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Factorized Estimation of Partially Shared
Parameters in Diffusion Networks

Kamil Dedecius and Vladimı́ra Sečkárová

Abstract—Collaborative estimation of partially common param-
eters over ad hoc diffusion networks where the nodes directly com-
municate with their neighbors is a challenging task. The problem
complexity is significantly high under the lack of knowledge which
parameters are shared and among which network nodes. In this
paper, we propose an adaptive framework suitable for this task. It
is abstractly formulated in the Bayesian and information-theoretic
paradigms and, therefore, versatile and easily applicable to a rela-
tively wide class of models. If the observation models belong to the
exponential family and the same functional types of prior proba-
bility distributions are used for estimation of the shared param-
eters, the method reduces to an analytically tractable variational
algorithm extended by a procedure that passes messages among
network nodes. A simulation example demonstrates that the col-
laboration improves estimation performance of both the shared
and strictly local parameters, compared with the noncollaborative
scenario.

Index Terms—Diffusion network, diffusion estimation, adapta-
tion, heterogeneous parameters, multitask networks.

I. INTRODUCTION

COLLABORATIVE estimation of parameters and states of
stochastic models over networks of interconnected nodes

has attracted a tremendous interest in the last two decades, par-
ticularly due to the rapid development of cheap ad-hoc wire-
less networks with computationally powerful devices endowed
with sensing, data processing and communication capabilities.
The application fields of these networks are rapidly growing,
and involve sensor networks, precision agriculture, environ-
ment monitoring, disaster relief management, military and civil
surveillance, medical applications, nuclear hazard assessment,
power network monitoring, spectrum sensing in cognitive radio
networks and many others [1]–[7].

The existing decentralized strategies can be categorized into
several groups according to their communication and data pro-
cessing philosophy. The incremental strategies pass the shared
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information from one node to another in the Hamiltonian cycle
[9]–[11]. Although this is relatively communication efficient,
the robustness of these solutions is limited, because each node
and link represents a single point of failure, and the recovery
from a failure – a calculation of a new Hamiltonian cycle –
is an NP-hard problem [12]. The diffusion strategies [13]–[26]
and the consensus-based strategies [27]–[30] rely on networks
with node degrees (the number of links incident to the node)
mostly higher than one and offer much higher robustness, adap-
tivity and scalability. In the diffusion strategies, the shared infor-
mation gradually diffuses through the whole network by local
communication among adjacent nodes (neighbors) within one
hop distance. Mostly, two communication steps are used: an
adaptation step exchanging and incorporating neighbors’ obser-
vations into the local statistical knowledge, and a combination
step, that merges neighbors’ estimates. The consensus strate-
gies adopt a similar communication scheme but usually with
multiple intermediate iterations increasing the communication
requirements. Recognizing this as a potential drawback, several
strategies alleviating the communication burden were proposed
as well, e.g., the running consensus [31], or consensus + innova-
tions algorithms where the local parameter estimates result from
the combination of the neighbors’ information and the locally
sensed new information [32]–[34].

The diffusion strategies are mostly based on the least squares
paradigm, in particular, the least mean squares (LMS) [19], [22]
with numerous modifications, e.g., for sparse models [23], the
recursive least-squares (RLS) [18] and its modified versions
[13], [24], and the Kalman filters [17], [25]. Other diffusion
algorithms consider, for instance, inference of mixtures [26],
[35]. The common features of these algorithms are their single-
problem orientation and independent derivation from the tradi-
tional methods. Recognizing this as a drawback, the first author
recently proposed an abstract unifying approach extending his
previous results [21], [36], rooted in the Bayesian paradigm and
providing straightforward solution for a wide class of possi-
ble modeling tasks including the linear and logistic regression,
Poisson process estimation etc., [20].

Recently, a focus has been given to the problem of collab-
orative estimation of parameters and signals that are inhomo-
geneous over the network. This becomes particularly useful in
multiple target tracking, classification with multiple models,
cooperative spectrum sensing in cognitive radio networks and
other machine learning applications [7], [37], and in node-
specific signal estimation applications where each node aims
to estimate samples of a desired signal [8]. The consensus
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strategies allowing intermediate iterations for estimation of local
and global parameters originally dominated this field, e.g. [38].
However, the class of diffusion solutions is rapidly growing. In
[7] the authors reformulate their originally incremental LMS al-
gorithm [39], providing node-specific estimation of parameters
in networks with local and global parameters, and parameters
shared by clusters of nodes. A diffusion LMS-based algorithm
for estimation of similar parameters across the (so-called mul-
titask) networks was proposed in [40], and extended to cases
where the parameters are identical in node clusters and simi-
lar between neighboring clusters [41]. In [42], [43] a diffusion
LMS-based algorithm is used to estimate time-varying parame-
ters whose space-varying (node-specific) nature is characterized
by a set of basis functions, such as sinusoids, B-splines or shifted
Chebyshevs polynomials. With only a few exceptions, e.g. [37],
[44], [45], the existing solutions assume the a priori knowledge
of cluster memberships.

In this paper we extend our previous results published in
a conference paper [46] devoted to static and sequential esti-
mation of mixture parameters that are heterogeneous over the
non-clustered network, hence either strictly local, or global.
The present paper deals with the following important exten-
sions: First, it focuses on virtually any types of models – not
only mixtures – with emphasis on conditionally conjugate prior
distributions. That is, unlike the referenced state-of-the-art al-
gorithms, the proposed method is not restricted to any particular
model type. Second, the parameters may be strictly local, global,
or shared by a cluster of network nodes. It is not assumed that the
nodes have any prior knowledge of the clusters. The clusters are
formed per parameter and may differ for different parameters.
The framework is formulated abstractly using the Bayesian and
information-theoretic paradigms, which allows its application
to a wide class of models, and besides parameter heterogeneity
admits model heterogeneity. We adopt the variational approach
to inference (see, e.g., [47], [48]) for its analytical tractabil-
ity under exponentially distributed models, but other inferential
techniques (e.g., the Markov chain Monte Carlo) may be used,
too. Finally we remark that the present paper extends our earlier
results [20] proposing a generic Bayesian diffusion framework
suitable for estimation of global, i.e., homogeneous parameters.

The paper is organized as follows: Section II formulates the
considered problem and discusses the departures from the or-
dinary diffusion strategies. Section III is devoted to the basic
Bayesian estimation principles, that are extensively used in the
rest of the text, particularly in Section IV proposing the diffu-
sion algorithm for estimation under parameters inhomogeneity.
The following Section V contains a theoretical application of
the proposed procedures to a toy problem of collaborative esti-
mation of possibly inhomogeneous normal model parameters.
A simulation example is given in Section VI. Section VII con-
cludes the work.

II. PROBLEM STATEMENT

We consider a diffusion network [49] represented by an undi-
rected or directed graph with a set of nodes I = {1, . . . , I},
interconnected by a set of edges determining the network topol-

ogy. Every node i ∈ I may communicate exclusively with its
neighbors within one hop distance. They and the node i form
a closed neighborhood Ii ⊆ I. There is only one information
exchange between two adjacent nodes, either in a single direc-
tion if the edge is directed, or in both directions otherwise. This
setting implies that the information may only gradually diffuse
over the network as time proceeds.

Each node i ∈ I observes a (possibly local) discrete-time
random process {Yi,t ; t = 1, 2, . . .} and acquires its outcomes
– noisy observations yi,t , possibly determined by known ex-
planatory variables xi,t , e.g. the regressors. The nodes model
yi,t given xi,t (if present) using a user-defined local parametric
statistical model – a probability density function

pi(yi,t |xi,t ,Θi), Θi ⊆ Θ, (1)

where the global parameter set Θ encompasses all parameters
present in the network.

Remark 1: Strictly speaking, the Bayesian paradigm admits
uncertainty about the parametric model pi(yi,t |xi,t ,Θi). That
is, the true observations-generating model may be different, but
the user’s aim is to adopt a convenient model pi(yi,t |xi,t ,Θi)
that is as close to the true model as possible. The model selection
theory is very complex and far beyond the scope of this paper.
More on it can be found, e.g., in the survey papers [50] and [51].

The role of the global parameter set Θ is purely conceptual,
the nodes’ interests – and inference objective – lie only in the
elements that are present in their own models, hence Θi . From
the assumption of relationships among the modeled phenomena
it follows that the sets Θi may overlap for different i ∈ I. For
instance, a global parameter may be contained in each Θi , and/or
there may be parameters common only to subsets of nodes. The
aim of the nodes is to arrive at (in a sense) the best estimates of
own parameters Θi by exploiting any information about them
available from the network.

In this paper, we strictly adopt the perspective of individ-
ual nodes, whose knowledge of the network is limited to their
closed neighborhoods only. This approach, corresponding to
most realistic situations present in the nature, computer and
social networks etc., leads to the following definition of the
cluster:

Definition 1 (Cluster): Fix a node i ∈ I. For any θ ∈ Θi the
cluster Iθ

i is a set of nodes j ∈ Ii such that θ ∈ Θj .
Fig. 1 provides a graphical explanation of the definition. We
remark that the following cases may occur:

� A parameter θ ∈ Θ is global, i.e., common to all nodes
i ∈ I. Then, Iθ

i = Ii for all i ∈ I.
� A parameter θ ∈ Θi is strictly local to i ∈ I. Then Iθ

i is a
singleton {i}.

Two clusters Iθ
i andIθ ′

i naturally may be identical for two differ-
ent θ, θ′ ∈ Θi . Since this paper does not impose any limitations
regarding the parameters/clusters configuration, it covers virtu-
ally any type of clustered multitask diffusion networks [41].

III. PRELIMINARIES ON BAYESIAN ESTIMATION

This section briefly reviews the basic principles of the
Bayesian parameter inference that will be extensively exploited
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Fig. 1. Example of a network consisting of three nodes I = {1, 2, 3} with
parameters Θ = {α, β, γ, δ}. There are three clusters identified in node 1:
Iα

1 = {1, 2}, Iβ
1 = {1, 2, 3} and Iγ

1 = {1}. The set Θ1 = {α, β, γ}.

in the rest of the paper. Let us focus on a single node, say
i ∈ I. The ordinary noncollaborative Bayesian estimation of
unknown parameters Θi from the observed variables yi,t and
the explanatory variables xi,t proceeds with a joint prior distri-
bution πi (Θi |xi,0:t−1 , yi,0:t−1) where

xi,0:t−1 = {xi,0 , . . . , xi,t−1},
yi,0:t−1 = {yi,0 , . . . , yi,t−1}

denote the past data. Specifically, xi,0 and yi,0 stand for pseudo-
observations carried by the initial prior distribution, and sum-
marizing the initial knowledge obtained, e.g., from historical
data or an expert’s opinion. The prior distribution is sequen-
tially updated by acquired yi,t and xi,t by virtue of the Bayes’
theorem,

πi (Θi |xi,0:t , yi,0:t) ∝ pi(yi,t |xi,t ,Θi)πi (Θi |xi,0:t−1 , yi,0:t−1)
(2)

where∝ stands for proportionality, i.e., equality up to a normal-
izing constant.

The analytical tractability of the posterior distribution un-
der rigorous Bayesian approach (2) is practically limited to
models belonging to the exponential family. If the model
pi(yi,t |xi,t ,Θi) belongs to the exponential family of distribu-
tions, and a conjugate prior distribution is used for parame-
ter estimation, the posterior distribution πi(Θi |·) is analytically
tractable [52]. The corresponding definitions are as follows:

Definition 2 (Exponential family distribution): An expo-
nential family distribution of a random variable yi,t conditioned
on xi,t and with a parameter Θi is a distribution whose
probability density function can be written in the form

p(yi,t |xi,t ,Θi) = exp {ηᵀ
i Ti,t −A(ηi) + k(xi,t , yi,t)} (3)

where ηi = η(Θi) is the natural parameter of the exponential
family distribution, Ti,t ≡ T (xi,t , yi,t) is a sufficient statistic
encompassing all information provided by xi,t and yi,t about
the parameter Θi , and

A(ηi) = log
∫

exp {ηᵀ
i Ti,t + k(xi,t , yi,t)} dxi,tdyi,t

where the integral is over the space of xi,t and yi,t , and A(ηi)
is a known log-partition function normalizing the density, and
k(xi,t , yi,t) is a known function independent of the parameter.

The exponential family encompasses many important distri-
butions, e.g., the normal, Poisson, multinomial, gamma, or the
categorical distribution. The form (3) is not unique, as the nat-
ural parameter and the sufficient statistic may be multiplied by
any constant and its reciprocal, respectively.

Definition 3 (Conjugate prior distribution for Θi): Assume
that a random variable yi,t is conditioned by a variable xi,t

and obeys an exponential family distribution — model — with
a parameter Θi . A prior distribution for Θi conjugate to the
model is characterized by conjugate hyperparameters Ξi,t−1
and Υi,t−1 and has the probability density of the form

πi(Θi |Ξi,t−1 ,Υi,t−1) = exp
{
ηᵀ

i Ξi,t−1 + Υi,t−1A(ηi)

+ l(Ξi,t−1 ,Υi,t−1)
}
, (4)

where Ξi,t−1 has the same size as Ti,t−1 , Υi,t−1 ∈ R + , and
l(Ξi,t−1 ,Υi,t−1) is a known function.

We remind that the parameterizations of the probability den-
sities are not unique in general, but there always exist bijective
mappings among them. For instance, the univariate normal dis-
tribution may be parameterized by a mean and either a variance
or precision. Therefore, to avoid misunderstanding, the hyper-
parameters of the conjugate prior density compatible with the
model in the exponential family form (3) will be called conju-
gate hyperparameters.

The use of conjugate prior distribution reduces the Bayesian
update (2) to two simple summations, as shows the next lemma.

Lemma 1 (Bayesian update under conjugacy): Assume that
a random variable yi,t conditioned by a variable xi,t has an
exponential family distribution with a parameter Θi , estimated
by means of a conjugate prior distribution. The Bayesian update
(2) is then equivalent to the update of conjugate hyperparameters

Ξi,t = Ξi,t−1 + Ti,t ,

Υi,t = Υi,t−1 + 1. (5)

The proof of Lemma 1 is trivial, as the Bayesian update is
a multiplication of the model probability density (3) and the
prior density (4), followed by a normalization ensuring that the
result is again a probability density [52]. We point out that it
is possible to perform the update (5) on a batch of data of a
positive length τ ≤ t, summarized by Tτ + . . . + Ti,t , and with
a conjugate prior πi(Θi |xi,0:τ−1 , yi,0:τ−1).

A conjugate prior distribution for the whole Θi is rather an
exception than a rule. Still, there are many cases where a conju-
gate prior distribution exist for certain elements of Θi provided
that the rest is treated as known, e.g., by plugging their point
estimates into the model. The ongoing section deals with this
situation and sheds light on its use in distributed inference.

IV. COLLABORATIVE ESTIMATION BY DIFFUSION

The heterogeneity of parameters Θi across the network im-
poses the requirement of information separation: each element
of Θi has to be interpreted independently and with a proba-
bilistic description compatible over the network, i.e., the same
functional type of probability distribution. The separation pre-
vents any inadvertent impairment of estimates Θi \ {θ} when
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collaborating on the estimate of θ ∈ Θi . The requirement of
the same functional type of probability distribution guarantees
straightforwardness of information merging. Both assumptions
can be relaxed in certain cases. For instance, the normal mean
vector and covariance matrix can be estimated together using
a normal-inverse-Wishart distribution if their homogeneity in a
cluster is assumed; different probability distributions for a par-
ticular parameter can be approximated by a common type of
distribution, etc. However, we leave this beyond the scope of
this paper.

We note that the factorized estimation that we adopt here is
frequently used in inference for computational reasons, e.g., in
connection with the Markov chain Monte Carlo methods, where
working with the joint distribution of all parameters would lead
to enormous computational demands. In our case, the factoriza-
tion provides easy and theoretically justified rules for combina-
tion of posterior estimates.

Let us now formulate the proposed framework. It will consist
of two steps:

1) Factorized local estimation – we establish the factorized
local estimation, evaluating the posterior distribution from
the batch of data and the local prior information.

2) Diffusion optimization – an alternative of the diffusion
combination step [49], where the information about θ ∈
Θi is combined.

A. Factorized Local Estimation

During the factorized local estimation step, the true but in-
convenient and often intractable posterior distribution πi(Θi |·)
is approximated by a factorized distribution

ρi,t(Θi) =
∏

θ∈Θ i

ρθ
i,t (θ) , (6)

that is as close to πi(Θi |·) in the Kullback-Leibler divergence
sense as possible. That is, we aim to minimize

D [
ρi,t(Θi)

∣∣∣∣πi(Θi |·)
]

= E ρi , t (Θ i )

[
log

ρi,t(Θi)
πi(Θi |·)

]

= log pi(yi,1:t |xi,1:t)

+ E ρi , t (Θ i )

[
log

ρi,t(Θi)
pi(yi,1:t ,Θi |xi,1:t)

]

︸ ︷︷ ︸
−L[ρi , t (Θ i )]

.

(7)

The term log pi(yi,1:t |xi,1:t) is the logarithm of the posterior
predictive distribution

pi(yi,1:t |xi,1:t) =
∫

pi(yi,1:t |xi,1:t ,Θi)πi(Θi |x0 , y0)dΘi ,

(the integral is over the space of Θi), and L[·] is called the free
energy.

Remark 2: We remark that although our motivation is differ-
ent, the final formulation and the criterion (7) coincides with the
variational inference [47], [48]. Therefore we shall exploit its
attractive properties in the proposed factorized local estimation
step.

Since the log-evidence in (7) is fixed for observed data, the
optimization of (7) is performed via minimization of the negative
free energy −L[ρi,t(Θi)]. To this end, we rewrite the negative
free energy in terms of a single element θ ∈ Θi ,

− L [ρi,t (Θi)]

=
∫ ∏

θ∈Θ i

ρθ
i,t(θ)

∑
θ∈Θ i

log ρθ
i,t(θ)dΘi

−
∫ ∏

θ∈Θ i

ρθ
i,t(θ) log pi(yi,1:t ,Θi |xi,1:t)dΘi

=
∫

ρθ
i,t(θ) log

ρθ
i,t(θ)dθ

exp
{
E ρi , t (Θ i \{θ}) [log p(yi,1:t ,Θi |xi,1:t)]

}+k

=D[ρθ
i,t(θ)

∣∣∣∣ exp
{
E ρi , t (Θ i \{θ}) [log p (yi,1:t ,Θi |xi,1:t)]

}]
+k

(8)

where k stands for a constant independent of θ and

ρi,t(Θi \ {θ}) =
∏

ϑ∈Θ i\{θ}
ρϑ

i,t(ϑ)

is the product of distributions of all elements of Θi excluding θ.
Obviously, setting

ρθ
i,t(θ)←

exp
{

E ρi , t (Θ i \{θ}) [log p(yi,1:t ,Θi |xi,1:t)]
}

∫
exp

{
E ρi , t (Θ i \{θ}) [log p(yi,1:t ,Θi |xi,1:t)]

}
dθ

(9)
with the integral over the space of θ minimizes the Kullback-
Leibler divergence (8) in the free energy under fixed θ ∈ Θi . It
can be shown by means of the calculus of variations that cycling
through each element θ ∈ Θi and revising the corresponding es-
timates minimize the divergence between ρi,t(Θi) and πi(Θi |·).
The convergence towards the target density is guaranteed by
convexity of the free energy in each of the factors ρθ

i,t(θ) [53].
However, the independence assumptions underlying the varia-
tional approximations may influence asymptotic properties of
the estimator, see, e.g. [54], [55] and [56, Chap. 1.3.6] and the
references therein.

A prominent case occurs if the observed variable yi,t obeys
a model (distribution) belonging to the exponential family in-
troduced by Definition 2. From the numerator in Equation (9)
it is apparent that using the point estimates of the parameters in
Θi\{θ} reduces the set of free parameters to θ only. If in this
situation ρθ

i,t(θ) is conjugate, then the factor can be updated via
the Bayes’ theorem (2) in terms of the factors’ hyperparameters,
(5) [57]. Another element of Θi is selected in the next iteration
and the situation is repeated.

This algorithm can be used for sequential factorized local
estimation with a batch of data of a fixed or variable size. The
last posterior distribution ρi,t(Θi) serves as the prior for the
next time instant as usually. Although the variational estimation
of the posterior distribution may be inaccurate in the early stage
of the online learning it gradually becomes accurate as learning
proceeds [58]. Therefore, it can be practical to start with a higher
number of local iterations to speed up this convergence, and to
decrease it later down to one iteration between two diffusion
steps.
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B. Diffusion Optimization

The aim of the diffusion optimization step is to combine the
information provided by the posterior distributions ρj,t(Θj ) of
the neighboring nodes j ∈ Ii . In particular, this means to acquire
the factors ρθ

j,t(θ) of the elements θ ∈ Θi from the clusters Iθ
i .

The assumptions adopted in the previous section guarantee that
ρθ

j,t(θ) have the same functional form and are fully characterized
by the hyperparameters Ξθ

j,t and Υθ
j,t , see Definition 3.

From the i’s viewpoint, these distributions can be seen as
hypotheses about the true value of the considered parameter
θ. In order to reflect the credibility of j ∈ Iθ

i , node i employs
nonnegative weights cθ

ij summing to unity. A weight cθ
ij may

be interpreted as the level of belief of node i in information
about θ provided by neighboring node j ∈ Ii . It may be based,
e.g., on the amount of data, evidence, or reflect the reliability of
the neighbor. Alternatively, uniform weights cθ

ij = |Ii |−1 can
be used. There are several ways towards static and dynamic
selection rules for cθ

ij , e.g., [20], [49], hence we leave the topic
beyond the scope of the present paper.

Now assume that the node i has acquired the factor
set {ρθ

j,t(θ)}j∈Iθ
i

. Working with it would be impractical
for memory and computational reasons. Instead, we reduce
{ρθ

j,t(θ)}j∈Iθ
i

to a single distribution ρ̃ θ
i,t(θ) that best repre-

sents the original set in the sense of a convenient information
divergence measure. The Bayesian theory advocates the use of
the Kullback-Leibler divergence, also known as the relative en-
tropy, as this measure [59]. The following proposition stemming
from our earlier result [20] for the case of globally-valid param-
eters is applied here to the case of parameters shared by a cluster
of nodes.

Proposition 1: Fix a node i ∈ I and assume that it has ac-
quired approximate posterior distributions ρθ

j,t(θ) of a parameter
θ ∈ Θi shared by a cluster of its neighbors Iθ

i ⊆ Ii . Further-
more assume that ρθ

j,t(θ) have the same functional form and
are therefore characterized by the conjugate hyperparameters
Ξθ

j,t and Υθ
j,t of compatible dimensions. Then, the distribution

ρ̃ θ
i,t(θ) that best represents all ρθ

j,t(θ), j ∈ Ii in the sense of the
minimum weighted arithmetic average of the Kullback-Leibler
divergences D [

ρ̄θ
i,t(θ)

∣∣∣∣ρθ
j,t(θ)

]
with weights cθ

ij ∈ [0, 1] sum-
ming to unity is given by

ρ̃i,θ (θ) = arg min
ρ̄θ

i , t ∈R

∑
j∈Iθ

i

cθ
ijD

[
ρ̄θ

i,t(θ)
∣∣∣∣ρθ

j,t(θ)
]

∝
∏

j∈Iθ
i

[
ρθ

j,t(θ)
]cθ

i j , (10)

whereR is the set of all admissible distributions with the same
functional form as ρθ

j,t . The optimal distribution ρ̃i,θ (θ) is a
(weighted) geometric mean of the neighbors’ posterior distribu-
tions and inherits their functional form. Its conjugate hyperpa-
rameters are

Ξ̃θ
i,t =

∑
j∈Iθ

i

cθ
ijΞ

θ
j,t

Υ̃θ
i,t =

∑
j∈Iθ

i

cθ
ijΥ

θ
j,t (11)

Proof: Using the definition of the Kullback-Leibler diver-
gence we obtain

∑
j∈Iθ

i

cθ
ijD

[
ρ̄θ

i,t(θ)
∣∣∣∣ρθ

j,t(θ)
]

=
∑
j∈Iθ

i

cθ
ij E

[
log

ρ̄θ
i,t(θ)

ρθ
j,t(θ)

]

= E

⎡
⎣∑

j∈Iθ
i

cθ
ij log

ρ̄θ
i,t(θ)

ρθ
j,t(θ)

⎤
⎦ = E

⎡
⎣log

ρ̄θ
i,t(θ)∏

j∈Iθ
i

[
ρθ

j,t(θ)
]cθ

i j

⎤
⎦

= D
⎛
⎝ρ̄θ

i,t(θ)

∣∣∣∣∣
∣∣∣∣∣k

∏
j∈Iθ

i

[
ρθ

j,t(θ)
]cθ

i j

⎞
⎠ ,

where k is a proportionality constant. Minimum of the Kullback-
Leibler divergence is reached under equality of its arguments.
That is, the resulting distribution of θ is a (weighted) geometric
mean of the neighbors’ posterior distributions, from which (11)
follows. �

C. Determination of Compatible Neighbors

With only a few exceptions [14], [37] the state-of-the-art algo-
rithms assume that the nodes have the full knowledge of clusters
and parameter structures a priori. In [37], the authors propose
a hypotheses testing procedure assessing whether two neigh-
boring nodes belong to the same cluster. Their analysis adopts
the assumption that the asymptotic normality of the normalized
error sequence advocates the approximation of the marginal
distribution of estimators by the normal distribution. This idea
is valid from the large-sample behavior viewpoint, but may be
inappropriate in relatively small-sample cases. In [14] an ad-
justment of combination weights that considers the closeness
of the local estimate to the neighboring estimates and the local
slope of the LMS-based cost function is proposed. The draw-
back of these solutions is their solely LMS-oriented design,
limiting their applicability to many other tasks, e.g., estimation
of covariance matrices.

Still, the underlying idea that the neighbors’ estimates within
an acceptable tolerance around own estimates may describe the
same parameters is universal. Therefore, we suggest to exploit
it in a conservative way. We construct a cluster of i’s neighbors
j ∈ Ii whose estimates θ̂j,t lie within a predefined tolerance
hθ > 0 around its own estimate θ̂i,t . That is, they form a set

Iθ
i = {j ∈ Ii : d(θ̂j,t , θ̂i,t) ≤ hθ},

where d(·, ·) is a convenient metric.
For instance, the distance of the location parameters like the

means of the normal distributions may be measured using a clas-
sical Euclidean 2-norm. A very appealing dissimilarity measure
for the covariance matrices is the Jensen-Bregman LogDet di-
vergence dJBLD proposed in [67]. If A and B are two symmetric
positive definite matrices, then

dJBLD(A,B) = log det
(

A + B

2

)
− 1

2
log det(AB).

Besides the computational simplicity (no matrix inversion),
this divergence inherits the attractive properties of the sym-
metrized Bregman divergences [68]. In particular, it satisfies the
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nonnegativity, symmetry and triangle inequality requirements
imposed on metrics.1

This conservativeness has several advantages. First, the solu-
tion is very universal, and may be straightforwardly used with
virtually any models and parameters – univariate or multivariate,
location or scale parameters etc. Second, there usually exists an
a priori available information about the (acceptable) closeness
of estimated parameters. And even a very small tolerance does
not compromise the estimator, as it only prevents the neighbors’
information from incorporation.

A more elaborate approach inspired by [68] could consist
of clustering of neighbors densities, e.g., using the K-means
algorithm with suitable divergence measures. This is postponed
to further research.

D. Discussion of Estimator Properties

A remarkable property of Proposition 1 is its close rela-
tion with the Bayesian update (Lemma 1). This can be seen
from comparison of Equations (5) and (11). Namely, Equation
(11) combines neighbors’ hyperparameters resulting from the
Bayesian update (5), that contain their observations yj,· and
possibly explanatory variables xj,· accumulated in the suffi-
cient statistics Ξθ

j,· and Υθ
j,·. That is, Equation (11) is effectively

a weighted Bayesian update, studied, e.g., in [62], [63]. This
becomes evident particularly if we consider identical prior hy-
perparameters. Here, the weights cθ

ij suppress knowledge dupli-
cation, also known as the data incest [64].

The asymptotic properties, discussed in the previous paper
[20] focused on estimation of models with global parameters,
are valid for the estimation of local, global and shared param-
eters too. In particular, the consistency of Bayesian estimators
[60], [61] guarantees the consistency of the diffusion estimator
under very mild conditions, and the diffusion estimators asymp-
totically converge to the centralized estimator. However, a diffi-
culty is connected with the factorization and free-energy-based
optimization. The relative accuracy of variational inference is
still not fully understood. It is known, that variational inference
generally underestimates the variance of the posterior density,
which is a consequence of its objective function. Still, this is
acceptable in many practical tasks [55], [65]. Until recently,
the analyses of the variational methods were highly dependent
on the concrete algorithm for the specific model and the choice
of the prior distribution, and considered the direct minimiza-
tion of the variational free energy over the expected sufficient
statistics. In order to overcome this drawback, an alternative ap-
proach inspired by local variational approximations was adopted
in [66]. The resulting analyses are more general and indepen-
dent of the concrete algorithms for the specific models, however,
they are quite technical.

V. ILLUSTRATIVE EXAMPLE

This example demonstrates the application straightforward-
ness of the proposed method. Let us for simplicity assume two

1The Euclidean 2-norm and the Jensen-Bregman LogDet divergence are used
in the simulation examples in Section VI.

connected nodes i ∈ I = {1, 2} that model own normally dis-
tributed observations yi,t ∼ N

(
μi, σ

2
i

)
with probability density

functions

p
(
yi,t |μi, σ

2
i

)
=

1√
2πσ2

i

exp
{
− 1

2σ2
i

(yi,t − μi)2
}

= exp

{[ μi

σ 2
i

− 1
2σ 2

i

] [T
yi,t

y2
i,t

]
− μ2

i

2σ2
i

− 1
2

log
(
2πσ2

i

)}
.

Let us summarize the window of observations yi,1 , . . . , yi,t

by a joint density and rewrite it into the forms useful for the
factorized local estimation, separating the individual parameters
into a natural statistic vectors (c.f. Definition 2):

p
(
yi,1:t |μi, σ

2
i

)
=

t∏
τ =1

p(yi,τ |μi, σ
2
i )

=
t∏

τ =1

exp

{[ μi

σ 2
i

− 1
2σ 2

i

] [T
yi,τ

y2
i,τ

]
− μ2

i

2σ2
i

− 1
2

log
(
2πσ2

i

)}
(12)

= exp

{
t∑

τ =1

([ μi

σ 2
i

− 1
2σ 2

i

] [T
yi,τ

y2
i,τ

])
− t

2σ2
i

μ2
i −

t

2
log

(
2πσ2

i

)}

= exp

{[ μi

σ 2
i

− 1
2σ 2

i

] [T∑t
τ =1 yi,τ∑t
τ =1 y2

i,τ

]
+ K1

}
(13)

= exp

{[
μi

μ2
i

] [T
1

σ 2
i

∑t
τ =1 yi,τ

− t
2σ 2

i

]
+ K2

}
(14)

= exp

{[
1

σ 2
i

log σ2
i

] [T− 1
2

∑t
τ =1(yi,τ − μi)2

− t
2

]
+ K3

}
(15)

where (12) is a product of the normal densities, and

K1 =− t

2σ2
i

μ2
i −

t

2
log

(
2πσ2

i

)
,

K2 =− 1
2σ2

i

t∑
τ =1

y2
i,τ −

t

2
log

(
2πσ2

i

)
,

K3 = − t

2
log (2π) .

A careful investigation of these forms reveals the possibility
to employ the normal prior distribution N (mi,t−1 , s

2
i,t−1) con-

jugate to the model (14) provided σ2
i is replaced by its point

estimate. That is,

πμi

i,t−1(μi |yi,t−1) = πμi

i,t−1(μi |mi,t−1 , s
2
i,t−1)

=
1√

2πs2
i,t−1

exp

{
− 1

2s2
i,t−1

(μi −mi,t−1)2

}

= exp

{[
μi

μ2
i

]ᵀ [ mi , t−1

s2
i , t−1

− 1
2s2

i , t−1

]

︸ ︷︷ ︸
Ξμ i

i , t−1

+ · · ·
}

,
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Fig. 2. Topology of network consisting of 15 nodes.

Algorithm 1: Factorized estimation of heterogeneous
parameters in diffusion networks.
The nodes i = 1, . . . , I employing user-defined models
pi(yi,t |xi,t ,Θi) are initialized with the factorized prior
densities ρi,0(Θi) =

∏
θ∈Θ i

ρθ
i,0(θ) reflecting the initial

knowledge of Θi . Set the number of variational iterations
n ∈ N . Set the tolerances hθ . For t = 1, 2, . . . and each
node i do:
Factorized local estimation:

1) Get observations yi,t and (if present) explanatory
variables xi,t .

2) Perform n variational iterations, Equation (9).
Diffusion optimization:
For each θ ∈ Θi :

1) Get the posterior densities ρθ
j,t(θ) from j ∈ Iθ

i and
extract their conjugate hyperparameters Ξθ

j,t and Υθ
j,t .

2) Compute the combined posterior hyperparameters Ξ̃θ
i,t

and Υ̃θ
i,t according to Proposition 1, Equation (11).

Set the resulting posterior densities as the prior densities
for the next time step.

where Ξμi

i,t−1 is the conjugate hyperparameter, see Definition 3
and the remark below it. The expected value serving as the point
estimate is μ̂i = mi,t−1 .

Analogously, it is possible to identify the inverse-gamma dis-
tribution iG(ai,t−1 , bi,t−1) as the conjugate prior distribution for
the estimation of σ2

i with μi replaced by its point estimate in
(15),

π
σ 2

i
i,t−1

(
σ2

i |yi,t−1
)

= π
σ 2

i
i,t−1

(
σ2

i |ai,t−1 , bi,t−1
)

=
b
ai , t−1
i,t−1

Γ(ai,t−1)
(
σ2

i

)−ai , t−1−1 exp
{
−bi,t−1

σ2
i

}

= exp

{[ 1
σ 2

i

log σ2
i

]ᵀ [ −bi,t−1
−ai,t−1 − 1

]

︸ ︷︷ ︸
Ξ

σ 2
i

i , t−1

+ · · ·
}

,

where Ξσ 2
i

i,t−1 is the conjugate hyperparameter of the prior
inverse-gamma distribution for σ2

i . The expected value serving

as the point estimate is σ̂2
i = bi,t−1/(ai,t−1 − 1).

With the knowledge of compatible forms of distributions, it
is now possible to perform the factorized estimation of μi and
σ2

i according to Algorithm 1. It can be summarized as follows:

Factorized Local Estimation
At each node i:
1) Acquire yi,t . Initialize the prior distributions using the

conjugate hyperparameters from the previous time step
t− 1.

2) Perform the preset number n of iterations, replacing the
unknown parameters μi and σ2

i in the sufficient statistics
by their point estimates – mean values of the respective

distributions, i.e., μ̂i
(n−1) and (σ̂2

i )(n−1) :

Ξμi (n)
i,t ← Ξμi (n−1)

i,t +

⎡
⎢⎣

1(
σ̂ 2

i

) (n −1 )

∑t
τ =1 yi,τ

− t

2
(

σ̂ 2
i

) (n −1 )

⎤
⎥⎦,

Ξσ 2
i (n)

i,t ← Ξσ 2
i (n−1)

i,t +

[
− 1

2

∑t
τ =1

(
yi,τ − μ̂

(n−1)
i

)2

− t
2

]
.

3) Assign Ξμi

i,t ← Ξμi (n)
i,t and Ξσ 2

i
i,t ← Ξσ 2

i (n)
i,t .

Diffusion Optimization
At each node i:
1) Acquire posterior conjugate hyperparameters Ξμi

i,t and/or

Ξσ 2
i

i,t from the neighbors j ∈ Ii .
2) Perform Kullback-Leibler optimal merging of pdfs used

for common parameters according to Proposition 1, Equa-
tion (11). If the mean values are common, i.e. μ1 = μ2 =
μ, then

Ξ̃μ
1,t = cμ

11Ξ
μ
1,t + cμ

12Ξ
μ
2,t , and Ξ̃μ

2,t = cμ
21Ξ

μ
1,t + cμ

22Ξ
μ
2,t .

If the variances are common, i.e. σ2
1 = σ2

2 = σ2 , then

Ξ̃σ 2

1,t = cσ 2

11 Ξσ 2

1,t + cσ 2

12 Ξσ 2

2,t , and Ξ̃σ 2

2,t = cσ 2

21 Ξσ 2

1,t + cσ 2

22 Ξσ 2

2,t .

Note that Υ·· are absorbed into Ξ··.

VI. SIMULATION EXAMPLES

A. Homogeneous Parameters

The purpose of the first example is to demonstrate that the
proposed algorithm yields results convergent to its centralized
counterpart, where all observations are processed in a single ded-
icated network node, and performs better than a non-cooperative
scenario. The network consists of 15 nodes, its topology is de-
picted in Fig. 2.

In order to be able to compare the results, the parameters have
to be identical for all network nodes (the inhomogeneous case
is treated in the next example). The observations are generated
from a three-component normal mixture model

yi,t ∼
3∑

k=1

wkN (μk ,Σk ), (16)
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Fig. 3. Left: Samples drawn from the mixture (16). Right: Contour plot of the
mixture components.

where i ∈ I = {1, . . . , 15} is the node index, the component
weights

[w1 , w2 , w3 ] = [0.3, 0.3, 0.4],

and the normal components are

N (μ1 ,Σ1) = N
([−2
−3

]
,

[
1.5 0.9
0.9 2.5

])
,

N (μ2 ,Σ2) = N
([

5
0

]
,

[
1 0
0 1

])
,

N (μ3 ,Σ3) = N
([

1
4

]
,

[
2.5 0
0 2.0

])
.

For each node of the network, 1500 samples are drawn from the
mixture. The results below are averaged over 50 independent
simulation runs. Fig. 3 depicts the samples of a randomly chosen
run and the contours of the components. The nodes and the
center start with identical prior distributions

μ1,i ∼ N ([−5,−5]ᵀ, 10 · I2×2),

μ2,i ∼ N ([5, 0]ᵀ, 10 · I2×2),

μ3,i ∼ N ([5, 5]ᵀ, 10 · I2×2),

Σ1,i ∼ iW(0.1 · I2×2 , 5),

Σ2,i ∼ iW(0.1 · I2×2 , 5),

Σ3,i ∼ iW(0.1 · I2×2 , 5),

wi ∼ Dir(1, 1, 1),

where iW and Dir denote the inverse-Wishart and the Dirich-
let distributions, respectively. The combination weights c·ij are
uniform.

The inference exploits a floating window of 50 observations
and starts after it is filled. The time is reset to t = 1 for com-
prehensibility. The center infers from 50|I| = 750 observations
at each t. The tolerances are 1.0 both for the mean vectors and
covariance matrices estimation (see Section IV-C). All three
scenarios employ 15 local variational iterations each time step.

Figs. 4, 5, and 6 show the estimation performance in terms of
the root mean squared errors (RMSE). In the diffusion (diff) and
non-cooperative (nocoop) scenarios, the RMSE values are aver-
aged over the network. The estimation of mean vectors μ1 , μ2 ,

Fig. 4. Decimal logarithm of RMSE of the mean vectors estimates.

Fig. 5. Decimal logarithm of RMSE of the covariance matrices estimates.

Fig. 6. Decimal logarithm of RMSE of the component weights vector esti-
mates.

and μ3 is significantly better in the diffusion and centralized
(central) scenarios. The results of the proposed diffusion algo-
rithm are close to the centralized scenario. The estimation per-
formance of the component weights vector w = [w1 , w2 , w3 ] is
similar in the non-cooperative and diffusion algorithms, as there
is no collaboration among nodes for this variable. Naturally, the
centralized algorithm estimates w best for its significantly larger
amount of data.
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To summarize, the proposed diffusion algorithm provides es-
timation performance between the centralized approach and the
non-cooperative scenario as expected. The collaboration among
nodes significantly improves estimation of common parameters.

B. Heterogeneous Normal Mixtures

This example demonstrates the diffusion estimation of a nor-
mal mixture model with heterogeneous parameters across the
network. The network has the same topology as in the previ-
ous example (Fig. 2). The observations yi,t are generated from
two-component normal mixture models of the form

yi,t ∼ w1,iN (μ1 ,Σ1,i) + w2,iN (μ2,i ,Σ2,i)

where w1,i + w2,i = 1. The first component mean μ1 =
[−10,−10]ᵀ is global for the whole network. The sec-
ond component mean μ2,i is randomly drawn from the set
{[−2, 2]ᵀ, [2, 2]ᵀ}. Similarly, the covariance matrices are in-
dependently drawn from the set {Σa ,Σb}, whose members are
initially randomly drawn from the Wishart distributions:

Σa ∼ W
([

0.01 0
0 0.01

]
, 500

)
,

Σb ∼ W
([

0.03 0
0 0.03

]
, 500

)
.

The component weights wi = [w1,i , w2,i ] are randomly sampled
from the Dirichlet (or equivalently beta or uniform) distribution

[w1,i , w2,i ] ∼ Dir(100, 100).

To summarize, there is one global parameter μ1 , a set of strictly
local parameters wi , and a set of potentially shared parameters
μ2,i ,Σ1,i and Σ2,i . The nodes are not a priori aware which
parameter do they share with their neighbors. The results below
are averaged over 50 independent simulation runs, each exploits
1500 data samples per node. The diffusion algorithm employs
3 variational iterations each time step, while the no-cooperative
scenario performs with 10 iterations in order to demonstrate the
superior performance of the proposed method. The combination
weights c·ij are uniform, the tolerances are 1.0 for the mean
vectors and 0.05 for the covariance matrices estimation.

The estimation proceeds with the prior distributions

μ1,i ∼ N ([−15,−15]ᵀ, 10 · I2×2),

μ2,i ∼ N ([0, 0]ᵀ, 10 · I2×2),

Σ1,i ∼ iW(0.1 · I2×2 , 5),

Σ2,i ∼ iW(0.1 · I2×2 , 5),

wi ∼ Dir(1, 1),

where iW andDir denote the inverse-Wishart and the Dirichlet
distributions, respectively. The data window for online estima-
tion is 50 observations.

Unfortunately, the authors are not aware of any method suit-
able for estimation under so complex heterogeneity conditions.
This prevented them from including a comparative study.

Figures 7, 8, and 9 depict the RMSE values averaged over the
network for all estimated parameters. The proposed algorithm

Fig. 7. Decimal logarithm of RMSE of the mean vector estimates.

Fig. 8. Decimal logarithm of RMSE of the covariance matrices estimates.

Fig. 9. Decimal logarithm of RMSE of the component weights estimates.

provides more precise estimates of the global and shared pa-
rameters, and a slight improvement in estimation quality of the
component weights wi = [wi,1 , wi,2 ]. Moreover, this improve-
ment is achieved with a lower computational requirements: 3
versus 10 local variational iterations used by the diffusion and
no-cooperation algorithms, respectively. The final estimates of
three selected nodes resulting from a randomly chosen experi-
ment run are given in Table I.
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TABLE I
TRUE PARAMETER VALUES AND THEIR FINAL ESTIMATES AT NODES 1, 6 AND 9

FOR BOTH THE DIFFUSION AND THE NON-COOPERATIVE SCENARIOS,
RESPECTIVELY. A RANDOMLY CHOSEN EXPERIMENT RUN

VII. CONCLUSION

In this paper we developed a distributed framework for
static and sequential estimation of parameters that are hetero-
geneous over the network. It is formulated in the Bayesian and
information-theoretic realm, and allows its relatively straight-
forward application to a wider class of models from the ex-
ponential family. The future work should focus on possible
accelerations of factorized local estimation via intermediate co-
operations among neighbors, optimal communication schedul-
ing, extensions to arbitrary models and prior distributions (e.g.
[69], [70]), and investigation of yet more complex situations of
intrinsically incompatible information and heterogeneous infer-
ential approaches.
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[21] K. Dedecius and V. Sečkárová, “Dynamic diffusion estimation in ex-
ponential family models,” IEEE Signal Process. Lett., vol. 20, no. 11,
pp. 1114–1117, Nov. 2013.

[22] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive
networks: Formulation and performance analysis,” IEEE Trans. Signal
Process., vol. 56, no. 7, pp. 3122–3136, Jul. 2008.

[23] P. DiLorenzo and A. H. Sayed, “Sparse distributed learning based
on diffusion adaptation,” IEEE Trans. Signal Process., vol. 61, no. 6,
pp. 1419–1433, Mar. 2013.

[24] R. Arablouei, K. Dogancay, S. Werner, and Y.-F. Huang, “Adaptive dis-
tributed estimation based on recursive least-squares and partial diffusion,”
IEEE Trans. Signal Process., vol. 62, no. 14, pp. 3510–3522, Jul. 2014.

[25] J. Hu, L. Xie and, C. Zhang, “Diffusion Kalman filtering based on covari-
ance intersection,” IEEE Trans. Signal Process., vol. 60, no. 2, pp. 891–
902, Feb. 2012.

[26] Z. J. Towfic, J. Chen, and A. H. Sayed, “Collaborative learning of mixture
models using diffusion adaptation,” in Proc. 2011 IEEE Int. Workshop
Mach. Learn. Signal Process., 2011, pp. 1–6.

[27] M. H. DeGroot, “Reaching a consensus,” J. Amer. Statist. Assoc., vol. 69,
no. 345, pp. 118–127, 1974.

[28] I. D. Schizas, G. Mateos, and G. B. Giannakis, “Distributed LMS for
consensus-based in-network adaptive processing,” IEEE Trans. Signal
Process., vol. 57, no. 6, pp. 2365–2382, Jun. 2009.

[29] O. Hlinka, F. Hlawatsch, and P. M. Djurić, “Consensus-based distributed
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