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Abstract—This paper deals with a discrete predictive control
design for motion control of robotic systems. The design considers
time-varying state-space robot model. It is assumed that used
robot state has to be estimated from measured robot outputs.
These outputs represent controlled quantities including a bounded
noise. Considering this arrangement, the paper introduces a novel
solution to the state and noise parameter estimations based
on linear programming that is incorporated in the control design.
Estimated states are utilised for updating state-dependent ele-
ments in the robot model and for control design itself. Estimated
noise parameters are employed in advanced tuning of control
parameters, namely penalisation matrices. The proposed theoret-
ical outcomes are demonstrated on one multi-input multi-output
robot-manipulator as a specific representative of robotic systems.

I. INTRODUCTION

Robotic systems as industrial robots-manipulators realise
their motion in environments containing various disturbances
and noises. These uncertainties can cause inadequate demands
for control actions or increase control errors. To overcome this
problem, respective control design intended for a real robot
motion should take the mentioned influences into account.

Model predictive control (MPC) is currently a very popular
control method [1]. It offers several ways how to cope with
the above mentioned uncertainties. For small disturbances,
deterministic MPC design can be used. Then, the control
actions are determined using the nominal model. Under certain
conditions, the controlled system is robustly stable against
a sufficiently small additive disturbance [2]. For an arbitrarily
high but bounded disturbances, robust MPC is standardly used.
The bounds are assumed to be known. The control actions
are designed considering all possible disturbance realisations,
see e.g. [3], [4]. However, robust approaches may be too
conservative for high-dynamical tasks of the control of the
robot motion. For stochastic disturbances, stochastic MPC is
now developed. Contrary to robust MPC, in stochastic MPC,
disturbances may not be necessarily bounded. The present
constraints are softened, i.e. they are not required to be satisfied
for all realisations of the disturbance, [5], [6]. Nevertheless,
softening of a control constraints is not acceptable for all cases.

This paper deals with the above described control problem
of robot motion influenced by a noise. The uncertainty is
assumed to be bounded with unknown bounds. The paper
focuses on output feedback MPC using a state-space model and
considering unknown bounded noises and unmeasurable states.

Therefore, state and noise parameter estimations are intro-
duced. The respective estimates are obtained using an approx-
imate Bayesian estimation based on the linear programming
[7]. The state estimates are utilised in predictive control both
to update state-dependent model matrices of considered state-
space model and to compute control actions within predictive
optimisation procedure. Furthermore, estimated noise parame-
ters are used for a setting or tuning of the control parameters.
Here, for simplicity, general unconstrained positional MPC is
considered. However, this approach may generally be used for
involvement of constraints [8]. Furthermore, it can be applied
to offset-free MPC [9], proposed also by author in [10].

The paper is organised as follows. Section II introduces
used stochastic linear discrete-time state-space model describ-
ing controlled system. In Section III, the used MPC is pre-
sented and tasks needed for control design and online tuning
are defined. Section IV describes the state estimation that
is required for the design of control actions. In Section V,
noise parameter estimation is introduced including the use
of obtained estimates for tuning of MPC. Section VI demon-
strates the theoretical outcomes on a specific parallel robot-
manipulator.

Throughout the paper, the following notation is used: zk
is the value of a column vector z at a discrete-time instant
k ∈ k? ≡

{
k, · · · , k

}
, k ≥ 1; zk;i is the i-th entry of zk; `z is

the length of the vector z; z and z are lower and upper bounds
on z, respectively.

II. MODEL OF CONTROLLED SYSTEM

Modelling of robotic systems represents a complex task.
These systems are generally described by non-linear models.
An example of the specific robotic system is presented in Sec-
tion VI. Let us consider that the relevant model of the con-
trolled system can be adapted to a linear-like time-varying
state-space model as follows

xk = Ak xk−1 + Bk uk−1 + νk = x̃k + νk
yk = C xk + nk = ỹk + nk

(1)

where subscript k denotes discrete time instants; xk, yk
are system states and outputs; Ak and Bk are time-varying
state and input matrices; C is a constant output matrix;
x̃k, ỹk are corresponding deterministic parts of xk, yk;
νk, nk are vectors of stochastic state and output noises,
respectively. Such model can represent all necessary features
and relations in a robotic system and it is suitable for control
design and related estimations as well.
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In the model (1), the noises νk and nk are assumed to be
identically distributed and conditionally independent of past,
having zero means and constant variances. Unlike the usual
assumption that noises νk and nk are normally distributed
with known covariance matrices, it is assumed that both
the state noise νk and the output noise nk are distributed
uniformly on a multidimensional box with zero centre point
and unknown half-widths ρ and r of the support intervals,
respectively, i.e.

f (νk|ρ) = Uνk (0`x , ρ) , f (nk|r) = Unk

(
0`y , r

)
(2)

where Uz(µ, α) denotes a uniform probability density function
(pdf) of a variable z given by the expectation µ and the half-
width of the support α; parameters ρ and r are assumed to be
time-invariant or slowly varying. The symbol f(·|·) denotes
a conditional pdf; names of arguments distinguish respective
pdfs; no formal distinction is made between a random variable,
its realisation and an argument of the pdf.

The equations (1) and (2) define a stochastic linear state-
space uniform model (LSU model) used in further explanation.

III. PREDICTIVE CONTROL DESIGN

In this paper, a discrete positional generalised predictive
control (GPC) [11] is considered. To design an optimal control
action, GPC employs predictions of expected future outputs
of controlled system represented by a state space model. Here,
the above mentioned LSU model will be utilised. The future
output values are expressed by equations of predictions [12].
The main design elements, i.e. equations of predictions and rel-
evant quadratic cost function, together with interpretation
and tuning of corresponding control parameters, are introduced
in the following subsections.

A. Equations of Predictions

The equations of predictions enable the design to optimise
control task within a specific finite horizon considering future
reference values thus to generate optimal control actions. These
equations express the relationship between predicted future
outputs and unknown control actions. Here, they are composed
using LSU model (1) with estimated state values as follows

ŷk+1 = CAk x̂k + CBkuk

ŷk+2 = CA2
k x̂k + CAkBkuk + CBkuk+1 (3)

...
...

ŷk+Np = CA
Np

k x̂k + CA
Np−1
k Bkuk · · ·+ CBkuk+Np−1

where Np is a prediction horizon and x̂k is a point state
estimate based on previous realised inputs and measured
outputs (the estimation of xk is described in Section IV).
The equations (3) can be expressed in matrix form:

Ŷk+1 = Fk x̂k +Gk Uk (4)

Ŷk+1, and Uk in (4) are sequences of output predictions
and searched control actions, respectively

Ŷk+1 =
[
ŷTk+1, · · · , ŷTk+Np

]T
, Uk =

[
uTk , · · · , uTk+Np−1

]T
(5)

and Fk and Gk are matrices defined as follows

Fk =

 CAk...
CA

Np

k

, Gk =

 CBk · · · 0
...

. . .
...

CA
Np−1
k Bk · · · CBk

 (6)

Note that noise terms in (1) are omitted due to the assump-
tion of their zero mean and matrices Ak and Bk are considered
to be constant within one prediction horizon with respect
to unknown future states and the assumption of their low
variations within the horizon.

B. Cost Function and Its Minimisation

Quadratic cost function is an objective function that bal-
ances control errors, i.e. differences between predicted outputs
and given references, against amount of input energy. For con-
sidered positional predictive algorithm, the cost function is
defined as follows

Jk = E
Np∑
j=1

{
‖Qyw(ŷk+j − wk+j)‖22 + ‖Quuk+j−1‖22

}
(7)

=E
{
(Ŷk+1−Wk+1)TQTYWQYW (Ŷk+1−Wk+1)+UTk Q

T
UQUUk

}
where E denotes the expected value, ‖.‖2 is the quadratic norm,
Wk+1 represents a sequence of references

Wk+1 =
[
wTk+1, · · · , wTk+Np

]T
(8)

and QYW and QU are penalisation matrices defined as

QT�Q� =

Q
T
∗
Q
∗

0
. . .

0 QT
∗
Q
∗

∣∣∣∣∣ subscripts �, ∗ :
� ∈ {YW, U}
∗ ∈ {yw, u}

(9)

Minimisation of (7) can be provided in efficient and nu-
merically stable square-root form considering the minimisation
of vector square-root Jk instead of Jk, scalar product of Jk:

min
Uk

Jk = min
Uk

JTk Jk → min
Uk

Jk (10)

min
Uk

Jk = min
Uk

E
{[

QYW 0
0 QU

][
Ŷk+1 −Wk+1

Uk

]}
(11)

which leads to the over-determined algebraic system

[
QYW Gk
QU

]
Uk =

[
QYW (Wk+1 − Fkx̂k)

0

]
(12)
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The system (12) can be written in general form [13]

AUk = b (13)

QTAUk = QT b with respect to A = Q R
R1 Uk = c1 (14)

Thus, orthogonal matrix QT transforms matrix A to an upper
triangle R1 as indicated in the following block diagram

A Uk = b

⇒

@
@
@

R1

0

Uk = c1

cz

(15)

In (15), vector cz is a loss vector. Its Euclidean norm ||cz||
equals to the square-root of the optimal minimum of the cost
function

√
J i.e. J = cTz cz .

Note that the final control action uk, intended for re-
alisation, is the first sub-vector from the overall vector Uk
as indicated in (5).

C. Control Parameters and Their Tuning

Predictive control usually operates under appropriate con-
stant control parameters Np, Qyw, Qu. Constant prediction
horizon Np is chosen usually with respect to constant order
of the system. Regarding penalisations Qyw, Qu, they are
usually constant and diagonal matrices. Nevertheless, their
suitable on-line tuning can improve the control process.

Let us consider stochastic disturbances influencing the sys-
tem. In this way, a discrepancy between used model and con-
trolled system may occur. It can cause an increase of control
errors by the using of a fixed predictive design.

The mentioned discrepancy or a decrease of the model
accuracy can partially be solved by a suitable tuning of the
control parameters Qyw and Qu in (7). These parameters con-
trol stiffness or hardness and softness of the given predictive
controller. Thus, on-line tuning (adaptation) of these control
parameters can moderate sudden changes within control action
profiles.

The proposed tuning is based on the evaluation of relia-
bility of a used model, i.e. “level of information capability”.
It utilises the following link between Qyw, Qu and covariance
matrices [14], [15], [16]

Qyw ∝ C−1
y , Qu ∝ C−1

u (16)

where Cy and Cu are output and input covariance matrices,
respectively; ∝ means a proportionality. Due to mutual depen-
dency of control parameters, it is sufficient to tune only one
parameter e.g. Qyw and leave Qu to the chosen constant value.

In [16], Qyw is tuned simply according to the evolution
of model precision matrix, i.e. inverse of covariance matrix.
For this method, some setting of the forgetting factor is re-
quired. Here, we propose the more convenient solution where
the required covariance matrices are obtained using the noise
parameter estimates. For details on the covariance estimation,
see (28) in Section V.

IV. STATE ESTIMATION USING LSU MODEL

The construction of equations of predictions (3) requires
the point state estimates x̂k of the model (1). They are obtained
by the Bayesian estimation of

Xk ≡ [xTk , · · · , xTk−Ne
, ρT , rT ]T (17)

on a moving window of the length Ne using the observed data
Dk = [ dTk , · · · , dTk−Ne

]T , dκ = [uTκ , y
T
κ ]T . To obtain the

point estimates, the Bayesian estimation reduces to evaluation
of characteristics of the posterior pdf f(Xk|Dk) of Xk and a
series of maximum a posteriori (MAP) estimates X̂k of the
unknown Xk, k ∈ k?, is evaluated [17]. For known model
matrices, the problem the MAP estimation corresponds to the
solving a linear programming (LP) problem [7] to find a vector
Xk, k ∈ k?, that minimises

fTXk =

`x∑
i=1

ρi +

`y∑
j=1

rj (18)

subject to
AkXk ≤ bk, X k ≤ Xk ≤ X k,

where fT ≡ [0T(`Xk
−`x−`y), 1

T
(`x+`y)] consists of the vectors

of zeros and ones of the indicated lengths. X k and X k are user
given lower and upper bounds on Xk. Ak and bk are the matrix
and vector, respectively, constructed according to inequalities
arising from (1) with substituted noise bounds (2), i.e. (for
κ = k, k − 1, . . . , k −Ne)

− ρ ≤ xκ −Axκ−1 − Buκ−1 ≤ ρ

− r ≤ yκ − Cxκ ≤ r
(19)

Note that the construction of Ak and bk for Xk (17) is
described in detail in [18].

For future references, the above described state estimation
is denoted as LP1.

V. NOISE PARAMETER ESTIMATION

The proposed penalisation tuning (16) requires a knowl-
edge of covariance matrix Cy . It can be simply obtained using
the estimated noise bounds as present below.

To describe the noise more precisely, we extend the original
model (1) to the following form

Lxk = Ak xk−1 + Bk uk−1 + νk = x̃k + νk

Pyk = C xk + nk = ỹk + nk
(20)

where L = I + Λ, P = I + Π are upper triangular matrices
with unit diagonal, I denotes an identity matrix; the nonzero
elements in Λ and Π model a possible correlation of respective
noise components [7]. Note that if Λ and Π are zero matrices,
then the model is equal to (1).

The noise distributions have an identical form with (2) with
generally different values of noise bounds

f (νk|ρ̆) = Uνk (0`x , ρ̆) , f (nk|r̆) = Unk

(
0`y , r̆

)
(21)
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A. Estimation of ρ̆, r̆, L and P

The estimates of noise parameters ρ̆, r̆, and ma-
trices Λ, Π including the state estimates can be ob-
tained using LP similarly to LP1. In [7], the estimation
of Xk ≡ [xTκ , · · · , xTκ−N̆e

, col(Λ)T , col(Π)T , ρ̆T , r̆T ]T is pre-
sented where the mapping col(Z) transforms the non-zero
elements of the matrix Z into a column vector, Z ∈ {Λ,Π}.
The relevant LP has the form (18) but with different Ak, bk.

Here, the state estimates are supposed to be at disposal
from LP1. Therefore, the full vector Xk mentioned above is
reduced to

Xk ≡ [col(Λ)T , col(Π)T , ρ̆T , r̆T ]T (22)

Analogically to LP1, the task of the estimation of Xk is
formulated as the LP problem to find a vector Xk, k ∈ k?,
that minimises

fTXk =

`x∑
i=1

ρ̆i +

`y∑
j=1

r̆j (23)

subject to AkXk ≤ bk, X k ≤ Xk ≤ X k.
Here, Ak and bk are constructed using the following inequal-
ities (for κ = k, k − 1, · · · , k − N̆e)

− ρ̆ ≤ (I + Λ) x̂κ − Ax̂κ−1 − Buκ−1 ≤ ρ̆

− r̆ ≤ (I + Π)yκ − C x̂κ ≤ r̆
(24)

Then,

Ak =



X̂k ⊗K 0(2`x,βy) −12`x 02`x
...

...
...

...
X̂k−N̆e

⊗K 0(2`x,βy) −12`x 02`x

0(2`y,βx) Yk ⊗K 02`y −12`y
...

...
...

...
0(2`y,βx) Yk−N̆e

⊗K 02`y −12`y


(25)

where βx =
lx−1∑
i=1

(lx − i) and βy =
ly−1∑
i=1

(ly − i),

X̂, Y are computed in the same way as follows:

Zκ =



Z
(1)
κ 0T`z−2 · · · 0T2 0

0T`z−1 Z
(2)
κ · · · 0T2 0

...
. . .

...

0T`z−1 0T`z−2 · · · 0T2 Z
(`z−1)
κ

0T`z−1 0T`z−2 · · · 0T2 0


, (26)

Z
(i)
κ = [zκ;i+1, · · · , zκ;`z ], i = 1, · · ·, `z − 1,

where Z ∈ {X̂, Y }, z ∈ {x̂, y};

bk =



Ax̂k−1 +Buk−1 − x̂k
...

Ax̂k−Ne−1 +Buk−Ne−1 − x̂k−Ne

yk − Cx̂k
...

yk−N̆e
− Cx̂k−Ne


⊗K, (27)

⊗ denotes Kronecker product; K ≡ [1 − 1]
T ; 0(α,β) are zero

matrices of appropriate dimensions; 0α and 1α are column
vectors of zeros and ones of length α, respectively.

For future references, the above described noise parameter
estimation is denoted as LP2.

B. Computation of Covariance Matrices
Considering the output equation in (20) and using

the estimates of P and r̆, the output covariance matrix
Cy ≡ cov(y, y | ỹ, r̆) is computed as follows

Cy = E{yyT | ỹ, r̆} − E{y | ỹ, r̆} ET {y | ỹ, r̆}
= 1

3 P
−1DDT (P−1)T

(28)

where D is a square matrix with the main diagonal ele-
ments Dii = r̆i and zeros elsewhere; E{y | ỹ, r̆} = P−1ỹ;
E{yT | ỹ, r̆} = P−1

(
ỹỹT + 1

3DD
T
)

(P−1)T . Full derivation
of (28) can be found in [19].

Note that state covariance matrix Cx ≡ cov(x, x | x̃, ρ̆) can
be obtained in the same way using the state evolution equation
in (20), i.e. Cx = 1

3 L
−1DDT (L−1)T , where D is a diagonal

square matrix for Dii = ρ̆i and Dij = 0, i 6= j.

VI. EXPERIMENTS

To illustrate achieved theoretical outcomes, the specific
parallel robot-manipulator “Moving Slide” (Fig. 1) is used.

drive 1

drive 2

drive 3

drive 4
movable
platform

-0.3 -0.2 -0.1   0   0.1  0.2  0.3 (m)

(m)

0.3 

0.2 

0.1    

0    

-0.1

-0.2

-0.3

(m)

0.04

0.02

0

-0.02

-0.04

-0.04 -0.02   0    0.02 0.04 (m)

turning
point
v = 0

turning
point
v = 0

initial, final points
v = 0
running point
v  0

1s

2s

3s

4s

5s
6s

7s

0s

Fig. 1. Scheme of the robot-manipulator ’Moving Slide’, and used testing
’S’-shape trajectory with time marks.

The robot consists of four kinematic chains with rotational,
positional and rotational joint configuration, respectively. It
represents a special planar robotic system with four inputs
(torques) and three outputs (two position coordinates xc, yc,
and rotation angle ψc of movable platform), [20]. It can be
described by a nonlinear state-space model based on the La-
grange equations with a continuous state x(t) = [y(t), ẏ(t)]T

composed from outputs and their derivatives [21]:

ẋ(t) = F (x(t)) +B(x(t))u(t)

y(t) = Cx(t)
(29)

For considered control design, the model (29) has to be
linearised. Utilising a specific decomposition according to [22]
demonstrated in [23], the model (29) can be transformed
to the linear-like state-dependent form. After the subsequent
time discretisation, the following model is obtained

xk+1 = Akxk +Bkuk
yk = Cxk

(30)
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Fig. 2. Time histories of control errors (up) and control actions (down) for the case with constant Qyw
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Fig. 3. Time histories of control errors (up) and control actions (down) for the case with tuned Qyw
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Fig. 4. Time histories of individual elements of penalisation matrix Qyw for the online tuning

The matrices Ak and Bk are state dependent, i.e. their current
values are determined by the current state values. The model
(30) represents deterministic part of the controlled system.
Considering real conditions, additive process and measurement
noises are added to the model (30). In this way, the form (1)
is obtained.

The following two experiments are demonstrated:
(i) predictive control with state estimation LP1 (Sec. IV)

and constant penalisation Qyw;

(ii) predictive control with state estimation LP1 and online
tuned penalisation Qyw according to LP2 (Sec. V-A).

The above described robotic system was simulated by (29)
and a measurement noise nk was added to the generated
output. State estimates were obtained using model (1).

Utilising the state estimate from previous step, the model
matrices in (1) were updated. Then, the current state value
was estimated using LP1. In experiment (ii), the state estimate
from LP1 was used for subsequent noise parameter estimation
LP2 and penalisation Qyw was updated according to (16)
with the covariance estimate (28). Finally, the control input
was designed according to (15).

The experiment setup was as follows: horizon of prediction
Np = 10; length of windows for LP1 Ne = 3 and for LP2
N̆e = 14; constant penalisation matrices Qu = 10−2 · I`u
and Qyw = I`y , where Iα is the identity matrix of order α.

The measurement noise nk (2) was simulated having dis-
tribution U(0`y , r), r = 5 · 10−4 · 1`y . Two abrupt increases
of the noise U(0`y , 2 r) were simulated in the time intervals
〈3.4s, 4s〉 and 〈6.2s, 6.6s〉.
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For online tuning of penalisation matrix according to (16),
a scalar constant of proportionality kp = 10−7 was chosen,
Qyw = kp C

−1
y . In accord with usual constant values, hard

bounds for penalisation were chosen as follows: lower bound
for diagonal elements of Qyw, b = 0.5, upper bound for all
elements of Qyw, b = 4. The lower bounds guarantee that
the controller will generate some control actions even in the
case when a high noise decreases overly the quality of state
estimates. The upper bounds prevent too rapid control actions.

Fig. 2 and Fig. 3 show the control results for the case with
the constant and tuned penalisation matrix Qyw, respectively.
The case without tuning presents a smoother course of control
actions with higher control errors while in the tuned case, the
more balanced control errors are obtained but with the more
excited control actions. In the tuned case, the control errors
oscillate around zero with only two departures caused by the
noise increases.

Time history of individual online tuned elements of pe-
nalisation Qyw based on noise parameter estimation LP2 is
in Fig. 4. On the courses of diagonal elements, the sections
with increased noise can be clearly recognised. There, the
penalisation was released as the state estimates precision was
lowered. The courses of non-diagonal elements oscillating
around zero indicate that output components are mutually
uncorrelated.

Note that the reason for simultaneous estimations LP1
and LP2 is following. LP1 provides both noise bounds and
state estimates but it does not consider a correlation of noise
components. LP2 in its full variant provides also state estimates
but it requires an additional linearisation as original inequali-
ties entering LP problem contain the product Λxτ [7]. In the
presented experiments, the best results were obtained by joint
use of LP1 and LP2.

VII. CONCLUSION

The paper proposes a novel solution to the state and noise
parameter estimation incorporated in the model predictive con-
trol including the online tuning of control parameters. It is
intended for the cases where an additive noise is bounded.

The paper confirms and extends the preliminary experi-
ments concerning the interconnection of the predictive control
and the linear uniform state-space model. The mentioned
experiments were presented on one simple benchmark model
in [18]. Here, the time-varying linearised model is used
for the control of a nonlinear robotic system. So, the state
estimates are used not only for control design itself but also
for the update of state dependent model matrices. Unlike
the standardly used estimation based on Kalman filter, the used
uniform model needs no setting of covariance matrices because
the noise parameter estimation is a part of the algorithm.
Further contribution of presented algorithm consists in using
of noise parameter estimates for the online tuning of control
parameters, namely penalisation elements.

The proposed solution realises state estimation and tuning
for model-based control design in general. It respects the relia-
bility of used model of controlled system. The paper considers
a general unconstrained positional MPC.

The following research will concentrate on the extension
to the constrained cases according to [8] and to the offset-free
solution according to [10].
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[18] L. Pavelková and K. Belda, “State estimation and model predictive

control for the systems with uniform noise,” in Proc. of 11th IFAC
Symposium on Dynamics and Control of Process Systems (DYCOPS),
2016, pp. 967–972.

[19] L. Jirsa, “Linear ARX and state-space model with uniform noise:
Computation of first and second moments,” ÚTIA AV ČR, Tech. Rep.
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