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Abstract—This paper deals with clustering non-gaussian data
with fixed bounds. It considers the problem using recursive
mixture estimation algorithms under the Bayesian methodology.
Such a solution is often desired in areas, where the assumption
of normality of modeled data is rather questionable and brings a
series of limitations (e.g., non-negative, bounded data, etc.). Here
for modeling the data a mixture of uniform distributions is taken,
where individual clusters are described by mixture components.
For the on-line detection of clusters of measured bounded data,
the paper proposes a mixture estimation algorithm based on (i)
the update of reproducible statistics of uniform components; (ii)
the heuristic initialization via the method of moments; (iii) the
non-trivial adaptive forgetting technique; (iv) the data-dependent
dynamic pointer model. The approach is validated using realistic
traffic flow simulations.

Keywords—mixture-based clustering; recursive mixture es-
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I. INTRODUCTION

The cluster analysis is a powerful tool of data processing
solved by a great number of methods (e.g., well-known
centroid, density based methods, etc.), see e.g., [1], [2], [3].
One of the cluster analysis domain is the mixture model based
clustering, which is discussed in this paper.

The mixture components describe individual clusters in the
data space. This means that the location, size and shape
of components are important in the task of covering the
data clusters. The location and the size are given by the
expectation and the covariance matrix of the component, while
the shape is defined by its distribution. Gaussian components
are traditionally successful in detecting elliptic clusters [4], [5],
[6]. However, clusters of a different shape require a solution
with involved components of other distributions. The same
situation occurs in the case of clustering non-negative, or
somehow limited data (for instance, a vehicle speed under the
speed limits). To take into account such a feature, components

The paper was supported by project GAČR GA15-03564S.

should have a limited support. Such a choice is e.g., the uni-
form distribution, which well covers clusters of the rectangle
shape (for independent variables in the data space) or of the
parallelogram shape in the case of dependent variables.

Estimation of data models with the bounded support in-
cluding uniform ones was solved in various domains, e.g.,
clustering [7], individual state-space and regression models
[8], [9] as well as mixture models [10], etc. In mixture-based
clustering the bounded data the challenging task is the update
of statistics of the uniform component parameters. Intuitively
the prior chosen bounds of the uniform distribution are only
expandable, but they are not floating in the data space to detect
the centers of clusters. While estimating a uniform mixture,
this feature is harmful and should be fixed. A solution to this
task will allow to perform clustering on-line at each time
instant using both the current and the previously available
measurements. This task is highly desired in many application
areas (fault detection, diagnostics, medicine, etc.).

This paper solves the problem based on the recursive
Bayesian estimation algorithms proposed for normal regres-
sion components in [11], [12], [13] and applies them for
derivation of the algorithm for the uniform mixture. The main
contributions of the approach in addition to the recursive statis-
tics update include also: (i) the initialization based on finding
the initial centers of components with the help of the method
of moments; (ii) the novel non-trivial adaptive technique of
forgetting; (iii) using the categorical data-dependent dynamic
model of switching, which assumes that the currently active
component is modeled in dependence of the past active one
and on discrete measurements too.

The proposed algorithm also enriches the clustering and
classification tools developed within the current project under
the adopted Bayesian recursive mixture estimation context.
The systematic extension of the theory has already given
algorithms for normal regression [14], state-space [15], mixed
normal and categorical [16] and exponential components [17].
Here this line is continued by developing the systematic ap-
proach to uniform components and the data-dependent model
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of switching partially started in [16].
The present paper focuses on independent variables.

Modeling dependent uniformly distributed variables with
parallelogram-shaped clusters is definitely an important task
that will be solved later. However, the main aim of this
work is to cluster data with fixed lower and upper bounds,
which is sufficiently covered by rectangle clusters provided
by independent variables.

The paper is organized in the following way. Section II
introduces models and formulates the problem. The prepara-
tive Section III recalls necessary basic facts about estimation
of individual uniform and categorical models and explains
the general idea of the approach. Section IV presents a
solution to the formulated task and the structural algorithm.
Section V provides results of the experimental validation of
the proposed algorithm. Conclusions and open problems are
given in Section VI.

II. MODELS AND PROBLEM FORMULATION

Let’s consider a multi-modal system, which at each discrete
time instant t = 1, 2, .... generates continuous data yt, whose
values are bounded by minimal and maximal bounds different
within each working mode, and discrete data zt with the
set of its possible values {1, 2, . . . ,mz}. It is assumed that
the observed system works in mc working modes indicated
by values of the unmeasured dynamic discrete variable ct ∈
{1, 2, . . . ,mc}, which is called the pointer [11], and each of
the pointer values also depends on values of the measured
variable zt.

The system is described by a mixture of uniform distribu-
tions presented by the probability density functions (pdfs)

f(yt|Θ, ct = i), i ∈ {1, 2, . . . ,mc}, (1)

where Θ = {Θi}mc
i=1 is a collection of unknown parameters of

all components, and Θi = {Li, Ri} (for ct = i) are parameters
of the i-th component, where Li is the minimum bound of the
data yt, and Ri is the maximum bound.

Switching the components describing the data is described
by the following data-dependent dynamic pointer model:

f (ct = i|α, ct−1 = j, zt = k) = (2)

ct = 1 ct = 2 · · · ct = mc

ct−1 = 1 (α1|1)k (α2|1)k · · · (αmc|1)k
ct−1 = 2 (α1|2)k · · ·
· · · · · · · · · · · · · · ·

ct−1 = mc (α1|mc
)k · · · (αmc|mc)k

where the unknown parameter α is the (mc×mc)-dimensional
matrix, which exists for each value k ∈ {1, 2, . . . ,mz} of zt.
Its entries (αi|j)k are non-negative probabilities of the pointer
ct = i under condition that the previous pointer ct−1 = j with
i, j ∈ {1, 2, . . . ,mc} and zt = k.

The task is to cluster the data on-line at each time instant
t according to the determined active component based on

the available data collection and newly arriving data. Under
Bayesian methodology adopted in [11], [12], [13] it leads to
looking for a recursive algebraic computation of statistics of
the involved distributions, which is obtained by substituting
the prior pdf to be propagated into the Bayes rule [18], [19]:

f(Θ|∆(t)) ∝ f (yt|Θ) f(Θ|∆(t− 1)), (3)

where the denotation ∆(t) = {∆0,∆1, . . . ,∆t} represents
the collection of data available up to the time instant t; ∆0

denotes the prior knowledge; the data item ∆t includes the
pair {yt, zt}; and f(Θ|∆(t− 1)) is the prior pdf.

Within the considered context the clustering problem is
specified as the recursive estimation of
• all component parameters Θ;
• the pointer model parameter α;
• the value of the pointer ct expressing the active compo-

nent at each time instant t.

III. PRELIMINARIES
A. Individual Uniform Model Estimation

As it is known [20], description of the individual uniform
pdf can be presented twofold: via minimal and maximal
bounds or using the mid-point and the mid-range. The mul-
tivariate uniform pdf for independent variables will be the
product of univariate marginal pdfs, and the distribution will
have generally the rectangle support. The assumed indepen-
dence of variables leads to a straightforward extension of the
univariate case up to the multivariate one, which means that the
whole estimation is performed independently over individual
dimensions. Here, for simplicity omitting ct from the condition
of (1), the uniform pdf can be presented as

f(yt|Θ) = f (yt|L,R) =

{
1

R−L for yt ∈ (L,R) ,

0 otherwise,
(4)

= f (yt|S, h)

=

{
1

2K
∏K

l=1 hl
for yt ∈ (S − h, S + h)

0 otherwise,
(5)

where K denotes the dimension of the vector yt, S =
[S1, . . . , SK ]′ is the vector of mid-points of the distribution
support, and h = [h1, . . . , hK ]′ is the vector of mid-ranges.

For description (4) the maximum likelihood (ML) estima-
tion leads to using the K-dimensional statistics Lt and Rt
with their update for the new measurement yt at time t in the
following form [20] for each l ∈ {1, . . . ,K}

if yl;t < Ll;t−1, then Ll;t = yl;t, (6)
if yl;t > Rl;t−1, then Rl;t = yl;t. (7)

The point estimates of parameters L and R at time t are then
obtained as

L̂t = Lt, R̂t = Rt. (8)

Notice here that in dependence of the initially chosen statistics
L0 a R0, the point estimate L̂t can be located to the left from
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L0, and then R̂t to the right from R0. It means that the prior
statistics can be only extended, which is problematic in the
case of several components.

For description (5) the statistics for the parameter estimation
are chosen based on the method of moments (MM) [21] as the
sum st = [s1;t, . . . , sK;t]

′ and the sum of squares qt, which is
the matrix with the diagonal [q1;t, . . . , qK;t]. Starting with the
chosen initial statistics, their update for the actual data item
yt measured at the time instant t is

st = st−1 + yt, (9)
qt = qt−1 + yty

′
t. (10)

The point estimates of parameters S and h are obtained via
expressing the covariance matrix of the uniform distribution
with the help of the statistics st and qt

Dt = (qt − sts′t/t) /t, (11)

which gives

Ŝt = st/t, (12)

ĥt =
√

3 diag(Dt), (13)

where
√

3 diag(Dt) denotes the square roots of entries of
the vector diag(Dt), which follows from the variance of the
univariate uniform distribution.

The following remarks can be given regarding (9)–(10):
• The obtained statistics are similar to those used for

the recursive estimation of parameters of the normal
regression model [12]. This juncture between the uniform
and the normal distribution gives a chance to apply the
similar systematic approach.

• The first moment, which is the basis of the obtained
statistics, has a property of “floating” in the data space.
For instance, in the case of starting at zero and continuing
at one hundred, the zero value will be forgotten and the
pdf will be located around the hundred. It does not hold
for the statistics Lt and Rt, where the pdf would be
expanded from zero to the hundred value. This difference
is significant and can be used for detecting centers of
components.

• However, the drawback of the statistics is a lack of the
characteristics of limiting the data by the support. As
a consequence, the component support can move to the
prohibited data area. To avoid this, further restrictions
should be used.

B. Individual Categorical Model Estimation

The individual categorical model (2) in the case of the
measured values of ct, ct−1 and zt is estimated via (3) using
the conjugate prior Dirichlet pdf according to [13] with the
recomputable statistics (vt−1)k, which is here the square mc-
dimensional matrix, existing for each value of zt. Its entries
for ct = i, ct−1 = j and zt = k would be updated for
i, j ∈ {1, . . . ,mc}, k ∈ {1, . . . ,mz} in the following way:

(vi|j;t)k = (vi|j;t−1)k + δ(i, j, k; ct, ct−1, zt), (14)

where δ(i, j, k; ct, ct−1, zt) is the Kronecker delta function,
which is equal to 1, if ct = i and ct−1 = j and zt = k, and it
is 0 otherwise. The point estimate of α is then obtained by

(α̂i|j;t)k =
(vi|j;t)k∑mc

l=1(vl|j;t)k
, (15)

The value of the pointer ct at time t points to the active
component. However, values of ct and ct−1 are unavailable
and should be estimated.

IV. MIXTURE ESTIMATION WITH UNIFORM
COMPONENTS

The discussed mixture-based clustering the bounded data is
based on estimation of a mixture of uniform components and
determination of the currently active one. Generally one of the
key problems during the mixture estimation is initialization of
the algorithm, i.e., the initial location of components in the
data space. Difficulties with initialization of the mixture esti-
mation algorithm still grow in the case of uniform components.

In order to estimate the mixture under the adopted theory
[11], [12] (see the state of the art in Section I), it is necessary
to obtain the algebraic recursion of the update of the individual
component and the pointer statistics in the form

actual statistics = previous statistics

+ weighted data-based statistics increment.

Another demand is the use of the statistics for effective
computing the point estimates of parameters. If these two
requirements are met, it is possible to use the following
estimation scheme, see, e.g., [17]:
• Measuring the new data item;
• Computing the proximity of the data item to individual

components;
• Computing the probability of the activity of components

(i.e., weights) using the proximity and the past activity,
where the maximal probability declares the currently
active component;

• Updating the statistics of all components and the pointer
model;

• Re-computing the point estimates of parameters neces-
sary for calculating the proximity.

Uniform components do not belong to the exponential family,
and extension of the estimation approach to this class of
components is not entirely trivial. The way how to utilize
advantages of both the types of statistics during the recursive
estimation and to keep the disjoint components is the algorithm
of their combination along with the forgetting technique,
which is proposed in this paper. This way is rather suitable, if
positions of components are known before (at least, one data
item from each component). Thus, it is suitable to initialize
the estimation by using the statistics (9)–(10) for detecting the
initial centers of components with the help of prior data, and
then actualize (6)–(7) by new data for specifying the bounds.
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A. Proximity as the Approximated Likelihood
The derivations of individual points of the above scheme

are based on construction of the joint pdf of all variables to
be estimated and application of the Bayes rule, which takes
the form (under assumption of the mutual independence of Θ
and α, and ∆t and α, and ct and Θ):

f(Θ, ct = i, ct−1 = j, α|∆(t))︸ ︷︷ ︸
joint posterior pdf

∝ f(yt,Θ, ct = i, zt = k, ct−1 = j, α|∆(t− 1))︸ ︷︷ ︸
via chain rule and Bayes rule

= f (yt|Θ, ct = i)︸ ︷︷ ︸
(1)

f(Θ|∆(t− 1))︸ ︷︷ ︸
prior pdf of Θ

× f (ct = i|α, ct−1 = j, zt = k)︸ ︷︷ ︸
(2)

f(α|∆(t− 1))︸ ︷︷ ︸
prior pdf of α

× f(ct−1 = j|∆(t− 1)),︸ ︷︷ ︸
prior pointer pdf

(16)

∀i, j ∈ {1, 2, . . . ,mc} and for k ∈ {1, 2, . . . ,mz}. To obtain
recursive formulas for estimation of ct, Θ and α with the
help of (16), it is necessary to marginalize it firstly over the
parameters Θ and α.

The marginalization of (16) over parameters Θ provides
the proximity, i.e., the closeness of the current data item
yt to individual components at each time instant t. It is
evaluated in the same way as for the mixture estimation
with normal regression components, i.e., as the approximated
likelihood. It is the value of the normal pdf, which is the
normal approximation of the uniform component, optimal in
the sense of the Kullback-Leibler divergence, see, e.g., [13].
The proximity is obtained by substituting the point estimates
of the expectation (Et−1)i and the covariance matrix (Dt−1)i
of each i-th uniform component from the previous time instant
t− 1 and the currently measured yt into the pdf

mi = (2π)−K/2|(Dt−1)i|−1/2

× exp

{
−1

2
(yt − (Et−1)i)

′
(D−1

t−1)i (yt − (Et−1)i)

}
, (17)

where (Et−1)i and (Dt−1)i are either (12) and (11) respec-
tively obtained for the i-th component via the statistics (9)–
(10), or the expectation (Et−1)i is the K-dimensional vector,
each l-th entry of which is

(El;t−1)i =
1

2
((L̂l;t−1)i + (R̂l;t−1)i), (18)

and the covariance matrix (Dt−1)i contains on the diagonal

(Dl;t−1)i =
1

12
((R̂l;t−1)i − (L̂l;t−1)i)

2 (19)

obtained via (8). The proximities from all mc components
form the mc-dimensional vector m.

Similarly, the integral of (16) over α provides the computa-
tion of its point estimate (15) using the previous-time statistics
(vt−1)k for the actual value k of zt.

B. Component Weights
In order to obtain the i-th component weight (a probability

that the component is currently active) the proximities (17) are
multiplied entry-wise by the previous-time point estimate of
the parameter α (15) and the prior weighting mc-dimensional
vector wt−1, whose entries are the prior (initially chosen)
pointer pdfs (ct−1 = j|∆(t− 1)), i.e.,

Wt ∝ (wt−1m
′) . ∗ (α̂t−1)k (20)

where Wt denotes the square mc-dimensional matrix com-
prised from pdfs f(ct = i, ct−1 = j|∆(t)) joint for ct and
ct−1, and .∗ is a “dot product” that multiplies the matrices
entry by entry.

The matrix Wt is normalized so that the overall sum of all
its entries is equal to 1, and subsequently it is summed up
over rows, which allows to obtain the vector wt with updated
component weights wi;t for all components. The maximal wi;t
defines the currently active component, i.e., the point estimate
of the pointer ct at time t.

C. The Component Statistics Update
Using the obtained weights wi;t at time t, the component

statistics are updated as follows. The updates (9)–(10) for the
i-th component takes the form

(sl;t)i = (sl;t−1)i + wi;tyl;t, (21)
(ql;t)i = (ql;t−1)i + wi;ty

2
l;t, (22)

∀i ∈ {1, 2, . . . ,mc} and ∀l = {1, . . . ,K}.
The update of the statistics (6)–(7) is performed with the

adaptive forgetting technique. The principle of this forgetting
is as follows. If the larger value of the entry yl;t is measured,
the corresponding l-th maximum bound (Rl;t)i of the i-th
component moves on it. Otherwise it is a bit narrowed. If
the larger values of yl;t do not arrive for some number of
time instants, the maximum bound will decrease until it meets
the active area where the data are measured. The identical
principle is for the minimum bound on the opposite direction.
The question is a reasonable start of forgetting. The idea is
very simple: forgetting should not be performed as soon as the
bound does not move, but after some period of time. Therefore,
it is necessary to estimate how often the bounds should be
updated, and start forgetting when they do not move too long.

If the maximum statistics (Rl;t−1)i is assumed to lie in
e.g., 80% of the interval of the i-th uniform component (from
the minimum to the maximum), the probability of measuring
the value of yl;t > (Rl;t−1)i, which leads to its update (7),
is 0.2. The number n of the time instants, when (Rl;t−1)i
was not updated (due to yl;t < (Rl;t−1)i)) is described by the
geometrical distribution with the distribution function

F (n) = 1− (1− p)n, (23)

here with p = 0.2. Taking the confidence level, for instance,
0.05, it is possible to compute the number n, for which the
following relation holds:

1− F (n) = 0.05. (24)
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It is
n =

ln (0.05)

ln (0.8)

.
= 13. (25)

It means that if the statistics was not updated during n = 13
time instants, and the update follows, then with the probability
0.95 the current point estimate (according to (8)) lies in 20%
from the population maximum border. This can occur either
(i) if it really lies in 20% from the right bound – then shifting
the bound to the left leads to the higher frequency of updating,
or (ii) the point estimate of the right bound is caused by some
outlier – then the shifting remains until the bound estimate
reaches the corresponding data cluster. This will enable to get
rid of inaccuracies brought by the prior statistics.

In this way, the update (6)–(7) takes the following form
∀i ∈ {1, 2, . . . ,mc} and ∀l = {1, . . . ,K}. For the minimum
bound, the counter of non-updates is set as

(λLl;t−1)i = 0, (26)

and then

δL = yl;t − (Ll;t−1)i, (27)
if δL < 0, (Ll;t)i = (Ll;t−1)i + wi;tδL, (28)

(λLl;t)i = 0, (29)

else (λLl;t)i = (λLl;t−1)i + 1, (30)

if (λLl;t)i > n︸︷︷︸
(25)

, (Ll;t)i = (Ll;t−1)i + φwi;t, (31)

where φ is the forgetting factor, often set as 0.01. Similarly the
update is performed for the maximum bound with the counter
of non-updates set as (λRl;t−1)i = 0.

D. The Pointer Update

The statistics of the pointer model is updated similarly to
the update of the individual categorical model and based on
[13], [11], however, with the joint weights Wi,j;t [17] from
the matrix (20), where the row j corresponds to the value of
ct−1, and the column i to the current pointer ct

(vi|j;t)k = (vi|j;t−1)k + δ(k; zt)Wj,i;t, (32)

and the Kronecker delta function δ(k; zt) = 1 for zt = k and
0 otherwise.

E. Algorithm

The following algorithm specifies the estimation scheme
with the above relations.
Initialization (for t = 0)

1) Set the number of components mc.
2) Set the initial (expert-based or random) values of all

component statistics (sl;0)i, (ql;0)i and the pointer statis-
tics (v0)k ∀k ∈ {1, 2, . . . ,mz}.

3) Using the initial statistics, compute the point estimates
(12), (13), (11) and (15).

4) Set the initial weighting vector w0.
Initialization of component centers (for t = 1, . . . , T )

1) Load the prior data item yt, zt.
2) Substitute (12), (11) and yt into (17) to obtain the

proximities.
3) Using (15) for the actual value k of zt, compute the

weighting vector wt via (20), its normalization and
summation over rows.

4) Update the statistics (21), (22) and (32).
5) Re-compute the point estimates (12), (13), (11) and (15)

and go to Step 1 of the initialization of component
centers.

6) For t = T the result is (Ŝl;T )i, which is the center of
the i-th component for the l-th entry of yt.

On-line bound estimation (for t=T+1, T+2, . . . )

1) Use the obtained centers to set the initial bounds
(L̂l;T )i = (Ŝl;T )i − ε, and (R̂l;T )i = (Ŝl;T )i + ε with
small ε.

2) Measure the data item yt, zt.
3) For all components, compute the expectations and the

covariance matrices via (18) and (19).
4) Substitute (18), (19) and the current yt into (17).
5) Using (15) for the actual value k of zt, compute the

weighting vector wt via (20), its normalization and
summation over rows.

6) Declare the active component according the biggest
entry of the vector wt, which is the point estimate of
the pointer ct at time t.

7) Update the component statistics according to (26)–(31)
for both the bounds.

8) Update the pointer statistics (32).
9) Re-compute the point estimates (18), (19) and (15) and

go to Step 2 of the on-line bound estimation.

V. VALIDATION EXPERIMENTS

Realistic simulations from the transportation microscopic
simulator Aimsun (www.aimsun.com) were used for testing
the proposed algorithm in the open-source software Scilab
(www.scilab.org). A series of validation experiments was
performed. Here typical results are shown.

The aim of clustering was to detect different working modes
in the traffic flow data.

A. Data

The data vector yt contained:

• y1;t – the non-negative traffic flow intensity [vehi-
cle/period] bounded by the saturated flow on the con-
sidered intersection on the maximal value 32;

• y2;t – the non-negative occupancy of the measuring
detector [%] with the maximal value 100.

The discrete variable zt was the measured indicator of the
vehicle queue existence such that zt ∈ {0, 1}, where 1 denotes
that the queue is observed, and 0 – there is no queue. The data
were measured each 90 seconds.
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B. Initialization

400 prior data items were used for the initial detection of
component centers. The assumed number of components ex-
pressing the traffic flow modes was mc = 3. The initial centers
of components obtained according to the corresponding part
of the algorithm are given in Table I.

TABLE I
INITIAL CENTERS OF THREE COMPONENTS

(ŜT=400)i
i = 1 [16.1 85.4]′

i = 2 [16.3 33.5]′

i = 3 [8.6 2.4]′

C. Results

1000 data items were used for the bound estimation.
Figure 1 demonstrates results of the proposed mixture-based
clustering (top) and compares them with the k-means cluste-
ring [2] (bottom).

The proposed algorithm detected three clusters on-line
by actualizing the statistics by each arriving data item, see
Figure 1 (top).

The upper cluster with the center [16.1 85.4]′ (according
to i = 1 in Table I) corresponds to the approaching unstable
traffic flow. This explains why the intensity is almost the
same as for the middle cluster (corresponding to i = 2 in
Table I, i.e., with the initial value 16.3), however, the detector
occupancy reports a high degree of workload for the upper
cluster. The middle cluster can be interpreted as the stable
flow. The bottom cluster in Figure 1 (top) with the lower
intensity and lower occupancy and the initial centers [8.6 2.4]′

corresponds to the free traffic flow.
Figure 1 (bottom) shows three clusters detected by iterative

processing of the whole data sample by the k-means algorithm.
The results differ from those obtained in Figure 1 (top): the
cluster with the free flow is partitioned in two clusters with
two centers. The middle cluster is not found. The upper cluster
is the same as in Figure 1 (top).

D. Discussion

The obtained results look promising. Surely, the question
can arise of application of the approach in the case of lack of
prior data. The estimation with both the types of statistics can
be performed also independently. When using the algorithm
only with the statistics (9)–(10), the bounds can be probably
exceeded, which can be fixed by additional restrictions. For
the algorithm only with the statistics (6)–(7) the initialization
with random centers can be applied in the absence of prior
data. In this case setting the adaptive forgetting technique is
expected to considerably help in finding the bounds. Analyzing
the series of performed experiments, it can be said that the
most suitable application of the approach is the combination
of statistics given in Algorithm IV-E.

Fig. 1. Comparison of mixture-based (MB) (top) and k-means (KM) (bottom)
clustering the traffic flow data. The top figure shows three MB clusters: the
upper one corresponds to the almost unstable traffic flow, the middle one – to
the stable flow, and the bottom cluster is the free traffic flow. Initial bounds
of clusters are shown as internal rectangles indicated by the dashed line. The
estimated bounds of clusters are plotted as external rectangles. The bottom
figure plots three KM clusters and their final centers. The upper cluster is
similar to the MB results, however, the clusters of stable and free traffic flow
are different.

One of the advantages of the proposed algorithm is also
a possibility of its on-line running with real-time measure-
ments and the gradual update of component bounds, while
iterative algorithms in this area (e.g., k-means) focus on off-
line processing the whole available data sample at once.
The unified systematic Bayesian approach used for other
types of components (see Section I), where each of models
requires a specific update of statistics, is here presented for
uniform components. A combination with other distributions
for covering different shapes of clusters can be also a further
extension of the approach.
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VI. CONCLUSION

This paper proposes the algorithm of mixture-based cluste-
ring the non-Gaussian data with fixed bounds. The specific so-
lutions include (i) the recursive Bayesian estimation of uniform
components and the switching model; (ii) the initialization via
the moment method; (iii) the forgetting technique. The results
of testing the algorithm are provided.

However, there still exists a series of open problems in the
discussed area, where the first of them is modeling depen-
dent uniformly distributed variables with parallelogram-shaped
clusters. Further, extension of the clustering and classification
tools for other distributions is planned within the future work
on the present project.
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