

2 

0 

0 

0 

0 

0 

1 

6 

11 

13 

21 

0 

18 

22 

50 
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16 

9 

48 

23 

0 
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0 

0 

0 

0 

0 

1 

0 

13 

42 

46 

52 

68 
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1 

a
*

1
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27 

28 
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31 
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17 

21 
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7 

7 
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0 

0 

0 

0 

0 

0 

3 

4 
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0 

0 

0 

0 

0 

0 

0 
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0 

0 

0 

0 

0 

0 

0 

0 

0 

73 
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12 

17 

19 

26 

33 

35 

38 

69 

17 
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0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

6 

17 

22 

24 

41 

44 
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There are some examples illustrating simulation and classification results and the difference in the
results while using a pointer model with z(t) and without z(t).

The first example is with parameter a multiplied by 0.01 and b multiplied by 0.01.

 

Figure 18: Simulation of exponential components: a ∗ 0.01, b ∗ 0.01

The results of estimation and classification for the data-dependent and data-independent pointer
models are listed in the following table.

Table 16: Classification results: a ∗ 0.01, b ∗ 0.01
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The next example is for parameter a multiplied by 0.5 and b multiplied by 0.01.

 

Figure 19: Simulation of exponential components: a ∗ 0.5, b ∗ 0.01

Table 17: Classification results: a ∗ 0.5, b ∗ 0.01
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The simulation results for parameter a multiplied by 1 and parameter b multiplied by 0.01 look as
follows.

 

Figure 20: Simulation of exponential components: a ∗ 1, b ∗ 0.01

Table 18: Classification results: a ∗ 1, b ∗ 0.01
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The figures and table below show the results for parameters a and b multiplied by 0.5.

 

Figure 21: Simulation of exponential components: a ∗ 0.5, b ∗ 0.5

Table 19: Classification results: a ∗ 0.5, b ∗ 0.5
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Simulation and estimation results for parameter a multiplied by 1 and parameter b multiplied by 0.5
are shown below.

 

Figure 22: Simulation of exponential components: a ∗ 1, b ∗ 0.5

Table 20: Classification results: a ∗ 1, b ∗ 0.5
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The last two examples are for parameter a multiplied by 1 and 1.5 and parameter b multiplied by 1.5.

 

Figure 23: Simulation of exponential components: a ∗ 1, b ∗ 1.5

Table 21: Classification results: a ∗ 1, b ∗ 1.5
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Figure 24: Simulation of exponential components: a ∗ 1.5, b ∗ 1.5

Table 22: Classification results: a ∗ 1.5, b ∗ 1.5

In the next section the results presented here are discussed in details.
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3.3.3 Discussion

The results obtained for exponential components are quite contradictory. On the one hand the variant
with a data-independent pointer model presents better results almost in all cases of estimation and
classification compared with a data-dependent pointer model (see table 15 and 23). For example, for
parameter a and b multiplied by 0.01, i.e. the components are very closely located, the number of
misclassifications using a data-dependent pointer model varies from 296 to 356 samples (59.2 % to 71.2
%) from total number of 500 samples, while the number of incorrectly classified samples using a data-
independent pointer model is in the range from 300 to 351 samples (60 % to 70.20 %) from total number
of 500 samples. For a multiplied by 1 and b multiplied by 0.5 the number of wrong classifications with
a pointer model with z(t) is 1.4 samples (0.28 %) in average, while the number of incorrectly estimated
samples using a pointer model without z(t) is 0.6 (0.12 %) samples in average.

The case when parameter a is multiplied by 0.1 and b is multiplied by 0.5 is rather exclusion than the
rule. Here the number of misclassification using a data-dependent pointer model is lower (142.9 samples
in average) than using a data-independent pointer model (158.6 samples in average).

As it was already noted, the greater values of the parameters are, i.e. the greater distance between
components are, the more accurate the classification is. But from the certain point the data-independent
pointer model fails, while a data-dependent pointer model presents very good results. This is the case
when a and b are multiplied by 1 and 1.5 (see tables and figures presented in the previous section).
Thus, for instance, for parameters a and b multiplied by 1.5 the number of misclassifications for a data-
dependent pointer model is 0, while the number of incorrectly classified samples using a pointer model
without z(t) is from 0 to 172 samples (0 % to 34.4 %), i.e. 55.1 samples or 11.02 % in average. In a
data-independent pointer model the samples tend to be allocated more or less equal between all three
groups, thus, failing to estimate the real allocation of data.

The average and standard deviation values for different values of parameters are listed in table 23.
Red cells in the table represents a greater number of wrong classifications with a data-dependent pointer
model in comparison with a data-independent pointer model. The better classification results with z(t)
compared to the model without z(t) are coloured in green.

Table 23: Classification results: average and standard deviationTable 3.3.9. Classification results: average and standard deviation 

 b*0.01 b*0.1 b*0.2 b*0.5 b*1 b*1.5 

with 

z(t) 

withou

t z(t) 

with 

z(t) 

without 

z(t) 

with 

z(t) 

without 

z(t) 

with 

z(t) 
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t z(t) 

with 

z(t) 

withou

t z(t) 

with 

z(t) 

withou

t z(t) 

a
*

0
.0

1
 

332.60

±17.38 

316±1

4.10 

321.60

±15.54 

303.80±
18.46 

314.7

0±29

.83 

303.90±
22.40 

335.90

±22.25 

320.50

±15.37 

309.90

±20.80 

295.50

±17.72 

289.10

±56.39 

254.40

±52.46 

a
*

0
.1

 

318.40

±27.46 

302.40

±16.22 

338.70

±23.67 

302.30±
32.84 

270.4

0±77

.65 

235.80±
59.89 

142.90

±56.65 

158.60

±55.93 

95.70±
50.17 

78.40±
58.84 

80±59.

25 

36.60±
16.30 

a
*

0
.2

 

328.60

±14.27 

306.90

±26.06 

279.10

±59.68 

198.70±
42.32 

279±
131.5

4 

182.30±
40.83 

77.80±
13.08 

76.80±
44.41 

93.30±
61.70 

61.40±
48.98 

34.20±
39.80 

4.90±3

.57 

a
*

0
.5

 

334.90

±26.96 

306.40

±11.97 

244.90

±97.91 

167.20±
9.13 

74.30

±20.

65 

53.10±1

3.88 

15.90±
6.52 

12±3.4

6 

105±7

6.98 

72.60±
66.22 

28.40±
50.11 

77.80±
80 

a
*

1
 

328.90

±29.46 

282.60

±19.58 

111.80

±48.58 

63.50±2

7.14 

24.10

±8.7

1 

15.80±1.

62 

1.40±0

.84 

0.60±0

.70 

5.20±7

.44 

50.60±
59.97 

0.10±0

.32 

73.80±
71.29 

a
*

1
.5

 

322.60

±44.68 

264.10

±34.59 

31.80±
8.57 

26.20±6.

05 

7.10

±1.7

9 

5.50±1.5

8 

0.70±1

.49 
0 

28.30±
67.84 

42±42.

63 
0 
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63.58 
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Besides all mentioned above another problem in the process of estimation and classification of expo-
nential components with a data-dependent pointer model was in the fact, that it estimated the samples
belonging to the same group correctly, but referred them to the wrong group. The example of this error
is obvious from the following figures.

 

Figure 25: Simulation of exponential components: a ∗ 0.5, b ∗ 0.2

Table 24: Classification results: a ∗ 0.5, b ∗ 0.2

From the figures above it is clear that classification results are very similar. The problem is that the
second (blue) and the third (green) components in the figure on the left should be interchanged. This
mistake results in a great number of incorrectly classified samples with a data-dependent model compared
with a data-independent model: 293 samples via 54 samples resp.

This problem was particularly obvious for the following multiplication values of parameters a and b:

Table 25: Examples of parameter values when the errors in classification occur
a ∗ 0.1 b ∗ 1
a ∗ 0.2 b ∗ 0.5
a ∗ 0.5 b ∗ 0.2, b ∗ 0.5, b ∗ 1, b ∗ 1.5
a ∗ 1 b ∗ 0.1, b ∗ 0.2
a ∗ 1.5 b ∗ 0.1, b ∗ 0.2
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Because of the possibility of such an error one should be very careful not to include such results in final
evaluation of the performance of the algorithm with the data-dependent and data-independent pointer
models.

3.4 State-space components

3.4.1 Data simulation

The parameters for three components and parameters for a pointer model are defined in the first step of
simulation. The number of simulated data is 150, including data for a component model y(t), x(t) and
u(t), data for a pointer model c(t), discrete values for a pointer model z(t) and weights α.

During simulation the values of noise for x(t) and y(t) were changed. rv is a parameter for changing
noise ratio in y(t) and rw is a parameter for changing noise ratio in x(t). The values of rw and rv
during simulation were 0.001, 0.1, 1, 5 and 10. Thus, there were 25 different combinations and for each
combination ten experiments were performed. The total number of experiments is 250.

Several examples of simulation with different noise ratio are shown in the following figures.

Figure 26: Simulation of state-space components for rw = 0.001, rv = 0.001
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Figure 27: Simulation of state-space components for rw = 10, rv = 0.001

Figure 28: Simulation of state-space components for rw = 0.001, rv = 10
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Figure 29: Simulation of state-space components for rw = 10, rv = 10

3.4.2 Results

The results of estimation and classification with a data-dependent pointer model (with z(t)) and a data-
independent pointer model (without z(t)) are listed in the following table. The results are presented for
various values of noise both in y(t) and x(t).
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Table 26: Classification results for state-space components
Table 3.4.1. Classification results for state-space components 

 rv=0.001 rv=0.1 rv=1 rv=5 rv=10 

with z(t) 
without 

z(t) 
with z(t) 

without 

z(t) 
with z(t) 

without 

z(t) 
with z(t) 
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z(t) 
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z(t) 
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=

0
.0

0
1
 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 
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6 

12 

13 

1 

2 

3 

4 

3 
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6 

6 

14 

13 

31 
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34 

37 

37 

39 

39 

40 

41 

42 
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34 

35 

37 

40 

39 

40 

41 

41 
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56 
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66 

66 

67 

70 

71 

76 

56 

60 

61 

63 
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15 
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41 
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29 
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37 

38 

42 

45 

47 

29 

31 

35 

37 

36 

37 

40 

43 

45 

48 

47 

48 

49 

51 

53 

56 

56 

56 

57 

59 

47 

48 

49 

50 

54 

55 

56 

57 

57 

59 

59 

60 

67 

69 

69 

70 

71 

72 

75 

78 

59 

58 

67 

70 

70 

70 

71 

70 

74 

78 

72 

76 

77 

77 

77 

78 

78 

78 

81 

85 

72 

76 

77 

77 

77 

78 

78 

78 

81 

88 

rw
=

5
 

59 

60 

61 

61 

63 

66 

69 

70 

71 

73 

59 

62 

59 

61 

63 

66 

70 

70 

71 

73 

58 

61 

61 

63 

64 

65 

67 

68 

69 

72 

58 

61 

61 

63 

65 

65 

68 

69 

67 

73 

60 

61 

67 

68 

70 

71 

72 

73 

73 

76 

60 

61 

68 

69 

71 

72 

72 

72 

73 

76 

68 

70 

71 

73 

76 

76 

77 

81 

84 

85 

69 

70 

73 

73 

76 

77 

77 

81 

84 

85 

70 

73 

76 

77 

77 

78 

80 

80 

87 

92 

70 

73 

77 

76 

79 

78 

79 

81 

87 

91 

rw
=

1
0

 

69 

72 

72 

75 

77 

77 

79 

84 

84 

85 

67 

72 

72 

76 

77 

77 

78 

85 

84 

87 

71 

71 

73 

75 

76 

76 

77 

78 

79 

79 

70 

71 

73 

75 

75 

75 

78 

78 

78 

80 

67 

72 

74 

76 

77 

77 

78 

78 

81 

82 

67 

72 

74 

75 

77 

77 

77 

79 

81 

81 

73 

73 

76 

77 

79 

79 

82 

83 

87 

89 

72 

73 

76 

76 

78 

82 

80 

83 

86 

89 

76 

78 

81 

81 

84 

84 

84 

86 

87 

90 

77 

78 

81 

81 

84 

84 

84 

86 

85 

89 

 

 

 

 

 

There are several examples of simulation and estimation results for various values of noise illustrated
in figures below.
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The first example is for noise values rv=0.001 and rw=0.001.

 

Figure 30: Simulation of state-space components for rw = 0.001, rv = 0.001

Table 27: Classification results forfor rw = 0.001, rv = 0.001

39



The next example is for noise values rw=0.001, rv=1.

 

Figure 31: Simulation of state-space components for rw = 0.001, rv = 1

Table 28: Classification results forfor rw = 0.001, rv = 1
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The example for noise values rw=0.001, rv=10 are presented below.

 

Figure 32: Simulation of state-space components for rw = 0.001, rv = 10

Table 29: Classification results forfor rw = 0.001, rv = 10
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The experiment with noise values rw=10, rv=0.001 is illustrated in the following figures.

 

Figure 33: Simulation of state-space components for rw = 10, rv = 0.001

Table 30: Classification results forfor rw = 10, rv = 0.001
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Two last examples are for noise values rw=10 and rv=1, and rw=10 and rv=10.

 

Figure 34: Simulation of state-space components for rw = 10, rv = 1

Table 31: Classification results forfor rw = 10, rv = 1
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Figure 35: Simulation of state-space components for rw = 10, rv = 10

Table 32: Classification results forfor rw = 10, rv = 10

The results presented in this section are discussed in Section 3.4.3.
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3.4.3 Discussion

According to the results obtained during experiments and presented in the previous section estimation
with a data-dependent model (with z(t)) is slightly better than with a data-independent pointer model
(without z(t)). Thus, for rv=0.1 and rw=0.001 the number of misclassifications using a pointer model
with z(t) is from 1 to 13 samples (0.67 % to 8.67 %) from total number of 150 samples, while the number
of incorrectly estimated samples using a pointer model without z(t) is from 1 to 14 samples (0.67 % to
9.33 %) from total number of 150 samples. For rv=10 and rw=5 again a data-dependent model has a
slightly better results: 79 incorrectly classified samples (52.67 %) in average via 79.1 wrong classifications
(52.73 %) in average with a data-independent pointer model (see table 26 and 33 for more details). The
difference in the number of misclassifications is actually negligible.

It is also obvious from the obtained outputs that the greater value of noise is the worse the results of
estimation are. For the greater values of noise the data-independent model sometimes gives more precise
classification. Especially it is valid for rw=10 in combination with rv=0.1 and higher (see table 33).
Thus, for rw=10 and rv=10 the number of misclassifications using a data-dependent pointer model is 83.1
samples (55.4 %) in average, while the number of incorrectly estimated data using a data-independent
pointer model is slightly lower: 82.9 samples or 55.27 % in average. In several cases the number of
incorrectly classified samples are the same for both models.

From the results obtained we can state that the difference in estimation using a pointer model with
z(t) and without z(t) is really infinitesimal and both models performs the same.

More detailed information can be seen in table 33. The table lists the average values and standard
deviation for misclassifications using different noise ratio. It comprises the number of incorrectly classified
samples both for a data-dependent pointer model and a pointer model without z(t). Green cells in
the table represent the lower number of incorrectly estimated samples using a pointer model with z(t)
compared with the number of misclassifications using a pointer model without z(t). The results when a
data-dependent model has more wrong classifications are coloured in red. The equal number of incorrectly
classified samples for both models are in blue.

Table 33: Classification results for state-space components: average and standard deviation

Table 3.4.7. Classification results for state-space components: average and standard deviation 

 rv=0.001 rv=0.1 rv=1 rv=5 rv=10 
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4.50±1.7
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73 
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13 
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35 
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10 
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14 
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28 
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82 
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17 
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60 
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3.5 Normal components

3.5.1 Data simulation

To perform simulation the parameters for three components and for a pointer model have been defined.
The total number of simulated data is set to 500, including data for component model y(t), data for pointer
model c(t), discrete values for a pointer model z(t). The simulated data are then used for estimation for
both static data-dependent and data-independent pointer model.

During simulation we have change the values of parameters in a way to increase the uncertainty and
to make the estimation a challenging task for a proposed algorithm. For each combination of changed
parameters ten experiments were performed. The total number of experiments for normal components is
80.

Some examples of simulated data can be seen in the following figures.

 

Figure 3.5.1. Simulation of normal components (the pointer model is almost deterministic) 

Figure 36: Simulation of state-space components (the pointer model is almost deterministic)

 

Figure 3.5.2. Simulation of normal components (great amount of noise) 

 
Figure 37: Simulation of state-space components (great amount of noise)
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3.5.2 Results

The results of the performed simulation and estimation both for static data-dependent and data-independent
pointer models are presented in the tables below. The tables show the number of incorrectly classified
samples with a data-dependent pointer (with z(t)) via the number of misclassifications with a data-
independent pointer (without z(t)).

The first table is for the parameters:

Table 34: Parameter valuesTable 3.5.1. Parameter values 

zt ct 

1 2 3 

1 0.998 0.001 0.001 

2 0.001 0.998 0.001 

3 0.001 0.001 0.998 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 35: Misclassified samplesTable 3.5.2. Misclassified samples 

№ Number of misclassified samples 

with z(t) in [%] without z(t) in [%] 

1 3 0.6 325 65 

2 2 0.4 324 64.8 

3 2 0.4 325 65 

4 2 0.4 325 65 

5 154 30.8 324 64.8 

6 3 0.6 325 65 

7 3 0.6 324 64.8 

8 3 0.6 324 64.8 

9 2 0.4 325 65 

10 2 0.4 324 64.8 
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Examples of simulation and estimation for the above mentioned parameters are shown in the following
table:

Table 36: Classification examples
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Table 37: Classification examples
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The next table is for the parameters:

Table 38: Parameter valuesTable 3.5.4. Parameter values 

zt ct 

1 2 3 

1 0.8 0.1 0.1 

2 0.1 0.8 0.1 

3 0.1 0.1 0.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 39: Classification results

 

 

 

 

 

№ Number of misclassified samples 

with z(t) in [%] without z(t) in [%] 

1 100 20 324 64.8 

2 101 20.2 324 64.8 

3 100 20 324 64.8 

4 100 20 324 64.8 

5 100 20 324 64.8 

6 200 40 324 64.8 

7 101 20.2 324 64.8 

8 101 20.2 324 64.8 

9 101 20.2 324 64.8 

10 100 20 324 64.8 
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Comparison of the results for data-dependent and data-independent pointer models with the above
mentioned initial parameters are shown in the following table:

Table 40: Classification examples
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The third table is for the parameters:

Table 41: Parameter valuesTable 3.5.7. Parameter values 

zt ct 

1 2 3 

1 0.5 0.25 0.25 

2 0.25 0.5 0.25 

3 0.25 0.25 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 42: Classification resultsTable 3.5.8. Estimation results 

№ Number of misclassified samples 

with z(t) in [%] without z(t) in [%] 

1 258 51.6 329 65.8 

2 259 51.8 330 66 

3 258 51.6 329 65.8 

4 258 51.6 330 66 

5 258 51.6 330 66 

6 294 58.8 329 65.8 

7 259 51.8 330 66 

8 259 51.8 329 65.8 

9 259 51.8 329 65.8 

10 258 51.6 330 66 
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Some examples of the results for used parameters are listed in the following table:

Table 43: Classification examples
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The last table is for the parameters:

Table 44: Parameter valuesTable 3.5.10. Parameter values 

zt ct 

1 2 3 

1 0.1 0.45 0.45 

2 0.45 0.1 0.45 

3 0.45 0.45 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 45: Classification resultsTable 3.5.11. Estimation results 

№ Number of misclassified samples 

with z(t) in [%] without z(t) in [%] 

1 279 55.8 322 64.4 

2 279 55.8 322 64.4 

3 279 55.8 321 64.2 

4 279 55.8 322 64.4 

5 279 55.8 322 64.4 

6 279 55.8 322 64.4 

7 279 55.8 321 64.2 

8 279 55.8 322 64.4 

9 280 56 322 64.4 

10 279 55.8 322 64.4 
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The following figures present the results of simulation:

Table 46: Classification examples

The results of estimation and classification are discussed in section 3.5.3.
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3.5.3 Discussion

From the tables in previous section it is obvious that the greater uncertainty is the worse results are shown
both by data-dependent and data-independent pointer model. It should be noted that the data-dependent
pointer model gives much better results in comparison with the data-independent pointer model (without
z(t)). However, with increasing noise the accuracy of estimation is going down and approaches to that
of the data-independent pointer model.

To make the results more obvious table 47 shows the average value and standard deviation for classifi-
cation results with different values of parameters both for data-dependent and data-independent pointer
models. In all cases the data-dependent pointer model shows more accurate estimation. For parameters
[0.998 0.001 0.001; 0.001 0.998 0.001; 0.001 0.001 0.998] the number of wrong classifications is generally
2-3 samples (0.4 % to 0.6 %), but one experiment for these values of parameters shows the number of
wrong classifications as being 154 or 30.8 %. This is the only one case from 10 experiments. This extreme
value is not included in calculation of mean and standard deviation. The number of misclassifications for
data-independent pointer model in this case is from 324 to 325 samples (64,8 % to 65 %).

For parameters being [0.8 0.1 0.1; 0.1 0.8 0.1; 0.1 0.1 0.8] the situation is worse. For a data-dependent
pointer model the number of incorrectly classified samples is generally from 100 to 101 (from 20 % to
20.2 %). Again one experiment shows the greater number of classifications than others 200 (40 %). This
value was not taken into account when calculating the average and standard deviation. The number
of misclassifications using a data-independent pointer model remains the same as in previous case: 324
samples (64,8 %).

Setting parameters to values [0.5 0.25 025; 0.25 0.5 0.25; 0.25 0.25 0.5] we obtain 262 wrong classifi-
cations in average (52,7 %) using a data-dependent pointer model and 329.5 samples in average (65,8 %)
using a data-independent pointer model.

For the last case the number of incorrectly estimated samples is 279,1 (55,82 %) and 321.8 (64,36 %)
samples in average for a data-dependent and data-independent model resp.

Table 47: Classification results for normal components: average and standard deviationTable 3.5.13. Classification results for normal components: average and standard deviation 

Parameters Misclassifications 

using model with 

z(t) 

Misclassifications 

using model 

without z(t) 

[0.998 0.001 0.001; 

0.001 0.998 0.001; 

0.001 0.001 0.998] 

2.4 ± 0.52 (47.93) 324.5 ± 0.53 

[0.8 0.1 0.1; 

0.1 0.8 0.1; 

0.1 0.1 0.8] 

100 ± 0.52 (31.49) 324 ± 0 

[0.5 0.25 0.25; 

0.25 0.5 0.25; 

0.25 0.25 0.5] 

262 ± 11.26 329.5 ± 0.53 

[0.1 0.45 0.45; 

0.45 0.1 0.45; 

0.45 0.45 0.1] 

279.1 ± 0.32 321.8 ± 0.42 

 

4 Conclusion

The presented report is devoted to the analysis of a data-dependent pointer model, whether it brings
some advantages in comparison with a data-independent pointer model at simulation and estimation of
components referring to different types of distribution, including categorical, uniform, exponential and
state-space components for a dynamic data-dependent model, and normal components for a static data-
dependent pointer model. For these purposes data from corresponding distributions were simulated in
SciLab: 500 samples for uniform, exponential and normal components, and 150 samples for categorical
and state-space components. During simulation the parameters of component models and pointer models
were defined and changed to add or reduce noise and to change the distance between components and,
thus, to analyze, in what situations the data-dependent pointer model performs better. For each type
of specified component distributions 200-360 experiments were made both for the data-dependent and
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data-independent pointer models. Based on the results of wrong classifications/predictions for different
variations of the parameters the average of incorrectly estimated samples and standard deviation were
calculated. According to the obtained results - both the numbers of misclassified samples and graphs - it
was concluded that the present algorithm with a dynamic data-dependent pointer model did not improve
the accuracy of estimation. Thus, for categorical and uniform components the algorithm with a data-
dependent pointer model has more or less the same performance. The state-space components with a data-
dependent pointer model demonstrate slightly better results than that with a data-independent pointer
model. The worst results using a data-dependent pointer model are shown for exponential components,
where the algorithm with a data-dependent pointer model fails to present good results almost in all
cases apart for the cases when the components are really far from each other and their classification is
obvious even at first sight. Taking into account all obtained information it can be stated that the present
algorithm with a dynamic data-dependent pointer model (with z(t)) performs similarly well as the one
without z(t).

However, a static data-dependent pointer model using expert knowledge in the beginning of estimation
shows much better results than a data-independent pointer model. Though with growing noise the
accuracy of estimation is decreasing, the results are still better while using a data-dependent pointer
model in this case. It can be explained that in the case of the dynamic data-dependent pointer model
the dependence on the previous pointer value is dominating in comparison with the discrete data in the
condition. It seems that for such a configuration of the model the discrete data don’t bring any new strong
information. Unlike this, the static data-dependent pointer can use advantages of this dependence. It
would be highly recommended to try this algorithm for all other distributions and to see what the results
could be.
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Advising: Theory and Algorithms, Springer-Verlag London, 2006.
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