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Summary

The marginalized particle filtering (MPF) is a powerful technique reducing the
number of particles necessary to effectively estimate hidden states of state-space
models. This paper alleviates the assumption of a fully known and computa-
tionally tractable observation model. Exploiting the recent developments in the
theory of approximate Bayesian computation (ABC) filtration, an ABC counter-
part of MPF is proposed, applicable when the observation model is too complex
to be evaluated analytically or even numerically, but it is still possible to sample
from it by plugging in the state. The novelty is 2-fold. First, ABC methods have
not been used in marginalized filtering yet. Second, a new multivariate robust
method for evaluation of particle weights is proposed. The goal of this paper is
to demonstrate the idea on the background of the MPF with a particular accent
on exposition.
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1 INTRODUCTION

State-space approach to modeling of time series is a well-established discipline popular in many engineering, financial,
biological, and medicine applications (eg, the works of West and Harrison1 and Durbin and Koopman2), and abundance
of others. This paper focuses on a particular class of state-space models with the following specific structure:

ξk+1 = fk (ξk) + Aξxk + Gξwξ (1)

xk+1 = Axxk + Gxwx (2)

yk ∼ hk ( yk|ξk) , (3)

where yk are (possibly multivariate) observations; ξk and xk are the hidden state variables; fk is a real nonlinear multivariate
function; hk(·) is an observation model in the form of a probability density function; and Ax,Aξ,Gx, and Gξ are the matrices
of compatible dimensions that may depend upon ξk (we omit the time indices for easy reading). The hidden process noise
variable is normally distributed

wk =
[

wξ
wx

]
∼  (0,Q) (4)

with the (possibly time-varying) covariance matrix

Q =
[

Qξ Qξx
(Qξx)T Qx

]
. (5)
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This model is particularly suited for navigation, integrating the inertial systems and terrain-aided positioning or Global
Positioning System.3,4

Concerning the properties of fk and hk, 3 different cases may occur. First, if they are linear (or mildly nonlinear) func-
tions, the celebrated Kalman filter (or its extended or unscented variants) dominates the class of possible solutions.5-7

Second, if fk is linear or nonlinear and hk severely nonlinear but known and computationally tractable, the particle filters
estimating xk and ξk via a Monte Carlo sampling from the state space prevail, eg, the work of Cappé et al.8 Moreover, the
model structure allows marginalized (Rao-Blackwellized) particle filtering (MPF): ξk is sampled, whereas xk is estimated
via a Kalman filter.9,10 The marginalization reduces the number of necessary particles and leads to a lower estimator
variance.3,9,10 The third case (we focus on) involves the frequent situations when hk is too complex or even numerically
intractable, or when it is a rough approximation of the true data-generating model (model misspecification), but the pos-
sibility to sample from the observation equation by plugging the state is preserved. Under these situations, the particle
filters may require tedious adjustments (eg, chapter 3 in the work of Ristic11), special variants (eg, the works of Pitt and
Shephard,12 Maiz et al,13 and Kotecha and Djurić14), or cannot be used at all.

In order to address these issues, the present paper adheres to the rapidly developing domain of the approximate Bayesian
computation (ABC) methods, surveyed, eg, in the work of Green et al.15 Essentially, these methods plug the Monte Carlo
samples drawn from the state space directly into the observation model and evaluate their particle weights based on the
proximity of the obtained pseudo-observations to the true observations yk. The proximity is computed via a convenient
kernel function.

Most of the ABC methods, ie, both static and sequential, adopt a uniform kernel assigning equal weights to particles
yielding pseudo-observations within a predefined radius around the true observation and discarding the rest.16-19 The
generic ABC filter20 is not an exception in this respect. As a result, it has attractive asymptotic properties ensuring con-
vergence to the true state value, however, at the cost of rather impractical assumptions21 requiring carefully designed
adaptation of the kernel scale, eg, using a linear schedule22 or effective sample size–based scale contraction.23,24 An alter-
native method partially solving these issues is inspired by the kernel density estimation (KDE) theory.25 It considers
centered probability kernels with finite second-order moments and adapts the kernel scale exploiting the standard KDE
criterion: minimization of the mean integrated square error (chapters 3.3 and 3.4 in the work of Silverman).26 Recently,
the author of this paper proposed yet another approach with univariate adaptive kernels that provides a good robustness
and stability under much weaker assumptions.27 Its idea is that the highest probability region (HPR) of the true obser-
vation model, ie, probability density hk(·), would cover a corresponding region of possible observations, including the
admissible pseudo-observations. As the true model is not available or usable, it is replaced by a convenient symmetric
probability kernel centered at the true measurement yk and with a scale parameter providing a required coverage of the
pseudo-observations. This paper adopts this philosophy and extends it to multivariate cases in Section 3.3. This extension
faces certain difficulties. For instance, the determination of the kernel scales in unidimensional cases is a straightforward
use of the quantile function. However, there are no quantiles defined in the multivariate cases, and the determination
needs to be based on the equiprobability curves. Section 3.4 presents an analytically tractable optimization of the bivariate
normal kernel scale.

To summarize, this paper focuses on inference of partially linear state-space models given by Equations 1 to 3 with too
complex, analytically or numerically intractable, or misspecified observation Equation 3. The key novelty is 2-fold. First, it
lies in the estimation of the nonlinear part using an ABC filter. The linear part is estimated via standard linear algorithms.
Second, a new robust multivariate kernel–based method for evaluation of particle weights is proposed. The resulting filter
is very universal and can be used in a much wider range of problems and generalizations of the originally considered
state-space model.

For expository purposes, the marginalized ABC filter is developed on the background of the marginalized particle filter
of Nordlund and Gustafsson.3 However, it should be stressed that the estimation of the nonlinear part is completely
different.

2 MARGINALIZATION AND IDENTIFICATION OF THE LINEAR
AND NONLINEAR PARTS

The state-space model (1) to (3) can be partitioned into a nonlinear and a conditional linear part, involving ξk and
xk|ξk, respectively. Therefore, the joint filtering probability density for xk and ξ1:k = {ξ1, … , ξk} given observations
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y1:k = {y1, … , yk} can be factorized as

π (xk, ξ1∶k|y1∶k) = π (xk|ξ1∶k, y1∶k) π (ξ1∶k|y1∶k) , (6)

= π (xk|ξ1∶k) π (ξ1∶k|y1∶k) , (7)

which means that that the observations directly carry information about ξ1:k and, in turn, information about xk can be
inferred from ξ1:k. The filtering density for ξ1:k arises from marginalization of the linear states from the joint filtering
density

π (ξ1∶k|y1∶k) = ∫ π (xk, ξ1∶k|y1∶k) dxk. (8)

Let us now characterize the linear and nonlinear parts. The underlying factorization procedure, including decorrelation,
is due to Nordlund and Gustafsson,3 where the details can be found.

The linear part of the state-space model is given by

xk+1 ∼  (
Āxxk + GxQξx

(
GξQξ

)−1zk,Gx

[
Qx − QT

ξx
(

Qξ
)−1Qξx

]
GT

x

)
, (9)

zk ∼  (
Aξxk,GξQξGT

ξ

)
, (10)

where
zk = ξk+1 − fk (ξk) = Aξxk + Gξwξ, (11)

Āx = Ax − GxQξx
(

GξQξ
)−1Aξ. (12)

In order to avoid confusion with indices, we stick with zk in the rest of this paper. This means the equivalence

π(xk|z1∶k) ≡ π(xk|ξ1∶k). (13)

If the prior filtering density π(xk|z1∶k−1) ≡  (x−k ,P−
k ), the recursive Bayesian filtering yields the Kalman filter. In the

following text, the marks − and + denote variables before and after the incorporation of zk, respectively.
The nonlinear part describing the evolution ξk → ξk+1 requires the statistical knowledge of xk carried by the filtering

density π(xk|z1:k). The normality of xk|z1:k−1, the chain rule, and marginalization yield

ξk+1 ∼  (
fk(ξk) + Aξx−k ,GξQξGT

ξ + AξP−
k (Aξ)T

)
, (14)

yk ∼ hk ( yk|ξk) . (15)

Depending on the properties of hk, this model can be sequentially estimated by a convenient Monte Carlo filter, eg, the
particle or the ABC filter.

Remark 1. In many cases, the intrinsically Bayesian approach to deriving the density of ξk+1|ξk via the chain rule and
marginalization is connected with (often computationally demanding) approximations. A simple straightforward way
around this issue is the use of the plug-in distribution, obtained by plugging in the point estimate of xk into Equation 1

ξk+1 ∼  (
fk (ξk) + Aξx−k ,GξQξGT

ξ

)
(16)

yk ∼ hk ( yk|ξk) . (17)

This approach is asymptotically equivalent but may exhibit a discrepancy for small sample sizes as the plug-in
distribution ignores the uncertainty about the inferred state.28

3 ESTIMATION OF THE NONLINEAR PART

3.1 Particle filtering
Assume a standard nonlinear state-space model given by

ξk+1 ∼ p (ξk+1|ξk) , (18)

yk ∼ hk( yk|ξk), (19)
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where, consistently with the previous section, ξk stands for a hidden state variable with a distribution p(ξk+1|ξk), and yk
is an observation with a distribution hk(yk|ξk).*

Under usual conditions where hk is a tractable probability density, the particle filtration8,29 of the nonlinear states ξk is
achieved by the Bayesian update in the form

π (ξ1∶k|y1∶k) ∝ π (ξ1∶k−1|y1∶k−1) p (ξk|ξk−1) hk (yk|ξk) , (20)

approximated in the point-mass sense by a set of I Monte Carlo samples ξ(i)k drawn from the state space and assigned with
weights w(i)

k summing to unity,

π (ξ1∶k|y1∶k) ≈
I∑

i=1
w(i)

k δξ(i)k
(ξk). (21)

The term δξ(i)k
(ξk) stands for the Dirac delta function located at ξ(i)k . The particle filters update the weights w(i)

k via the Bayes'
theorem

w(i)
k ∝ w(i)

k−1

hk

(
yk||ξ(i)k

)
p
(
ξ(i)k

||ξ(i)k−1

)
q
(
ξ(i)k

||ξ(i)0∶k−1, yk

) , (22)

where q(ξ(i)k |ξ(i)0∶k−1, yk)is a convenient proposal distribution. Identifying it with the state function (18) leads to the bootstrap
filter,29 where the particle weights are straightforwardly updated according to

w(i)
k ∝ w(i)

k−1hk

(
yk||ξ(i)k

)
. (23)

A common drawback of most particle filters is the degeneracy of particle weights due to their gradual concentration to a
few particles. A way around this problem is to use a resampling procedure, surrogating the original set of particles by a
new one, more dense in regions of high probability.8

3.2 Approximate filtering
Now, let us assume that hk is not a tractable or fully known density, but only an approximate (ie, misspecified) density,
a stochastic function describing the true noise-corrupted process, or any other convenient mathematical model approx-
imating the true observation-generating system. To remedy this situation, the ABC filters20,21,25,30 provide the point-mass
approximation (21) of the target density π(ξ1:k|y1:k) using a different strategy. The Monte Carlo samples ξ(i)k , i = 1, … , I
drawn from the state space are directly plugged into the observation model (19). It produces pseudo-observations u(i)

k , and
the weights w(i)

k of the state-space particles ξ(i)k are calculated as proportional to the closeness of these pseudo-observations
to the true observation yk. This closeness is measured by a user-selected probability kernel function g̃εk ( yk,uk) with a
scaling parameter εk. That is, the ABC counterpart of Equation 20 takes the form

π̃ (ξ1∶k|y1∶k) ∝ π̃ (ξ1∶k−1|y1∶k−1) p (ξk|ξk−1)∫ g̃εk ( yk,uk)hk ( yk|ξk) duk, (24)

and the ABC counterpart of the particle weights update (23) under the bootstrap-type proposal distribution (14) is

ω(i)
k ∝ w(i)

k−1g̃εk

(
yk,u(i)

k

)
. (25)

The choice of g̃εk is still an open problem. The first ABC-filtration paper of Jasra et al20 adopted consistently with the
static ABC framework the uniform kernel

g̃εk

(
yk,u(i)

k

)
∝ 1Aεk ,yk

(
u(i)

k

)
, (26)

where
Aεk ,yk = {u ∶ ρ(u, yk) ≤ εk}, εk > 0. (27)

is a closed set determined by metric ρ. This accept-reject algorithm produces degenerate (uniform) posterior weights.
Moreover, it is potentially unstable, eg, under outliers, where the kernel needs to be appropriately tuned to prevent a
situation where all particles have zero posterior weights. The authors show that under stable modeling conditions, ie,

*Later, we will identify this model with the nonlinear submodel given by (14) and (15).
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fixed εk and I → ∞, the filter converges to a biased estimator, whose bias tends to zero if εk → 0. Although this result is
attractive in a long run, a nonuniform weighting strategy may lead to better estimates in shorter time-series scenarios.

The nonuniform kernels with adaptive scale parameters were proposed by Calvet and Czellar25 to solve the
double-convergence issues. Their plug-in–based method was inspired by the traditional KDE and naturally inherited
its advantages and disadvantages discussed, eg, in Silverman's KDE monograph.26 Recently, the author of this paper
proposed an alternative method with an adaptive kernel tuning procedure,27 where the main idea is that if the true obser-
vation model were known, its p% HPR would cover a related set of possible pseudo-observations. Since the true model is
unknown, the adaptive kernel serves as its substitute. The idea comes from the comparison of Equations 20 and 24. The
following section extends this method to multivariate cases.

3.3 Adaptive multivariate kernels
The motivation of the proposed method is as follows: assume that there is a true probabilistic model, ie, probability density
hk(yk|ξk), which generates the observations yk. Then, its 100p% HPR would cover the corresponding region of possible
observations, including the pseudo-observations u(i)

k generated by admissible samples ξ(i)k from the corresponding state
space. Since the true model is unknown or intractable, it is surrogated by a convenient symmetric probability kernel
g̃εk ( yk,u(i)

k ) centered at yk with a scale εk assuring the coverage of a preset number of pseudo-observations α ∈ {1, … , I}
(or their fraction, simplifying asymptotic analysis for I → ∞) by a p-HPR of this kernel. Naturally, the resulting kernel
is not equivalent to the true observation-generating model, but the asymptotic convergence of the filter is assured by the
preservation of a high proportion of admissible state particles. Unlike in the work of Calvet and Czellar,25 the existence of
the first 2 moments is not necessary. The only requirement is that the kernel has the location and scale parameters, and
it is symmetric.

While in unidimensional problems, the credibility region is easily found via the quantile function (inverse cumulative
distribution function); in the multidimensional problems, we need to adopt the equiprobability curves, which makes
the HPR calculation more elaborate. Below, in Section 3.4, a particularly appealing analytically tractable example of a
bivariate normal kernel is given. It is also used in the simulation examples (see Section 4).

Assume now that a particular kernel function, the number α, and the coverage p are chosen a priori. Then, the kernel
scale adaptation proceeds at each time instant k as follows:

1. The kernel with yet unknown scale parameter εk is centered at yk by translation.
2. The pseudo-observations u(i)

k are simulated from the model, and the αth least distant pseudo-observation uα
k is found.

3. Then, scale εk is calculated via constructing the equicoordinate p-credibility region with uα
k lying on its boundary. The

resulting εk is plugged into the kernel to calculate the posterior particle weights via Equation 25.

This approach to the evaluation of weights of ξ(i)k is the core of the proposed marginalized ABC filter summarized in
Algorithm 1. The subsequent section shows the derivation of the multivariate normal kernel scale.

Remark 2. A natural and important extension of the method postponed to further research is the construction of asym-
metric kernels. Another investigated alternative to the current method is the approximation of multivariate kernels
by independent marginals.

3.4 Example: bivariate normal kernel
Let yk ∈ R2. The bivariate normal kernel is the function

g̃εk

(
yk,u(i)

k

)
= 1

2π
√

detΣ
exp

[
−1

2

(
u(i)

k − yk

)T
Σ−1

(
u(i)

k − yk

)]
, (28)

where Σ ∈ R2×2 is a covariance matrix with ε2
k > 0 on the main diagonal and zeros elsewhere. Inspection of Equation 28

reveals the Mahalanobis distance (
r(i)

)2 =
(

u(i)
k − yk

)T
Σ−1

(
u(i)

k − yk

)
(29)

= ε−2
k
‖‖‖u(i)

k − yk
‖‖‖ 2

. (30)
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Now, the goal is to compute the scale εk such that u(i)
k lies on the equicoordinate delimiting the volume p of the HPR of the

kernel density g̃εk ( yk,u(i)
k ). For this purpose, we need to derive the inverse of the cumulative distribution function. Note

that the equicoordinates given by Equation 30 are circles, whose polar parameterization is

u(i)
k = r(i)εk[cosϕ, sinϕ]T + yk, ϕ ∈ [0, 2π]. (31)

Its Jacobian is r(i)
√

detΣ. Let us substitute ρ = r(i) for the subsequent integration. The volume of kernel (28) at the point
u(i)

k in polar parameterization is

p = ∫
2π

0 ∫
r(i)

0
ρ
√

detΣ 1
2π
√

detΣ
e−

1
2
ρ2

dϕdρ = 1
2π ∫

2π

0
dϕ∫

r(i)

0
ρe−

1
2
ρ2

dρ (32)

= ∫
(r(i))2

2

0
e−sds (33)

= 1 − e−
(r(i))2

2 . (34)

By taking inverse function and back-substitution for r (i),

ε2
k = −

‖‖‖u(i)
k − yk

‖‖‖ 2

2 ln(1 − p)
. (35)

The resulting ε2
k corresponding to u(i)

k ≡ uα
k is now used as the (squared) scaling parameter in Equation 28.

4 EXAMPLES

The purpose of the following 2 simulation examples is 2-fold. First, Example 1 shows that in the well-specified model
case, where the generic particle filter performs well, the performance of the marginalized approximate filter is only a
little worse, although it does not know the noise properties. Then, Example 2 demonstrates that under heavy-tailed
(Cauchy) noise, the misspecification issue may significantly influence the tracking ability of the particle filter, whereas
the approximate filter retains its stability.
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4.1 Example 1: well-specified model
The goal of the illustrative example is to demonstrate that the proposed marginalized ABC filter performance is close to
the MPF. We consider the popular task of target tracking, where T = [x1,k, x2,k]T is a position on a 2-dimensional Cartesian
plane; 2 tracking sensors have positions S1 = [20, 50]T and S2 = [0, 10]T. The state xk = [x1,k, x2,k, x3,k, x4,k]T consists of
planar positions and associated velocities. This popular model (eg, the work of Crassidis and Junkins4) has the form

xk+1 =
⎡⎢⎢⎢⎣

1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ xk + wk (36)

yk =
[

d(S1,T)
d(S2,T)

]
+ vk, (37)

where d(S·,T) denotes the Euclidean distance of the object from the respective sensor. For simulation purposes Δt = 0.1,
and the noise variables are defined as

wk ∼  (0,Q) with Q = 0.2

[
Δt3

3
I2×2

Δt2

2
I2×2

Δt2

2
I2×2 ΔtI2×2

]
, (38)

vk ∼  (0,R) with R = 0.3I2×2, (39)

where I2×2 denotes the identity matrix of rank 2. Two hundred data samples are simulated from the model with the
initial x0 = [15, 10, 0, 0]. The proposed marginalized ABC filter is compared with its direct MPF counterpart; both use
1000 particles and systematic resampling4 at each time step. The marginalized ABC filter lacks the full knowledge of the
observation model and proceeds with the distances simulations. The prior state values for both filters are x−1 = [0, 0]T and
P−

1 = 100I2×2, and the initial particles for nonlinear states are sampled from  ([10, 10]T, 10I2×2). The marginalized ABC
filter setting is α = 300 and p = 0.6.

The final root-mean-square error (RMSE) values averaged over 100 runs are [0.765, 0.561, 0.857, 0.613] in the case
of the marginalized ABC filter and [0.476, 0.369, 0.691, 0.671] in the case of MPF. The marginalized ABC filter yields
slightly worse results as expected, but the tracking is still very good. Moreover, the quality of estimation of the linear part
is comparable to MPF. This can be seen from Figure 1, where the box plots depict the final RMSE values of the repeated

FIGURE 1 (Normal noise) Box plots of final root-mean-square error (RMSE) values of 100 repeated experiments. The boxes depict the
median values and the upper and lower quartiles. The length of the whiskers is 1.5 times the interquartile range. Outliers are not shown.
ABC, approximate Bayesian computation; PF, particle filter
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FIGURE 2 (Normal noise) Histograms of final root-mean-square error (RMSE) values of estimates of state variables x1, … , x4. ABC,
approximate Bayesian computation; PF, particle filter

experiments. The boxes depict the median values and the upper and lower quartiles. The length of the whiskers is 1.5 times
the interquartile range. Outliers are filtered out. The distribution of the RMSE values shows Figure 2. The dominance of
the particle filter is obvious; however, the results of the approximate filter are still very satisfactory, even the estimation of
x4 is slightly better than in the particle filter. Finally, Figure 3 depicts the averaged evolution of RMSE for both methods.

From the experimental viewpoint, the proposed marginalized ABC filter provides a good filtering quality under an
observation model whose stochastic nature is not specified. Our experience shows robustness with respect to α and p;
thus, there is no tedious tunning of parameters typical for many Monte Carlo methods.

4.2 Example 2: misspecified model with heavy-tailed noise
The aim of the second example is to demonstrate that if the observation model noise is misspecified, then the tracking
performance of the generic marginalized particle filter can be significantly worse than the performance of the approxi-
mate Bayesian filter that completely disregards the noise properties. For this purpose, the same model structure as in the
previous example is adopted with the exception that the observation noise is Cauchy-distributed

vk ∼ auchy(0,R) with R = 0.3I2×2, (40)

where R denotes the scaling matrix. The noise realizations are uncorrelated. Otherwise, the setting of the example is
identical to the previous example. Again, the results are averaged over 100 independent runs.

The final RMSE values averaged over the runs are [0.991, 0.813, 0.992, 0.723] in the case of the marginalized ABC
filter and [14.28, 11.194, 3.608, 3.169] in the case of the marginalized particle filter. The latter clearly lost its tracking
ability. This becomes apparent also from Figure 4 that shows box plots of the final RMSE values (outliers are filtered out).
While the marginalized ABC filter retains its stable tracking performance, the marginalized particle filter has a significant
dispersion of the final RMSE, indicating its instability and sensitivity to the heavy-tailed noise. Figure 5 compares the
distribution of the final RMSE values by means of histograms. Obviously, the values of the marginalized ABC filter are
highly concentrated, which is not the case of MPF. Finally, Figure 6 depicts the evolution of RMSE values averaged over
the 100 experiment repetitions.
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FIGURE 3 (Normal noise) Root-mean-square error (RMSE) evolution of estimates of x1 (top) to x4 (bottom) averaged over 100
independent experiment runs. ABC, approximate Bayesian computation; PF, particle filter

FIGURE 4 (Cauchy noise) Box plots of final root-mean-square error (RMSE) values of 100 repeated experiments. The boxes depict the
median values and the upper and lower quartiles. The length of the whiskers is 1.5 times the interquartile range. Outliers are not shown.
ABC, approximate Bayesian computation; PF, particle filter
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FIGURE 5 (Cauchy noise) Histograms of final root-mean-square error (RMSE) values of estimates of state variables x1, … , x4. ABC,
approximate Bayesian computation; PF, particle filter

FIGURE 6 (Cauchy noise) Root-mean-square error (RMSE) evolution of estimates of x1 (top) to x4 (bottom) averaged over 100
independent experiment runs. ABC, approximate Bayesian computation; PF, particle filter

5 CONCLUSION

The approximate Bayesian filters provided robust estimation of state-space models in situations where the standard
Bayesian methods suffer from an observation model misspecification. This paper proposed a marginalized filter suitable
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for simultaneous Monte Carlo-based estimation of nonlinear states and analytically tractable estimation of linear states.
The Monte Carlo part, ie, the approximate Bayesian filter, additionally involves an adaptive kernel tuning procedure,
providing robust evaluation of particle weights. Two simulation examples demonstrate that the tracking performance of
the proposed filter is close to the generic marginalized particle filter under a well-specified model scenario and that the
proposed filter provides superior results if the observation model is misspecified.
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