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Abstract We study the problem of online prediction with a set of candidate models using dynamic
model averaging procedures. The standard assumptions of model averaging state that the set of
admissible models contains the true one(s), and that these models are continuously updated by
valid data. However, both these assumptions are often violated in practice. The models used for
online tasks are often more or less misspecified and the data corrupted (which is, mathematically, a
demonstration of the same problem). Both these factors negatively influence the Bayesian inference
and the resulting predictions. In this paper, we propose to suppress these issues by extending the
Bayesian update by a sort of likelihood tempering, moderating the impact of observed data to
inference. The method is compared to the generic dynamic model averaging and to an alternative
solution via sequential quasi-Bayesian mixture modeling.

Key words: Model averaging, model uncertainty, prediction, sequential estimation, tempered like-
lihood.

1 Introduction

In many real-world applications of the statistical control theory we are interested in online predic-
tion of process outcomes, evaluated by an a priori specified process model. In practice, it is mostly
assumed that the adopted process model is sufficiently close to the true observations-generating
model. However, this (surprisingly still prevailing) assumption is often violated due to various rea-
sons, e.g., different operational regimes, noise heteroskedasticity or even unknown but complicated
distribution, imperfect physical characterization of the observed process etc. If there exists a class
of potentially admissible candidate models, maybe with different input explanatory data and valid
through different periods of time, the model switching and averaging procedures represent an ap-
pealing way around the model uncertainty problem [7, 16]. Model switching is mostly based on
the assumption of mutually exclusive models. Their probabilities are sequentially assessed and the
model with the highest probability is used for a corresponding period of time. Model averaging virtu-
ally removes this exclusivity via concurrent predictive-performance-based assessment of uncertainty
about the candidate models.
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Although the model switching and averaging approaches admit that the adopted process models
are not exact, they still ignore the possible misspecification issue in their inference. Indeed, even
the best available models may be more or less misspecified, and provide only an approximation to
the distribution of the observations. Although the consistency of the Bayesian inference guarantees
the convergence of parameter estimates to the value minimizing the Kullback-Leibler divergence
between the true distribution and its (imprecise) model [4], the results may be unacceptable for real
applications. Among the typical demonstrations of such effects are negative estimates of strictly
positive variables (fuel consumption, number of particles, object length etc.). Even worse, the stan-
dard Bayesian procedures are generally not robust to contamination by observations following other
than the specified model, or to complete model misspecification [14].

This paper adheres to the dynamic model avaraging (DMA) realm, providing parallel online
assessment of candidate models probabilities. If the modeling goal lies in evaluating the predicted
values, the DMA-point prediction is represented by a convex combination of individual models’
predictions, whose contributions are proportional to the candidate model probabilities. The DMA
method was originally proposed for linear models by Raftery et al. [16] as an online extension of the
static Bayesian model averaging [12, 17], and later formulated for sequential logistic regression by
McCormick et al. Since then, DMA attained a significant focus, mostly in econometrics and finance,
e.g. [2, 3, 6, 9, 10, 11] to name a few.

More specifically, we focus on the issue of assimilation of model-incompatible information (ob-
servations) into the prior distribution during the online estimation process, where the prior distri-
butions involved in DMA are updated regardless of the candidate models probability. It leads to
unreliable estimates and may degrade the prediction quality for a long time period. Although the
invalid information may be gradually eliminated by means of forgetting procedures (see [5] for an
extensive overview), a rational argument is to prevent it from entering the prior distribution. For
this reason, we study the possibilities of online likelihood tempering during the Bayesian inference
and prediction. Our method is inspired by the weighted likelihood [20], recently appearing also in
the c-posterior approach [14] aiming at the same objective – the robustness to model misspecifica-
tion. The approach sketched in this paper is the first step towards extending of the c-posteriors to
online modeling. The determination of tempering factors is based on the actual predictive perfor-
mance of the particular models. In particular, we study two possibilities: (i) a simplified approach
based on the (dis)similarity of the most likely observation and the true one, and (ii) a model-
oriented approach where the model weights and tempering factors are estimated by means of the
quasi-Bayesian framework for online mixture inferrence [8, 18].

For completeness we remark that the likelihood tempering may be found in the Markov chain
Monte Carlo as the MC3 likelihood tempering method [1], however, the motivation is different.

The paper is organized as follows: Section 2 overviews the principles of the dynamic model
averaging method. It also sheds some light on the studied problem of the connection between model
uncertainty and observations assimilation. Section 3 is devoted to the proposed tempered sequential
Bayesian update. Section 4 studies an alternative approach inspired by the quasi-Bayesian mixture
modeling. The ongoing Section 5 illustrates the effect of tempering on a simulation example. Finally,
Section 6 concludes the paper.

2 On-line Prediction with a Set of Admissible Models

In this section we describe the principles of the dynamic model averaging applied to a set of K ad-
missible candidate models indexed by k = 1, . . . ,K. We consider discrete-time Bayesian modeling of
a dynamic process with common observations yt that are more or less determined by known possibly
model-specific explanatory variables xk,t, where t = 0, 1, . . . is the discrete time index. Assume, that
some parametric models – probability density functions pk(yt|xk,t, θk) parameterized by θk – are the
admissible candidates for this purpose, and that (proper) prior distributions πk(θk|xk,0:t−1, y0:t−1)
serve for their inference. The variables
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xk,0:t−1 = {xk,0, . . . , xk,t−1} and y0:t−1 = {y0, . . . , yt−1}

express the statistical knowledge about θk up to time instant t−1, and xk,0 and y0 stand for pseudo-
observations, expressing the initial prior knowledge before incorporation of the first observations.
Let the modeling be performed under the uncertainty which model is true at the moment. The task
is online prediction of yt from xk,t and θk by means of model averaging.

2.1 Dynamic Model Averaging

As mentioned in the Introduction, the dynamic model averaging (DMA) methodology of Raftery
et al. [16] extends Leamer’s static Bayesian model averaging [12] to online problems, where the
predictions are evaluated from sequentially acquired data.

The basic principle of DMA is that it assigns the candidate models pk(yt|xk,t, θk) with proba-
bilities (weights) wk,t taking values in the probabilistic (K − 1)-simplex, that express the degree
of evidence that these models are valid at the particular time instants. Recall, that the goal is the
online prediction of the next observation yt given known explanatory variables xk,t. Each of the
models provides its own point prediction, mostly represented by the expected value

ŷk,t = E
[
yt|xk,0:t,y0:t−1

]
=

∫
ytpk(yt|x0:t, y0:t−1)dyt, (1)

where

pk(yt|x0:t, y0:t−1) =

∫
pk(yt|xt, θk)πk(θk|xk,0:t−1, y0:t−1)dθk (2)

is the predictive distribution connected with the kth model pk(yt|xk,t, θ). The integrations are over
the spaces of θk and yt, respectively. The DMA point prediction reflects the uncertainty about the
particular models by taking their probabilities into account, that is, it averages over all the available
predictions,

ŷt =

K∑
k=1

wk,t−1ŷk,t. (3)

After acquiring the observation yt, the update of the probabilities wk,t−1 reflects the predictive
performance of the particular models,

wk,t ∝ wk,t−1 · pk(yt|xk,0:t, y0:t−1). (4)

In practice, the distribution of model weights may be considerably influenced by outdated infor-
mation. This issue can be resolved by an artificial increase of the uncertainty about the weights,
e.g., by exponential forgetting, flattening w1,t−1, . . . , wK,t−1 by a factor α ∈ [0, 1] as proposed by
Peterka [15]. Furthermore, aberrant observations may get some wk,t−1 too close to zero. This sit-
uation virtually eliminates the related models, as it is hard to recover from it. A workaround is
to proceed with a stabilization additive constant during the weights update (4), e.g. c = 10−3/K
proposed in [16]. The resulting equivalent of (4) then has the form

wk,t ∝ (wαk,t−1 + c) · pk(yt|xk,0:t, y0:t−1). (5)

The estimation of parameters θk, k = 1, . . . ,K is not influenced by DMA and has the form of
the standard Bayes’ theorem

πk(θk|xk,0:t, y0:t) ∝ pk(yt|xk,t, θk)πk(θk|xk,0:t−1, y0:t−1). (6)
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We emphasize, that this is where the following question arises:

The dynamic model averaging (DMA) is used to assess the probability of several candidate models.
Would it be possible and useful to take this probability into account in Equation (6)?

In other words, if one knows from wk,t that yt are not well explained by pk(yt|xk,t, θk), why
should one violate the estimates provided by πk(θk|·)? For instance, if the reality switches between
two models, their prior distributions are updated regardless of which of the models is currently
valid.

Below, we propose to solve this issue by likelihood tempering.

3 Tempered Bayesian Update

Let us drop the model indices k in this section. The standard Bayesian consistency theory assumes
that the there is a true observations-generating model q(yt|xt) which is approximated by the statis-
tician using a parametric model p(yt|xt, θ), ideally as close as possible. Under certain assumptions,
the posterior estimates then converge to the value minimizing the Kullback-Leibler divergence of
the two models,

θ̂ = arg min
θ∈Θ

D
(
q(yt|xt)

∣∣∣∣p(yt|xt, θ)) ,
where Θ is the parameter space, see, e.g., [4]. That is, the classical Bayesian way of thinking admits,
that there is a possible disagreement between the true but unknown model and the employed
(approximate) model, and relying on the consistency of the Bayesian posterior distribution of θ, it
updates the prior distribution via the Bayes’ theorem

π(θ|x0:t, y0:t) ∝ p(yt|xt, θ)π(θ|x0:t−1, y0:t−1). (7)

However, from the Bayesian asymptotic theory it is well known that (7) requires certain assump-
tions to provide “reasonable” results. Naturally, if these assumptions are not satisfied, e.g., some
observations are not explained by the model, the posterior estimates are inappropriately influ-
enced (biased) and unusable for prediction. This effect is pronounced in DMA, where the standard
Bayesian update is used, too.

We propose to solve this issue by a weighted variant of the Bayesian update, suppressing the
influence of such observations similarly as in the Miller and Dunson’s version for static estimation
[14]. It consists of a step to increase the uncertainty about the model using a tempering (flattening)
factor ζt ∈ [0, 1],

π(θ|x0:t, y0:t) ∝ [p(yt|xt, θ)]ζt π(θ|x0:t−1, y0:t−1). (8)

Miller and Dunson also propose a method for choosing a suitable value of ζt, however, it is not
suitable for online cases.

A suboptimal solution of the first choice may be to base the factor on the predictive density and
to compare the likelihood of the actually observed yt with the expected ŷt, i.e, the point estimate,

ζt =
p(yt|x0:t, y0:t−1)

p(ŷt|x0:t, y0:t−1)
. (9)

Naturally, it is possible to use the mode or other statistics in place of the mean value. Although this
solution may lead to uncertainty underestimation, it could be easily counterbalanced by flattening
of the posterior distribution, routinely used in engineering practice [5]. The predictive likelihood is
analytically tractable in many practical cases, e.g. the linear regression models or Kalman filters,
which allows for an easy computation of the factors in real time.

To summarize, the purpose of the proposed tempering update is to (i) penalize model misspecifi-
cation, and (ii) to increase the robustness of estimation to contamination with other processes. The
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coefficient ζt can easily suppress the effect of unlikely observations (with respect to the predictive
likelihood). If ζt → 0,

π(θ|x0:t, y0:t) = π(θ|x0:t−1, y0:t−1),

suppressing the influence of the extremely unlikely observation, while ζt → 1 recovers the standard
Bayesian update. We suggest that this procedure should be used for estimation of parameters of
models involved in DMA.

4 Mixture-Based Approach

Another possibility of model mixing1 is to adopt the viewpoint that the class {pk(yt|xk,t, θk), k =
1, . . . ,K} is a set of mixture components with weights w1, . . . , wK , and to model these weights via
the Dirichlet prior distribution whose hyperparameters [κ1, . . . , κK ] are updated in the sense of the
quasi-Bayesian approach [18],

π(w|x1:K,0:t, y0:t) ∝
K∏
k=1

w
ζk,t

k︸ ︷︷ ︸
multinomial

K∏
k=1

w
κk,t−1−1
k︸ ︷︷ ︸

Dirichlet prior

, (10)

where ζk,t is the estimate of the active component indicator,

ζk,t ∝
κk,t−1∑K
l=1 κl,t−1

pk(yt|xk,0:t, y0:t−1).

Similarly to the Bayesian counterparts of the expectation-maximization algorithms, the quasi-
Bayesian mixture estimation already assumes weighted Bayes’ theorem for the estimation of com-
ponent parameters,

π(θk|xk,0:t, y0:t) ∝ [pk(yt|xk,t, θk)]
ζk,t π(θk|xk,0:t−1, y0:t−1).

The analytical updates of Dirichlet prior hyperparameters (10) are given by

κk,t = κk,t−1 + ζk,t.

Finally, the prediction of the upcoming observation is similarly to DMA a convex combination of
component predictions weighted by component weights,

ŷt =
1

κ0,t

K∑
k=1

κk,tŷk,t, where κ0,t =

K∑
k=1

κk,t. (11)

The key differences between this approach and the weighted DMA proposed above are apparent
from the equations. First and foremost, the component weights are modelled as static (or slowly
varying if a forgetting procedure is used). In the authors’ viewpoint, this is where the main drawback
lies. In many practical situations, the models switch rather abruptly, which needs to be reflected by
quick changes of their weights. However, the forgetting procedures can be effective only in the cases
of slow variations [5], and under abrupt changes lead to significantly biased weights estimation.
This will be demonstrated in the following section. For this reason, this section is rather conceptual
and included for completeness as another model-based dynamic approach to model mixing.

1 Proposed in personal communication by Dr. Kárný (Institute of Information Theory and Automation, Czech

Academy of Sciences).
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5 Simulation Results

In this section we present some simulation results comparing the studied strategies. The experiment
is done on synthetic data generated by three models and contaminated with Laplacian noise. The
performance is measured by the prediction mean squared error (MSE) and the mean absolute error
(MAE).

The data set consists of 500 samples generated from the following normal models

yt = −0.2− 0.15x
(1)
t + εt, t = 150, . . . , 300,

yt= 0.5 + 0.75x
(2)
t + εt, t = 1, . . . , 150 and t = 300, . . . , 400,

yt = 0.95x
(3)
t + εt, t = 400, . . . , 500,

with regressors x
(i)
t ∼ N (µi, 1), where µ1 = 0, µ2 = 2 and µ3 = 3. The normal noise variable εt is

drawn from N (0, 1.252).
Two different scenarios are studied:

1. ‘True’ model scenario where the three models are used to generate data and no misspecification
is present. Effectively, it is a true model switching scenario.

2. Misspecification scenario where the data is additionally contaminated by a heavy-tailed Laplacian
noise, namely by 200 samples from zero-mean Laplace distribution with a scale 2. These samples
are randomly added to the data.

The resulting data sets depicts Fig. 1, where the red crosses indicate the ‘true’ model scenario data,
while the blue dots show Laplacian noise-contaminated data for the misspecified scenario.

The process yt is modeled with three normal linear models

yt
∣∣xt, β, σ2 ∼ N

(
xᵀβ, σ2

)
, (12)

where xt represents 2-dimensional real regressors x
(1)
t , . . . , x

(3)
t . Clearly, these models are not ap-

propriate for the misspecification scenario with the Laplacian noise.
The prior placed on β(i), σ2,(i) is the normal-inverse gamma distribution in the compatible form

conjugate to the exponential family form of the normal model (12) (more on this can be found, e.g.,
in [15]) with the same initialization for all considered models, namely with the sufficient statistic
accumulating hyperparameter and the scalar degrees of freedom

ξ
(i)
0 = diag(0.1, 0.01, 0.01) and ν

(i)
0 = 10,

respectively. The posterior predictive distribution is in this setting the Student’s distribution [15].
Three averaging strategies are studied:

1. Basic dynamic model averaging (DMA) of Raftery et al. [16],
2. Tempered dynamic model averagning (t-DMA) proposed in Section 3, and
3. Quasi-Bayesian approach (q-B) inspired by mixture modelling and discussed in Section 4.

The initial setting of all three strategies is identical. Namely, the initial model weights are uniform,
the initial prior for weights in q-B is the flat Dirichlet distribution, symmetric and uniform over the
related simplex.

The predictive performance is measured in terms of the mean squared error (MSE) and the
mean absolute error (MAE). Consistently with the forecasting theory, the goal is to minimize these
measures.

The results are summarized in Tab. 1 for the individual models without switching, and for all
three studied averaging approaches. Both the misspecification scenario (MSE and MAE) and the
‘true model’ scenario (MSE true and MAE true) are shown. From the results one may conclude that
the tempered DMA performs best (in terms of MSE and MAE). That is, the weighted Bayesian
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update (8) effectively suppresses the influence of data that are not explained by the model(s) in use.
The classical DMA strategy performs a bit worse as expected. The quasi-Bayesian approach leads
to a prediction quality inferior to both t-DMA and DMA. Anyway, it can provide results better
than certain isolated models.

The time evolution of the models weights is depicted in Fig. 2 for both the original DMA and the
proposed tempered version. The evolution of q-B is omitted for its inferior quality. Apparently, the
initial learning period is very similar in both DMA and t-DMA, however, the model switching after
t = 150 is much better reflected by t-DMA (the weight of the corresponding model is mostly close
to 1). Another model switches are better detected by t-DMA too, although the weights are not so
pronounced. One can conclude that t-DMA is significantly more sensitive than the basic DMA.2

To summarize, the experimental results show that the dynamic model averaging strategy per-
forms well even in complicated conditions, where the noise properties are different from the assumed
and the models differ from the true ones. The proposed tempering strategy leads to better results
than the pure DMA ignoring the fact that the observations are not well described by the models
and fully assimilating them into the prior distributions. Our experience confirms that if the true
model is present, its weight is dominant.

Model/Strategy MSE MAE MSE true MAE true ω̂1 ω̂2 ω̂3

p1 7.59 1.92 5.13 1.75 - - -

p2 5.44 1.47 2.61 1.22 - - -

p3 5.22 1.37 2.51 1.13 - - -

DMA 4.86 1.29 2.14 1.08 0.21 0.41 0.36

t-DMA 4.47 1.14 1.77 0.91 0.32 0.38 0.30

q-B 6.11 1.35 3.21 1.16 0.17 0.37 0.44

Table 1 Prediction MSEs and MAEs and averaged models weights ω̂ of all tested strategies (DMA, tempered DMA
and the quasi-Bayesian approach) and single models without switching/averaging. For comparison, MSE true and

MAE true denote error statistics computed with respect to the actual non-contaminated observation.

6 Conclusion

Applied statistical theory assumes that the models in use are relatively close to the true observations-
generating models, and hence that the results (predictions, estimates) are close to the true values.
However, the real-world phenomena are often rather roughly approximated by models. The standard
dynamic model averaging provides a way around this issue by means of a concurrent assessment of
models uncertainty, and by averaging over the results taking this uncertainty into account. However,
it still neglects it at the level of the Bayesian update. In this paper, we focus specifically on this issue
and propose to use a weighted – tempered – version of the Bayes’ theorem, suppressing the impact
of unlikely observations to the inference. The simulation example demonstrates that it provides an
improvement of estimation quality.
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