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Abstract—Initialization is an extremely important part of the
mixture estimation process. There exists a series of initialization
approaches in the literature concerning the mixture initialization.
However, the majority of them is directed at initialization of
the expectation-maximization algorithm widely used in this area.
This paper focuses on the initialization of the mixture estimation
with normal components based on the recursive statistics update
of involved distributions, where the mentioned methods are not
suitable. Its key part is the choice of the initial statistics. The
paper describes several relatively simple initialization techniques
primarily based on processing the prior data. The experimental
part of the paper represents results of validation on real data.

Keywords—mixture initialization, recursive estimation, compo-
nent centers

I. INTRODUCTION

The initialization is one of the key problems of the mixture
estimation. Mixture models are often used for description
of multi-modal systems, whose behavior can switch among
different working modes. Such modeling is demanded in a
variety of application areas, including, e.g., fault detection
(fault or non-fault mode), car diagnostics (eco-driving or sport
mode, etc.), traffic flow control (the level of service), big data
issues, etc., see, for instance, [1], [2], [3].

The mixture model consists of several components that
describe the individual working modes of the observed system
and of their switching model. The last is considered as the ran-
dom Markov process called the pointer [4], [5], and its value
at the corresponding time instant indicates the currently active
component (i.e., the working mode). In reality, parameters of
neither the components nor the pointer model are available.
Thus the mixture estimation problem consists, in general, in
estimation of the component and the pointer model parameters,
and also in the pointer value estimation.

The mixture estimation approaches found in the literature
are mainly based on (i) the iterative expectation-maximization
(EM) algorithm [6], see, e.g., [7], [8]; (ii) the approximative
Variational Bayes approach [9], [10]; (iii) sampling Markov
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Chain Monte Carlo techniques, e.g., [11], [12], [13]. Closely
related tasks are also discussed in [14], [15].

A different non-numerical approach is given by the recursive
Bayesian estimation theory for static mixtures [4], [5], indi-
vidual normal components [16] and dynamic mixtures [17],
which, unlike the above mentioned sources, represent on-line
data-based estimation algorithms avoiding numerical iterative
computations. The present research project supports their
philosophy in developing the mixture estimation algorithms.

The mixture estimation algorithm should be initialized
before starting. In the considered context the initialization
primarily lies in specifying (i) distributions of components,
(ii) the number of components, and (iii) the prior probability
density functions (pdfs) describing parameters of components
and of the pointer model. The present paper is limited by
mixtures of normal components.

A series of papers was found in the area of the mix-
ture initialization. For instance, the paper [18] proposes the
initialization of the EM algorithm via a strategy defining
mean vectors by choosing points with higher concentrations
of neighbors. It uses a truncated normal distribution for the
preliminary estimation of covariance matrices.

Another paper [19] describes a new method for random ini-
tialization of the EM algorithm based on selecting the feature
vector from a set of candidate vectors, located farthest from
already initialized components. The Mahalanobis distance is
used. The paper [20] is devoted to simple and fast approaches
of the initialization of the EM algorithm based on the well-
known clustering algorithms. The paper [21] proposes the
EM initialization method by partition of the training set to
be modeled individually by single experts and the subsequent
initialization of models on a partition subset. The paper [22]
initializes a mixture via the EM algorithm using a product
kernel estimate of pdfs and the gradient method for local
extrema finding.

It is seen that the majority of studies is primarily oriented at
application of the EM algorithm. Under the adopted theory [5],
[4], [16], [17] not using the EM algorithm, the initialization
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focuses on the number of components and the initial statistics
of the Gauss-inverse-Wishart parameter pdfs. In this field
the paper [23] is found, which (applied to the presented
subproblem) leads to weighting the initial statistics of the
parameter pdfs.

The present paper considers the initialization primarily
based on detecting the initial centers of components via the
visualization analysis of the prior or expert knowledge. In the
case of static normal components this expert-based procedure
is rather effective. For dynamic mixture components the task
is more complicated. The paper considers several ways of
initialization of dynamic components: (i) fixation of covariance
matrices; (ii) imitation of the static case; (iii) repeated use of
the data sample, see, e.g., [4]; and (iv) weighting the initial
statistics [23], and validates them experimentally on real data.
The paper demonstrates that a relatively small amount of
prior data used for the mixture initialization contributes to a
faster stabilization of parameter estimates during the on-line
estimation.

The paper is organized in the following way. Section II in-
troduces models. Section III gives necessary basic facts about
the mixture estimation algorithm and specifies the initialization
problem. Section IV describes the mentioned initialization
approaches. Section V provides results of experiments. Con-
clusions and open problems are given in Section VI.

II. MODELS

Let’s consider a multi-modal system, which at each discrete
time instant t = 1, 2, .... generates the continuous data vector
yt. It is assumed that the observed system works in mc

working modes, each of them is indicated at each time instant
t by the value of the unmeasured dynamic discrete variable
ct ∈ {1, 2, . . . ,mc}, which is called the pointer [5].

The observed system is supposed to be described by a mix-
ture model, which (in this paper) consists of mc components.
The components can be represented either by

the static pdf f (yt|Θ, ct = i) , ∀i ∈ {1, 2, . . . ,mc}, (1)

or by the dynamic pdf f (yt|ψt−1,Θ, ct = i) , (2)

where Θ is a collection of parameters of all components,
and Θ ≡ {Θi}mc

i=1, where Θi includes parameters of the i-th
component in the sense that f (yt|Θ, ct = i) = f (yt|Θi) for
ct = i, and ψt−1 = [yt−1, yt−2, . . . , yt−n]′ is the regression
vector with the memory length n.

This paper focuses on using the pdfs (1) or (2) with the
normally distributed white noise. In this case the pdfs are
specified as follows.

A. Static Components

The pdf (1) has the form ∀i ∈ {1, 2, . . . ,mc}

(2π)−N/2|ri|−1/2 exp

{
−1

2
[yt − θi]′r−1

i [yt − θi]
}
, (3)

where N denotes a dimension of the vector yt; θi represents
the center of the i-th component; ri is the covariance matrix
of the involved normal noise, which defines the shape of the
component (i.e., in the case of the diagonal ri the component
is round-shaped), and Θi ≡ {θi, ri}.

B. Dynamic Components

The pdf (2) is specified as

(2π)−N/2|ri|−1/2 exp

{
−1

2
[yt − θiψt−1]′r−1

i [yt − θiψt−1]

}
,

(4)
where unlike (1) the parameter θi is a collection of regression
coefficients of the i-th component, whose number corresponds
to the memory length n used for the regression vector ψt−1.
A rest of notations are identical to the previous case.

C. Dynamic Pointer Model

Switching the active components, either (1) or (2), is de-
scribed by the dynamic model

f (ct = i|ct−1 = j, α) , i, j ∈ {1, 2, . . . ,mc}, (5)

which is represented by the transition table

ct = 1 ct = 2 · · · ct = mc

ct−1 = 1 α1|1 α2|1 · · · αmc|1
ct−1 = 2 α1|2 · · ·
· · · · · · · · · · · · · · ·

ct−1 = mc α1|mc
· · · αmc|mc

where the parameter α is the (mc ×mc)-dimensional matrix,
and its entries αi|j are non-negative probabilities of the pointer
ct = i (expressing that the i-th component is active at time t)
under condition that the previous pointer ct−1 = j.

III. RECURSIVE MIXTURE ESTIMATION

Formulation of the initialization problem requires a pre-
liminary outline of the recursive approach to the Bayesian
mixture estimation. The algorithm to be effectively initialized
is based on the paper [5], which proposes the solution for
normal mixtures with the static pointer model, and on [17]
considered the problem for the dynamic pointer model. In the
context of the introduced mixture of components (1) or (2)
and of the pointer model (5), the estimation problem concerns
the unknown parameters Θ and α and the pointer value ct.
Derivations are based on construction of the joint pdf of all
variables to be estimated and application of the Bayes rule and
of the chain rule, see e.g., [16]. Here they are outlined briefly
to present the necessary theoretical background for static
components (1) with a subsequent explanation of changes in
the case of using (2).

Assuming that Θ and α, and yt and α, and ct and Θ
are mutually independent, and denoting the data collection
y(t) = {y0, y1, . . . , yt}, where y0 stands for prior data,
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the joint pdf of all variables to be estimated has the form
∀i, j ∈ {1, 2, . . . ,mc}

f(Θ, ct = i, ct−1 = j, α|y(t))︸ ︷︷ ︸
joint posterior pdf

(6)

∝ f(yt,Θ, ct = i, ct−1 = j, α|y(t− 1))︸ ︷︷ ︸
via chain rule and Bayes rule

= f (yt|Θ, ct = i)︸ ︷︷ ︸
(1) or (2)

f(Θ|y(t− 1))︸ ︷︷ ︸
prior pdf of Θ

× f (ct = i|ct−1 = j, α)︸ ︷︷ ︸
(5)

f(α|y(t− 1))︸ ︷︷ ︸
prior pdf of α

f(ct−1 = j|y(t− 1))︸ ︷︷ ︸
prior pointer pdf

.

Recursive formulas for estimation of ct, Θ and α via (6)
are obtained using the marginalization of (6) firstly over the
parameters Θ and α. It results in the posterior pdf f(ct =
i, ct−1 = j|y(t)), which is joint for both ct and ct−1. Further
the resulted joint pdf should be again marginalized over the
values of ct−1 for obtaining the posterior pdf f(ct = i|y(t))
of the current pointer.

A. Component Parameters

The integral of (6) over Θ is evaluated by substituting
the point estimates of θi and ri available from the previous
time instant t − 1 and the currently measured yt into the
corresponding i-th normal component, either (1) or (2). The
mentioned point estimates of parameters of the i-th component
are computed based on using the conjugate prior Gauss-
inverse-Wishart pdf with the recomputable (initially chosen)
statistics (Vt−1)i and ki;t−1 in the Bayes rule, which according
to [16], [5] gives the algebraic recursion for static components

(Vt)i = (Vt−1)i + wi;t

[
yt
1

]
[yt, 1] , (7)

for dynamic components

(Vt)i = (Vt−1)i + wi;t

[
yt
ψt−1

]
[yt, ψt−1] , (8)

and valid for both of them

κi;t = κi;t−1 + wi;t, (9)

where wi;t will be explained later. The needed point estimates
are computed at time t for each component as follows [16]:

(θ̂t)i = V −1
1 Vy, (r̂t)i =

Vyy − V
′

yV
−1
1 Vy

κi;t
, (10)

where (Vt)i is partitioned (for simplicity with the omitted
subscript i)

(Vt)i =

[
Vyy V

′

y

Vy V1

]
, (11)

so that in the static case Vyy is the square matrix of the
dimension N of the vector yt, V ′y is N -dimensional column
vector and V1 is scalar. For dynamic components (2), the
partition changes according to the memory length n used in

the regression vector ψt−1, i.e., Vy and V1 become matrices of
appropriate dimensions. The substitution of (10) and yt into
the corresponding i-th normal pdf provides the proximity of
each component to the current data item.

B. Pointer Parameters

Similarly, the integral of (6) over α provides the compu-
tation of its point estimate using the previous-time statistics
denoted by ϑt−1 of the conjugate prior Dirichlet pdf accord-
ing to [4]. Here the mentioned statistics is the square mc-
dimensional matrix, whose entries for ct = i and ct−1 = j are
recursively computed in the following way:

ϑi|j;t = ϑi|j;t−1 +Wi,j;t, (12)

where Wi,j;t will be explained a bit later, and which was
introduced by [17] with the approximation based on the
Kerridge inaccuracy [24]. However, here, for simplicity, it is
updated similarly to [5], but modified for the dynamic pointer
model. The point estimate of α is then obtained by simple
normalizing the updated statistics

α̂i|j;t =
ϑi|j;t∑mc

k=1 ϑk|j;t
. (13)

C. Component Weights

Here the above denotations wi;t and Wi,j;t are explained.
After the described marginalization the posterior pdf f(ct =
i, ct−1 = j|y(t)) is obtained by entry-wise multiplying the
proximity obtained from each component, the previous-time
point estimate of α (13) and the prior pointer pdf (ct−1 =
j|y(t − 1)). The last is the weight of the components at the
previous time instant, and it is denoted by wj;t−1 and expresses
the (initially chosen and then actualized) probability of the
activity of the j-th component at time t− 1.

For all i, j ∈ {1, 2, . . . ,mc}, the posterior pdfs f(ct =
i, ct−1 = j|y(t)) are entries denotes by Wi,j;t of the square
mc-dimensional matrix, which is normalized and summed up
over rows to obtain the posterior pdf f(ct = i|y(t)). The last
provides the updated weight wi;t of each i-th component at
time t. The maximal weight wi;t defines the currently active
component, i.e., the point estimate of the pointer ct at time t.

D. Initialization Problem Specification

The outlined relations are summarized as the following
algorithm steps performed on-line for t = 2, . . .:

1) Measure the new data yt.
2) Obtain proximities of all components, using the

previous-time point estimates (10).
3) Multiply entry-wise the proximities, the prior weighting

vector wt−1 and the previous-time point estimate α̂t−1.
4) The result of this entry-wise multiplication is the matrix

with entries Wi,j;t. Normalize this matrix.
5) Perform the summation of the normalized matrix over

rows and obtain the updated vector wt with entries wi;t.
6) Update all statistics, using wi;t and Wi,j;t according to

(7) or (8), (9), and (12).
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7) Recompute the point estimates of all parameters accord-
ing to (10) and (13) and go to Step 1.

Thus, the initialization of this on-line part of the algorithm
lies in setting at time t = 1:
• the number of components mc,
• the initial statistics of all components (V0)i, κi;0 and the

pointer statistics ϑ0 (the initial estimates in Steps 2 and
3 are computed from them),

• the initial mc-dimensional weighting vector w0,
where mc and (V0)i are the key ones and they will be the
focus of the subsequent sections. The rest of statistics can be
initialized either uniformly or randomly in combination with
their updating by prior data.

IV. EXPERT-BASED MIXTURE INITIALIZATION

The proposed initialization is based on convincing that in
the beginning of the mixture estimation (as well as generally
description of the multi-modal system) in a specific domain
some type of prior or expert knowledge is always available.
Such a kind of the knowledge can be in the form of specially
previously measured data, realistic simulations (e.g., from
Aimsun (www.aimsun.com) in the traffic flow control area) or,
at least, the expert information about the expected number of
components (disease symptoms in medicine, types of failures
in car diagnostics, success in elections, etc.).

Anyway the start of the estimation is always critical due
to a risk of dominance of a single active component resulted
from the temporary non-activeness of others as well as noisy
data. This can lead to joining other components and finally the
failure of the estimation. To avoid the mentioned dominance
the following expert-based procedures can be performed:
• fixing the covariance matrices of components as diagonal

ones with entries 0.1 and running their estimation later,
which is very simple and effective way;

• detection of the initial component centers by the visual
analysis;

• repeated use of the prior data sample inspired by [4],
[23].

• suppressing the influence of the first measured data on
the estimation to support the initial estimates obtained
from the initial statistics to produce proper weights of
components based on [23].

These ways of processing the prior data to extract the infor-
mation necessary for a successful initialization is described
below. Thus, in this section the time instant t corresponds to
prior data items. The implementation is prepared in the open
source programming environment Scilab (www.scilab.org).

To determine the area of the interest in the data-parameter
space it is suitable to work with the normalized data with
zero expectations and the unit covariance matrices. This is
reached by extracting the mean value from each prior data
item and division by the standard deviation. However, it is not
a necessary condition.

A. Static Component Initialization

For the initialization of static components (1) it is extremely
important to detect the initial centers of clusters in the data
space. This task covers both the determination of the number
of components and of the initial statistics. Covariance matrices
for the normalized data could be used as diagonal ones with
entries 0.1.

For this aim the prior data sample is processed as follows.
Individual entries of the multidimensional vector yt are visu-
alized by pairs against each other. The analysis of the visua-
lization gives a possibility to distinguish the number of plotted
components and get their centers. Here for demonstration, the
real data sample measured on a driven vehicle is taken, where
the vector yt contains the following entries: (i) y1;t is the
instantaneous fuel consumption [µl], (ii) y2;t is the vehicle
speed [km/h], (iii) y3;t is pressing the gas pedal [%], (iv) y4;t

is the engine speed [rpm]. The sampling period is 1 second.
The number of prior data is 400.

Two-dimensional clusters of each variable are shown in
Figure 1. The visualization represents the upper triangular
matrix of figures, where each row corresponds to the entry
of the vector yt from y1;t to y4;t plotted firstly against itself
and then against the rest of entries. The normalized data with
zero expectations and unit variances are used, which means
that values on axes do not express real ranges of data items.
Individual figures are denoted by numbers l, k ∈ 1, . . . , N
corresponding to the entries indices. Under assumption that
the processed data are of a multi-modal character, clusters are
clearly visible. Here three clusters are seen, thus mc = 3. For
detection of initial centers of components, figures 1-2, 2-3 and
3-4 located above the diagonal are of the main interest.

Figure 1-2 exhibits three clusters at positions [0, −0.5],
[0.5, 1] and [1, −1], which indicate three positions of clusters
of the variable y2;t: i.e., -0.5, 1 and -1. These values are
explored in the second figure 2-3 on the x axis, where
the variable y2;t is shown. Figure 2-3 gives the coordinates
[−0.5, 0.5], [−1, −1.2] and [1, 0.5], which provide positions
0.5 a -1.2 for the entry y3;t. Using them in figure 3-4
the centers of components between entries y3;t and y4;t are
detected as [0.5, −0.3], [0.5, 0.7] and [−1.2, 0].

Based on this visual analysis, positions of the four-
dimensional initial centers denoted by si ∀i{1, . . . ,mc} are
summarized in Table I.

TABLE I
INITIAL CENTERS OF STATIC COMPONENTS

Data entry s1 s2 s3
y1;t 0 0.5 1
y2;t -0.5 1 -1
y3;t 0.5 -1.2 0.5
y4;t -0.3 0.7 0

The i-th initial center is substituted into the initial statistics
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Fig. 1. Visualization of pairs of the normalized data vector against each other. Notice visible clusters plotted in figures denoted by 1-2, 2-3 and 3-4.

(V0)i of the i-component as follows:

(V0)i =


1 0 0 0 (s1)i
0 1 0 0 (s2)i
0 0 1 0 (s3)i
0 0 0 1 (s4)i

(s1)i (s2)i (s3)i (s4)i 1

 (14)

where (sl)i ∀l{1, . . . , N} is the l-th entry of the vector si.
Thus, the expert-based initialization procedure for static

components includes the steps: (i) normalize data (optionally);
(ii) plot all data entries against each other, (iii) find subse-
quently positions of clusters in corresponding figures (here
above the diagonal). The constructed initial statistics is used
in the on-line part of the estimation algorithm. Validation of
the approach is discussed in Section V.

B. Dynamic Component Initialization

A character of dynamic components (2) requires both to
support the dynamics of models and to avoid a preliminary
dominance of any of components due to noisy data. The
following initialization procedures can be considered (notice
that they can be also combined).

1) Static Case Imitation: The first one is to imitate the
static case described above and to detect both the number
of components and their initial centers, using the visual
analysis of prior data. The initial statistics (V0)i in this case is

constructed with the help of substituting a matrix of the form
(14) with the detected initial centers instead of its part V1 in
(11). The rest of corresponding matrix entries are zero values.
Such the initialization can be in many cases efficient, i.e., for
data with the rather slow dynamics.

2) Initial Centers with Support of Dynamics: Another op-
tion is to combine the above approach with diagonal matrices,
entries of which represent the chosen initial model dynamics.
In this case (using the diagonal noise covariance matrix too)
the component is decomposed into independent equations (in
dependence on a dimension of the vector yt). This allows to
use the stabilized positions of centers for the initial statistics.

Construction of the initial statistics (V0)i is based on the
fact that the initial centers detected for static components are
their constant expectations. Thus for the dynamic model (here
for simplicity for the first order component with n = 1) the
constant in (2), or precisely (4), is determined from

yl;t − (al|l)iyl;t−1 − (sl)i, (15)

where {ai, si} ∈ θi of the i-th component, and (al|l)i is
the diagonal entry of the matrix of regression coefficients ai
with l ∈ {1, . . . , N}, and (sl)i is the entry of the vector
si. Then the diagonal entry (al|l)i expressing the dynamics
(a small value about 0.1 brings more dynamics, and a value
approaching 1 corresponds to slow dynamics) can be used for
constructing the initial statistics. For the previous example,
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the initial statistics of the i-th strongly dynamic component is
constructed by substituting

Vy =


0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

(s1)i (s2)i (s3)i (s4)i

 (16)

into (11). It also defines V ′y , and the rest of submatrices are
the unit matrices.

3) Repeated Use of the Data Sample: Another expert-based
procedure, which is rather helpful in the initialization mostly
under condition of the lack of data is the repeated use of the
available prior data sample [4], [23]. Firstly the estimation
starts according to the algorithm from Section III-D with
small diagonal initial statistics (V0)i. The actualized statistics
after the course of the estimation with the whole sample of
prior data are used as the new initial one, and the estimation
algorithm starts again. The resulted updated statistics are used
as initial for the on-line estimation.

This way of initialization can be also combined with weigh-
ting the initial statistics to suppress the influence of data in the
beginning of the algorithm running, which is described below.

4) Weighting the Initial Statistics: This initialization ap-
proach is primarily based on [23], which in the considered
context takes the following form.

The prior or expert given data are firstly substituted in
the extended regression vectors [yt, ψt−1]

′ used then in the
statistics update (8). The amount of the used extended regres-
sion vectors should correspond to the number of parameters
(regression coefficients) to be estimated. The statistics κi;0
expresses the number of the used data.

The Bayesian estimation is strengthened with gradually
measuring new data, which means that a weight of the
new data item is inversely proportional to the statistics, and
therefore the possible disturbance in data takes the inversely
proportional effect on the estimation. Thus the same prior
regression vectors multiplied by the chosen weight are used
again for the initial statistics as follows:

(V0)i = µ(V0)i, κi;0 = µ, (17)

where µ expresses the number of the used prior data items,
which means that the first newly measured data item takes the
effect 1

µ on the estimation.
Improvements brought by the mentioned initialization me-

thods appear primarily in the speed of finding the stabilized
estimates of regression coefficients during the on-line mixture
estimation. Validation of the enumerated approaches is pre-
sented below.

V. EXPERIMENTS

The initialization of the mixture estimation algorithm can
be validated in accordance with the following criteria.

Fig. 2. The evolution of the activity of three components. Notice that values
of the weights are approaching 0 or 1.

A. Weight Evolution

The first one concerns with the initialized number of com-
ponents, which is identical both for the static and dynamic
components. It is verified by the evolution of the component
weights during the on-line part of the estimation algorithm
using 6400 data. For better visibility, fragments with 1200 data
items are shown. The evolution should demonstrate a reason-
able way of switching the components. In that case it confirms
that the model is correctly established. For the prior data used
in Section IV-A the evolution of the corresponding entries of
the weighting vector wt of three detected components is shown
in Figure 2.

It can be seen that (i) the components switch in a reason-
able way, (ii) the plotted values of probabilities are mostly
approaching 1 or 0, which means the unambiguous decision
for the currently active component.
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B. Parameter Estimate Evolution

The evolution of the component centers for static compo-
nents (1) and of the estimates of regression coefficients for
dynamic ones (2) is a sufficient indicator of the successful
initialization.

Stabilization of positions of component centers in the data
space after their initial search indicates that the estimation is
correct. Otherwise, if some resulting centers are identical or
very close one to another, this mostly signalizes that too many
components are chosen, and their number should be reduced.

The evolution of the component centers can be seen in
Figure 3 in the parameter space for the normalized entries
y1;t and y2;t, and y3;t and y4;t plotted against each other.

The evolution of the estimation of regression coefficients of
two of the components (to save space) is shown in Figure 4.
The stabilization of the estimation can be seen, where after
the initial search the steady-state is reached.

Fig. 3. Evolution of three component centers. The start position is denoted
by ’x’, and the end of the search is marked by ’o’. The density of points
corresponds to the speed of movement.

C. Validation via Data Prediction

The graphically represented comparison of the predicted
data items obtained from components with the substituted
estimates and the real data is shown in Figure 5. For the
lack of space, only two normalized entries of the data vector
yt are shown. Graphs demonstrate the coincidence between
predictions and real data items.

Fig. 4. Evolution of regression coefficients. Notice that after the initial search
the stabilized state is reached. In the bottom figure the initialization has given
the already stabilized values.

Fig. 5. Selected results of data prediction. Notice that predicted values
correspond to real data items.

The presented results are shown for the combination of
the visual analysis with the dynamics support initialization,
the repeated use of the prior sample and weighting the
initial statistics, which gives the minimal prediction error in
comparison with other combinations.

VI. CONCLUSION

The presented approach is based on the availability of prior
or expert data, which is always the case in real application
fields. Thus the intervention of an expert in processing the
prior data is realistic and, as it can be seen, advantageous for
such a critical task as the mixture initialization. This paper
focuses on initialization of mixtures of normal components.
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However, the present research project aims at the recursive
estimation of mixtures of different distributions (namely, cate-
gorical, exponential, uniform components), which all require
specific initialization approaches. This will be part of the
future project work.
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