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1 Introduction and Description of Approach

Natural and social phenomena usually emerge from the behavior of complex
systems consisting of interacting components or variables. In practice, we do
not have a direct access to the “laws” governing the underlying relationships
between them; instead, we are faced with a dataset recorded from the possibly
interacting variables. How can we tell from these given data whether there exists
any relationship between two or more variables?

This question can be made precise by considering a dataset

ZN D f .xi
1; xi

2; : : : ; xi
p; yi/ gNiD1

of the observed values yi, i D 1; 2; : : : ; N, of a variable of interest y paired with the
simultaneously observed values xi

� , � D 1; 2; : : : ; p, of variables x1; x2; : : : ; xp that
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possibly interact with y. Then the set ZN is used to quantify how strong is the effect
of x D .x1; x2; : : : ; xp/ on y.

An instance of this situation is the problem of reconstructing from the set ZN a
multivariate function y D f .x�1 ; x�2 ; : : : ; x�l/ that depends only on a subset fx�igliD1

of the variables fx�gp�D1 (very often, l is much smaller than p). The variables in this
subset fx�igliD1 are called relevant, and they exhibit an effect on the variable y in
contrast to the remaining variables fx�gp�D1 nfx�igliD1. In this work, we are interested
in detecting these relevant variables x�i from the given data ZN .

Note that the above problem has been extensively studied under the assumption
that the target function f depends linearly on the relevant variables such that it
admits the representation

f .x/ D
pX

jD1

ˇjxj

with only a few non-zero coefficients ˇj for j D �1; �2; : : : ; �l. Under such
assumption the problem of detecting relevant variables from the data set ZN can
be reduced to the linear regression with a so-called sparsity constraint. The latter
one is now fairly well understood and can be solved efficiently by means of
l1-regularization. For comprehensive treatments of this subject, we refer the reader
to the classical work [9] and some more recent ones [12, 13, 15, 22, 28] (see also
the references therein).

Despite the computational benefit of the linear regression, it should be noted
that this model is too simple to be always appropriately matched to the underlying
dynamics and may sometimes lead to a misspecification (we defer this discussion
to the last section). A more realistic situation, where the target function f depends
nonlinearly on the relevant variables, is much less understood, and in the literature
it is mostly restricted to the so-called additive models [7, 16, 24, 29]. In this model,
the target function is assumed to be the sum

f .x/ D
pX

jD1

fj.xj/ (1)

of nonlinear univariate functions fj in some Reproducing Kernel Hilbert Spaces
(RKHS) Hj such that fj � 0 for j … f�igliD1. For the sake of brevity, we omit
the discussion on Reproducing Kernel Hilbert Spaces, and refer the reader to the
seminal paper [2] on a comprehensive theory of RKHS.

In [3], it has been observed that the detection of relevant variables in model (1)
can be performed by using a technique from the multiple kernel learning [4, 20].

Then, an estimator of the target function (1) can be constructed as the sum
pP

jD1

f �
j .xj/

of the minimizers of the functional
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Tq
�.f1; f2; : : : ; fpI ZN/ D 1

N

NX

iD1

0

@yi �
pX

jD1

fj.x
i
j/

1

A
2

C
pX

jD1

�jkfjkq
Hj

; (2)

i.e.,

Tq
�.f �

1 ; f �
2 ; : : : ; f �

p I ZN/ D minf Tq
�.f1; f2; : : : ; fpI ZN/; fj 2Hj; j D 1; 2; : : : ; p g;

where � D .�1; �2; : : : ; �p/ is a vector of the regularization parameters, and q > 0.
Note that functional (2) can be seen as a Tikhonov-type functional (see, e.g., [10,

34]). The first term in (2) represents the quality of data fitting, while the second term
is called the regularization term. The purpose of regularization is to avoid functions
with big norms that lead to overfitting. Regularization can be also seen as a penalty
on the complexity of the involved functions.

A different approach has been recently proposed in [24]. This approach is
based on the idea that the importance of a variable can be captured by the partial
derivatives. Then in [24], the target function is estimated as the minimizer of the
functional

OT�.f IZN/ D 1

N

NX

iD1

.yi � f .xi//2 C �1kfk2H C �2

pX

jD1

 
1

N

NX

iD1

�
@f .xi/

@xj

�2
!1=2

;

(3)
where xi D .xi

1; xi
2; : : : ; xi

p/, and H is a RKHS of functions f D f .x1; x2; : : : ; xp/.
Note that the choice of the regularization parameters �j is an open issue in

the both above-mentioned approaches. For the multiple kernel learning scheme of
type (2), an a priori parameter choice strategy has been proposed in [20]. In this
strategy, the choice of �j depends only on the kernels generating RKHS Hj and on
the distribution of the points xi

j in ZN . It is clear that such a strategy may not be
suitable for detecting relevant variables because the functions in (1) depending on
different variables xj may be associated with the same Hj and xi

j. As to the scheme
based on (3), no recipe for choosing the parameters �1, �2 was given.

Observe also that the numerical implementation of the above-mentioned
approaches can be nontrivial. For example, the functional (3), as well as the
functional (2) with q 2 .0; 1�, is not differentiable and, hence, its minimization
cannot be done by simple gradient methods. Moreover, the minimizers of the
functionals can only be computed in an iterative fashion requiring the solution of
a system of M D O.Np/ equations at each step, and this can be computationally
expensive for large N and/or p.

In the present paper, we propose a new approach attempting to detect relevant
variables one by one such that the dimension of the corresponding system of
equations increases only when it is necessary. The first step of our approach consists

in constructing the minimizers fj D f
�j

j .xj/ of the functionals Tq
�j

.fjIZN/ defined

by (2) with q D 2, p D 1, �1 D �j, xi
1 D xi

j, H1 D Hj, j D 1; 2; : : :. From
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the representer theorem [18, 31], it follows that such minimization is reduced to

solving systems of N linear equations. Then the minimizers f
�j

j .xj/ are used to rank
the variables xj according to the values of the discrepancies

D.f
�j

j .xj/I ZN/ D
 

1

N

NX

iD1

�
yi � f

�j

j .xi
j/
�2

!1=2

; j D 1; 2; : : : ;

as follows: the smaller the value of D.f
�j

j .xj/IZN/, the higher the rank of xj. This
step can be seen as an attempt to interpret the data ZN by using only a univariate
function, and the variable with the highest rank is considered as the first relevant
variable x�1 .

The next step consists in testing the hypothesis that a variable with the second
highest rank, say x�, is also relevant. For such a testing we compute the minimizers

f
��1
�1 , f

��
� of the functional

T2
�.f�1 ; f�I ZN/ D 1

N

NX

iD1

�
yi � f�1.x

i
�1

/ � f�.xi
�/
�2C

��1kf�1k2H�1
C ��kf�k2H�

:

(4)

Our idea is based on the observation [25] that in multi-penalty regularization with
a component-wise penalization, such as (4), one needs to use small as well as
large values of the regularization parameters ��1 ; ��; i.e., both ��1 and �� << 1;

and �� > 1, respectively. Therefore, in the proposed approach the variable x� is
considered as the relevant one if for f��1 ; ��g � .0; 1/, the values of the discrepancy

D.f
��1
�1 ; f

��
� I ZN/ D

 
1

N

NX

iD1

�
yi � f

��1
�1 .xi

�1
/ � f

��
� .xi

�/
�2

!1=2

(5)

are essentially smaller than the ones for ��1 2 .0; 1/, �� > 1. If it is not the case,
then the above-mentioned hypothesis is rejected, and in the same way we test the
variable with the third highest rank and so on. In the next section, we provide a
theoretical justification for the use of discrepancies values corresponding to the
regularization parameters from different intervals for detecting relevant variables.

On the other hand, if the variable x� has been accepted as the second relevant
variable, i.e., x�2 D x�, then to test whether or not the variable with the third highest
rank, say x� , can be taken as the third relevant variable, i.e., whether or not x�3 D x� ,

we compute the minimizers f
��1
�1 , f

��2
�2 , f ��

� of the functional
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T2
�.f�1 ; f�2 ; f� I ZN/ D 1

N

NX

iD1

�
yi � f�1.x

i
�1

/ � f�2.x
i
�2

/ � f�.xi
�/
�2C

��1kf�1k2H�1
C ��2kf�2k2H�2

C ��kf�k2H�
;

(6)

where, with a little abuse of notation, we use the same symbols f�1 , f
��1
�1 as in (4),(5).

Then, as above, the variable x� is considered as relevant if for f��1 ; ��2 ; ��g � .0; 1/,
the values of the discrepancy

D.f
��1
�1 ; f

��2
�2 ; f ��

� I ZN/ D
 

1

N

NX

iD1

�
yi � f

��1
�1 .xi

�1
/ � f

��2
�2 .xi

�2
/ � f ��

� .xi
�/
�2

!1=2

(7)

are essentially smaller than the corresponding values of (7) for f��1 ; ��2g � .0; 1/,
�� > 1. Otherwise, the variable with the next highest rank is tested in the same way.

If the discrepancy (7) does exhibit the above-mentioned behavior, then for testing
the variable with the next highest rank in accordance with the proposed approach,
we need to add to (6) one more penalty term corresponding to that variable, so
that the functional T2

�.f1; f2; : : : ; fpIZN/ of the form (2) containing the whole set of
penalties may appear only at the end of the testing procedure.

Below, we present an algorithmic realization of the above presented approach.

Task: Find a subset I of given variables that exhibit an effect on the variable y.
The effect is modeled as follows: y DPj2I f �

j .xj/:

Tuning parameters: NMC — number of Monte-Carlo simulations (see Section 2,
p. 902). C — tolerance level for determining the essential variability of the
discrepancy values (see Section 2, p. 900).
I D ;I J D f1; 2; : : : ; pg:
for j D 1 to p do

f
�j

j .x/ D arg min
f 2Hj

1

N

NX

iD1

�
yi � fj.x

i
j/
�2 C �jkfjk2Hj

:

The regularization parameters �j can be chosen using the quasi-optimality
criterion. {See Section 2, p. 903 for details.}

end for
Choose the first relevant variable as

xk D arg min
xj2J

 
1

N

NX

iD1

�
yi � f

�j

j .xi
j/
�2

!1=2

:

I D fkgI J D J n fkg.
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while J ¤ ; do
Select the candidate for the next relevant variable as

xk D arg min
xj2J

 
1

N

NX

iD1

�
yi � f

�j

j .xi
j/
�2

!1=2

:

Define the functional

T2
�

�
fj; j 2 II fkI ZN

� D 1

N

NX

iD1

0

@yi �
X

j2I

fj.x
i
j/ � fk.x

i
k/

1

A
2

C

X

j2I

�jkfjk2Hj
C �kkfkk2Hk

:

Denote the minimizers of the above functional as
�

f
�j

j ; j 2 II f �k
k

�
, and let the

corresponding discrepancy be defined as

D
�

f
�j

j ; j 2 II f �k
k I ZN

�
D

0

B@
1

N

NX

iD1

0

@yi �
X

j2I

f
�j

j .xi
j/ � f �k

k .xi
�k

/

1

A
2
1

CA

1=2

:

iC D 0.
for iMC D 1 to NMC do

Select randomly
�
�j; j 2 II �k

� 2 ��small
50

�jIjC1
. { �small

50 is defined in (27). }

Compute corresponding minimizers
�

f
�j

j ; j 2 II f �k
k

�
and discrepancy D1 D

D
�

f
�j

j ; j 2 II f �k
k I ZN

�
.

Select randomly
�
�j; j 2 II �k

� 2 �
�small

50

�jIj � �
large
50 . { �

large
50 is defined

in (28). }

Compute corresponding minimizers
�

f
�j

j ; j 2 II f �k
k

�
and discrepancy D2 D

D
�

f
�j

j ; j 2 II f �k
k I ZN

�
.

if jD1 �D2j � C then
iC D iC C 1.

end if
end for
if iC > NMC=2 then

I D I [ fkg.
end if
J D J n fkg.

end while
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In the next sections, after presenting the theoretical background, we will illustrate
the application of the proposed approach to the recovery of causal relationships in a
gene regulatory network, and compare it with the results known from the literature.

2 Theoretical Background

At first, we shall write a system of necessary conditions for the minimizers of
the functional (2), where, according to the proposed approach, p may take values
1; 2; : : :, and q D 2.

Let RN be the N-dimensional Euclidean space of vectors u D .u1; u2; : : : ; uN/

equipped with the norm kukRN WD
�

1
N

NP
iD1

.ui/2

�1=2

and the corresponding inner

product h�; �iRN .
Consider the sampling operators SN;j mapping RKHSs Hj generated by the

kernels Kj D Kj.xj; vj/, j D 1; 2; : : : ; p, into R
N such that for f 2Hj,

SN;jf D . f .x1
j /; f .x2

j /; : : : ; f .xN
j / / 2 R

N :

Let us shorty recall that a RKHS H [2, 6, 8] is defined by a symmetric positive
definite function K.x; Qx/ W X � X ! R, which is called the kernel. Examples of the
kernels are the polynomial kernel K.x; Qx/ D .x Qx C 1/d of degree d 2 N, and the
Gaussian kernel K.x; Qx/ D e�.x�Qx/2

. Also, let us note that for functions f 2 H , the
so-called reproducing property holds: hf .�/; K.x; �/iH D f .x/ for all x 2 X.

In view of the above-mentioned reproducing property, we can write the adjoints
S�

N;j W RN !Hj of the sampling operators as follows:

�
S�

N;ju
�

.xj/ D 1

N

NX

iD1

Kj.x
i
j; xj/u

i: (8)

In terms of SN;j, the functional (2) has the form

T2
�.f1; f2; : : : ; fpI ZN/ D

������
Y �

pX

jD1

SN;jfj

������

2

RN

C
pX

jD1

�jkfjk2Hj
; (9)

where Y D .y1; y2; : : : ; yN/. Then, using the standard technique of the calculus of

variations, we obtain the following system of equations for the minimizers f
�j

j

�jf
�j

j C
pX

�D1

S�
N;jSN;� f ��

� D S�
N;jY; j D 1; 2; : : : ; p: (10)
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From (8) and (10), it is clear that f
�j

j can be represented as

f
�j

j .xj/ D
NX

iD1

�
j
i Kj.x

i
j; xj/; (11)

where f� j
i g � R. Note that (11) can be seen as an analog of the well-known

representer theorem [18, 31] for the case of the regularization with a component-
wise penalization in RKHS. This allows the reduction of the minimization of (9) to
solving systems of Np linear equations with respect to �

j
i . Recall that in the approach

described above, p will successively take the values 1; 2; : : :, such that the dimension
of the corresponding system (10) increases only when it is necessary.

Now, for the sake of definiteness and simplicity of the presentation, suppose that

Y D SN;1f1 C SN;2f2 C "; (12)

where f1 D f1.x1/, f2 D f2.x2/, and the vector " 2 R
N may represent a noise

in measurements, as well as a contribution to the data Y coming from functions
of other relevant variables. Note that (12) means that x1, x2 are relevant variables.
Below we analyze the behavior of the discrepancy (5) for �1 D 1, � D 2, and Y D
.y1; y2; : : : ; yN/ given by (12). This means that we consider the second step of the
proposed approach when the variables x1, x2 have already received the ranks 1 and
2, respectively. The analysis of other steps and possibilities can be done similarly,
but it is too technical and is omitted here for brevity. For simplicity, let us denote

D WD D.f �1

1 ; f �2

2 I ZN/ D
���Y � SN;1f �1

1 � SN;2f �2

2

���
RN

: (13)

It is easy to check that for p D 2, the solutions of the system (10) can be written
as follows:

f �1

1 D
�

�1

�2

IK1 C S�
N;1

�
�2IN C SN;2S�

N;2

��1
SN;1

��1

S�
N;1

�
�2IN C SN;2S�

N;2

��1
Y;

f �2

2 D
�

�2

�1

IK2 C S�
N;2

�
�1IN C SN;1S�

N;1

��1
SN;2

��1

S�
N;2

�
�1IN C SN;1S�

N;1

��1
Y;

(14)

where IN is the identity matrix of size N � N, and IKj is the identity operator on
RKHS Hj generated by the kernel Kj.xj; vj/, j D 1; 2.

Note that for determining f �1

1 , f �2

2 in practice, we can use the representation for

f �1

1 , f �2

2 in (11). The system of linear equations for the coefficients
˚

�1
i ; �2

i

	N

iD1
in
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this representation can be determined from (10) by equating the factors near the

functions Kj

�
xi

j; �
�

. This system of linear equations has a simple but rather bulky

form, and therefore, we don’t present it here.
Now, we introduce the first assumption used in our theoretical analysis. This

assumption is formulated in terms of the elements of the singular-value decomposi-
tion (SVD) of the sampling operators

SN;j D
NX

iD1

aijhijh�ij; �iHj ; j D 1; 2; (15)

where fhijg, f�ijg are some orthonormal systems in R
N and Hj, respectively, and

aij � 0.

Assumption 2. The sampling operators SN;j share the same system of fhijg, i.e.,

fhi;1g D fhi;2g D fhig: (16)

Assumption 2 is in fact an assumption on the distribution of the sampling
points fxi

jg. We illustrate it in the following simple example.

Example 1. Let N D 2, and x1
1 D x2

1 D t, x1
2 D 	1, x2

2 D 	2. This means that the
sampling points belong to a line parallel to the x2-axis. If x1 is already accepted as
the relevant variable, then such sampling points allow an easy test whether or not x2

should be accepted as the relevant variable. Indeed, if jy1 � y2j is essentially large,
then one really needs one more variable to explain the given data Y D .y1; y2/.

In the considered case, the sampling operators have the following representations

SN;1f D . f .t/; f .t/ /; SN;2f D . f .	1/; f .	2/ /:

Assume that both RKHS are generated by the same Gaussian kernel K.x; v/ D
e�.x�v/2

. Then

SN;2f D.1; 1/h. K.	1; �/C K.	2; �/ /=2; f iH2
C .1;�1/h. K.	1; �/ � K.	2; �/ /=2; f iH2

;

SN;1f D.1; 1/hK.t; �/; f iH1
;

and it is easy to check that these operators admit the decomposition (15) with

h1;1 D h1;2 D .1; 1/=
p

2; h2;1 D h2;2 D .1;�1/=
p

2;

�1;2 D 1p
2

. K.	1; �/C K.	2; �/ /=. 1C e�.	1�	2/2

/1=2;

�2;2 D 1p
2

. K.	1; �/ � K.	2; �/ /=. 1 � e�.	1�	2/2

/1=2; �1;1 D K.t; �/;

a1;2 D . 1C e�.	1�	2/2

/1=2; a2;2 D . 1 � e�.	1�	2/2

/1=2; a1;1 D
p

2; a2;1 D 0:
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Thus, in the considered case Assumption 2 is satisfied. ut
We would like to stress that Assumption 2 is only of the theoretical nature. At the

same time, it is clear that a successful detection of relevant variables cannot be done
from the data sampled at poorly distributed points fxi

jg. Therefore, some restrictions
on the sampling operators are unavoidable, and the condition (16) is just one of
them.

Theorem 1. Assume that Assumption 2 holds true. Consider the data Y from (12)
and the discrepancy D from (13). Then,

(a) D � 1
2

�p
�1kf1kH1 C

p
�2kf2kH2

�C k"kRN :

(b) D is an increasing function of �1 and �2.

Proof : (a) From (14)-(16), it follows that

SN;1f �1

1 C SN;2f �2

2 D
NX

iD1

�1a2
i;2 C �2a2

i;1

�1�2 C �1a2
i;2 C �2a2

i;1

hihhi; YiRN : (17)

Then in view of (12), we have

Y � SN;1f �1

1 � SN;2f �2

2 D ˙1 C˙2 C˙3; (18)

where

˙1 D
NX

iD1

�1�2ai;1

�1�2 C �1a2
i;2 C �2a2

i;1

hih�i;1; f1iH1 ; (19)

˙2 D
NX

iD1

�1�2ai;2

�1�2 C �1a2
i;2 C �2a2

i;1

hih�i;2; f2iH2 ; (20)

˙3 D
NX

iD1

�1�2

�1�2 C �1a2
i;2 C �2a2

i;1

hihhi; "iRN :

Observe now that

k˙1kRN D
0

@
NX

iD1

 
�1�2ai;1

�1�2 C �1a2
i;2 C �2a2

i;1

!2

h�i;1; f1i2H1

1

A
1=2

�
0

@
NX

iD1

 
�1ai;1

�1 C a2
i;1

!2

h�i;1; f1i2H1

1

A
1=2

� sup
t

ˇ̌
ˇ̌ �1t

�1 C t2

ˇ̌
ˇ̌ kf1kH1 D

p
�1

2
kf1kH1 :
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Moreover, in the same way, we obtain that

k˙2kRN �
p

�2

2
kf2kH2 ;

k˙3kRN D
0

@
NX

iD1

 
�1�2

�1�2 C �1a2
i;2 C �2a2

i;1

!2

hhi; "i2
RN

1

A
1=2

�
 

NX

iD1

hhi; "i2
RN

!1=2

D k"kRN : (21)

Combining these bounds with (18), we obtain the asserted statement.

(b) Since Y D
NP

iD1

hihhi; YiRN , using (17), we obtain that

D2 D
NX

iD1

 
�1�2

�1�2 C �1a2
i;2 C �2a2

i;1

!2

hhi; Yi2
RN :

One can show that in the above sum, the .�1; �2/-dependent coefficients are
monotonically increasing functions of �1 and �2. Therefore, the discrepancy D is
also a monotonically increasing function of �1 and �2. ut

Now what happens if x1 and x2 are not relevant variables, that is in (12) f1 �
f2 � 0. In order to analyze the behavior of the discrepancy D in this case, we need
to introduce additional assumptions.

First of all, it is natural to assume that the number of the nonzero singular values
aij in (15) is very small compared to the number of the sampling points N.

Assumption 3. Let aij be the singular values of SN;j. Denote Aj WD
˚

i
ˇ̌

aij > 0
	
.

Then

#Aj 	 N;

where #Aj denotes the number of elements in the set Aj.

It should be clear that the above assumption is violated, when, as the following
example demonstrates, the distribution of the sampling points fxi

jg may not allow a
conclusion about the relevance of the variables.

Example 2. Let the sampling points fxi
jg be such that xi

2 D c xi
1, where c 2 R is

some constant, and xi1
j ¤ xi2

j for i1 ¤ i2. Then, rank .SN;1/ D rank .SN;2/ D N,
and #A1 D #A2 D N, so that Assumption 3 is violated. At the same time, the
corresponding data Y can be interpolated well by univariate functions f .x1/ or f .x2/

that does not allow to conclude which of the variables x1 or x2 can be selected as the
relevant variable.
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Another assumption, which we need for the analysis of the situation when in (12)
either f1 � f2 � 0, or f2 � 0, is related to the structure of the noise " 2 R

N in (12).
Noise vector " 2 R

N can be represented as follows:

" D
NX

iD1

hihhi; "iRN D
X

i2A1[A2

hihhi; "iRN C
X

i…A1[A2

hihhi; "iRN :

Denote the first term in the last formula as "1;2, and the last term as N"1;2. Since
S�

N;j N"1;2 D 0, this part of the noise " has little influence on the minimizers f �1

1 and

f �2

2 in (14). For another part of the noise "1;2, we assume the following.

Assumption 4. Let "1;2 2 R
N be a part of the noise " 2 R

N in (12), defined as
above. Then,

k"1;2k2RN D
X

i2A1[A2

hhi; "i2
RN 	 k"k2RN :

In view of Assumption 3, the above noise assumption is not so restrictive.
This assumption allows a quantification of the behavior of D with respect to the
non-relevant variables. Of course, the interpretation of the symbol 	 depends on
a particular application. In the sequel, we say that the discrepancy D does not
essentially change if the differences in values of D deviate within the interval
Œ�C1 k"kRN ; C1 k"kRN �, where C1 > 0 is an application dependent constant.
Moreover, we say that some quantity takes values around k"k

RN if these values
appear in the interval Œ.1 � C2/ k"k

RN ; .1C C2/ k"k
RN �, where 0 < C2 < 1 is

another application dependent constant.
Using Assumptions 3 and 4, we can obtain the following statement about the

behavior of the discrepancy D , when the variables x1 and x2 are not relevant.

Theorem 2. Assume that Assumptions 2–4 hold true. If x1 and x2 are not relevant
variables, i.e., if in (12) f1 � f2 � 0, then the discrepancy D does not essentially
change with �1, �2, and may take values around k"kRN .

Proof. Under conditions of the theorem, the representation of the discrepancy
vector (18) becomes

Y � SN;1f �1

1 � SN;2f �2

2 D ˙3:

Then,

D2 D
X

i…A1[A2

hhi; "i2
RN C

X

i2A1[A2

 
�1�2

�1�2 C �1a2
i;2 C �2a2

i;1

!2

hhi; "i2
RN :

In view of Assumption 4, the second sum in the above representation is negligible,
and this gives us the statement of the Theorem. ut
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In the case, when one of the variables, say x1, is relevant, whereas another one is
not, the following statement about the behavior of the discrepancy D can be derived.

Theorem 3. Assume that Assumptions 2–4 hold true. Assume further that x1 is the
relevant variable, and x2 is not, i.e., in (12) f2 � 0. If

X

i2A1\A2

a2
i;1h�i;1; f1i2H1

� k"1;2k2RN ; (22)

then the discrepancy D does not essentially change with �2.

Proof. Since f2 � 0, the discrepancy vector (18) has the following representation:

Y � SN;1f �1

1 � SN;2f �2

2 D ˙1 C˙3:

Since Assumptions 2–4 hold true, the same argument as in the proof of Theorem 2
tells us that the norm k˙3k does not essentially change with �1, �2. As to the term
˙1, it can be written as follows:

˙1 D
X

i2A1nA2

�1ai;1

�1 C a2
i;1

hih�i;1; f1iH1 C
X

i2A1\A2

�1�2ai;1

�1�2 C �1a2
i;2 C �2a2

i;1

hih�i;1; f1iH1 :

In view of (22) and the inequality

�1�2

�1�2 C �1a2
i;2 C �2a2

i;1

< 1;

the second summand is negligible, while the first one does not depend on �2. This
allows the conclusion of the theorem. ut

A typical example of the behavior of the discrepancy D described by Theorems 2
and 3 has been observed in our numerical tests below and is displayed in Fig. 2.

The above theorems allow us a conclusion that if there is a contribution to
the data Y that comes from functions of variables, say x1, x2, then the values of
the discrepancy corresponding to the small values of the regularization parameters
f�1; �2g � .0; 1/ are expected to be essentially dominated by the ones correspond-
ing to at least one large parameter.

Using similar arguments, we can extend the statements of the above theorems
to any number of variables. Then the above conclusion can also be made for
more than two variables, and it is the reason behind the use of the values of the
discrepancy corresponding to large and small values of the regularization parameters
for detecting relevant variables as it has been described in Introduction. Thus, if the
discrepancy
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D
�

f
��1
�1 ; f

��2
�2 ; : : : ; f

��l
�l I ZN

�
D
������

Y �
lX

jD1

SN;�j f
��j
�j

������
RN

(23)

as a function of .��1 ; ��2 ; : : : ; ��l/ exhibits a substantial growth in each variable,
then the variables x�1 ; x�2 ; : : : ; x�l are considered as the relevant ones.

Since in applications it is usually difficult to check the values of (23) for
all ��1 ; ��2 ; : : : ; ��l , one can realize the above-mentioned approach by using
Monte-Carlo-type simulations. Namely, if x�1 ; x�2 ; : : : ; x�l�1 have been already
accepted as relevant variables, then the values of (23) for the randomly chosen
.��1 ; ��2 ; : : : ; ��l/ 2 .0; 1/l are compared to the ones for the randomly chosen
.��1 ; ��2 ; : : : ; ��l/ 2 .0; 1/l�1 � Œ1; B�, B > 1, and x�l is accepted as the relevant
variable if in the above simulations the values of (23) for .��1 ; ��2 ; : : : ; ��l/ 2 .0; 1/l

are essentially dominated by the ones for .��1 ; ��2 ; : : : ; ��l/ 2 .0; 1/l�1 � Œ1; B�.

Remark 1. Note that the conclusion about the ordered behavior of the discrepancy
made on the basis of Theorem 1 can be seen as an extension of the following

interpretation of the values of the discrepancy kSN;1f
�j

j �YkRN for the single penalty
regularization. From [36, Lemma 3.1], it follows that

lim
�j!0

���SN;jf
�j

j � Y
���
RN
D inf

f 2Hj

��SN;jf � Y
��
RN ;

lim
�j!1

���SN;jf
�j

j � Y
���
RN
DkYk

RN :

Then it is clear that if Hj is dense in the corresponding space of continuous
functions, and

Y D SN;jfj C "; k"kRN < kYkRN ;

then for small �j and large N�j, one can expect

���SN;jf
�j

j � Y
���
RN

<
���SN;jf

N�j

j � Y
���
RN

:

On the other hand, if Y 2 .Range.SN;j//
? such that there is no contribution to Y

allowing a representation in terms of the values of fj 2Hj at the points fxi
jgNiD1, then

the discrepancies
���SN;jf

�j

j � Y
���
RN

do not behave in the ordered way.

Of course, in the case of the single variable and penalty, no additional assump-
tions, for example, (16) are needed to justify the ordered behavior of the discrepancy���SN;jf

�j

j � Y
���
RN

for Y D SN;jfj C ". ut
At the end of this theoretical section, we illustrate the above approach on the

example from [24], where for p D 40 and N D 100, the data set
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ZN D f .xi
1; xi

2; : : : ; xi
pI yi/ gNiD1 is simulated in such a way that the values xi

j are
sampled uniformly at random from the interval Œ�2; 2�, and

yi D
4X

jD1

�
xi

j

�2 C "i; (24)

where "i are zero-mean Gaussian random variables with variances chosen so that
the signal-to-noise ratio is 15 W 1.

The input (24) means that in this example the target function (1) depends only
on the first 4 variables. Recall that in our approach, at first, we need to rank the

variables x1; x2; : : : ; x40 according to the values of the discrepancies D.f
�j

j .xj/I ZN/,

j D 1; 2; : : : ; 40, where f
�j

j is the minimizer of the Tikhonov functional

T�.f I ZN/ D 1

N

NX

iD1

�
yi � f .xi

j/
�2 C �kfk2H : (25)

In our experiments, we choose in (25) � D �j D �.kj/ from the set

�50 D f � D �.k/ D 10�4 � .1:3/k; k D 1; 2; : : : ; 50 g

according to the quasi-optimality criterion (see, e.g., [5, 19, 35]). Moreover, in (25)
the space H is chosen to be RKHS generated by the polynomial kernel K of degree
2, i.e., K.x; Qx/ D .x QxC 1/2. This choice is made according to [24], where the same
kernel has been used in the approach (3) for dealing with the data (24).

For the considered simulation of the data (24) the sequence of the variables
ordered according to their ranks looks as follows:

x2; x4; x3; x1; x33; x6; : : : ; x18: (26)

Then as it is described above, the next step consists in testing whether the values of
the discrepancy

D.f �2

2 ; f �4

4 I ZN/ D
 

1

N

NX

iD1

�
yi � f �2

2 .xi
2/ � f �4

4 .xi
4/
�2

!1=2

corresponding to the small values �2, �4 are dominated by the ones corresponding
to the small �2 and the large �4. Here and below we use the convention that in the

notation D
�

f
��1
�1 ; f

��2
�2 ; : : : ; f

��l
�l I ZN

�
, the symbols f

��j
�j mean the minimizers of the

functional
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T2
�

�
f�1 ; f�2 ; : : : ; f�l I ZN

� D 1

N

NX

iD1

0

@yi �
lX

jD1

f�j

�
xi

�j

�
1

A
2

C
lX

jD1

��j

��f�j

��2

H�j
:

In our experiments the small values of the regularization parameters are randomly
chosen within the set

�small
50 D f � D �.k/ D 10�4 � .1:3/k; k D 1; 2; : : : ; 15 g; (27)

while the large values are selected at random from

�
large
50 D f � D �.k/ D 10�4 � .1:3/k; k D 40; 41; : : : ; 50 g: (28)

Moreover, in all experiments the random choice of the regularization parameters
from �small

50 and �
large
50 is performed 15 times.

For the considered simulations of the data (24) and randomly chosen �2, �4, the
values of the discrepancy D.f �2

2 ; f �4

4 I ZN/ are displayed in Fig. 1 (top). Note that
in Fig. 1 and in some other figures below, the curves displaying the values of the
discrepancy for the regularization parameters from �small

50 look like straight lines. In
view of Theorem 1, the fluctuations in the values of the discrepancy corresponding
to the small values of the regularization parameters are indeed small. They are not
so much visible because of the vertical axis scaling used in the figures.

According to our approach, the behavior of the discrepancy displayed in
Fig. 1 (top) means that the corresponding variables x2, x4 have to be accepted as
the relevant ones. Then taking into account the ranking (26), we need to check
the behavior of the discrepancy D.f �2

2 ; f �4

4 ; f �3

3 I ZN/ for f�2; �4; �3g � �small
50 , and

f�2; �4g � �small
50 , �3 2 �

large
50 . This behavior is displayed in Fig. 1 (middle), and it

allows the acceptance of x3 as the next relevant variable.
In view of Fig. 1 (bottom) displaying the behavior of the discrepancy

D.f �2

2 ; f �4

4 ; f �3

3 ; f �1

1 I ZN/;

the same conclusion can be made regarding the variable x1.
At the same time, further testing along the ranking list (26) shows that the

discrepancies D.f �2

2 ; f �4

4 ; f �3

3 ; f �1

1 ; f
�j

j I ZN/ with j D 33; 6; : : : ; 18 do not exhibit a

substantial growth for �j 2 �
large
50 . Typical examples are displayed in Fig. 2, and they

correspond to the behavior described by Theorems 2 and 3. Therefore, our approach
does not allow the acceptance of x33; x6; : : : ; x18 as the relevant variables.

Thus, for the considered simulation of the data (24) all relevant variables are
correctly detected by the proposed approach.



Multi-Penalty Regularization for Detecting Relevant Variables 905

2 4 6 8 10 12 14
250

250.5

251

251.5

252

252.5

253

253.5

254

254.5

255

2 4 6 8 10 12 14
117

118

119

120

121

122

123

2 4 6 8 10 12 14
8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

Fig. 1 Behavior of the discrepancies in the experiment with the data (24); x-axis corresponds to
the simulation number, y-axis — to the discrepancy value. Red solid line depicts the values of the
discrepancy when all regularization parameters are randomly chosen from �small

50 . Blue dashed line
depicts the values of the discrepancy when the last regularization parameter is randomly chosen
from �

large
50 , and other regularization parameters are randomly chosen from �small

50 .
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Fig. 2 Behavior of the discrepancies in the experiment with the data (24); x-axis corresponds to
the simulation number, y-axis — to the discrepancy value. Red solid line depicts the values of the
discrepancy when all regularization parameters are randomly chosen from �small

50 . Blue dashed line
depicts the values of the discrepancy when the last regularization parameter is randomly chosen
from �

large
50 , and other regularization parameters are randomly chosen from �small

50 .

3 Application to the Reconstruction of a Causality Network

In this section we discuss the application of our approach based on multi-penalty
regularization to the inverse problem of detecting causal relationships between
genes from the time series of their expression levels.

Considering each gene in a genome as a distinct variable, say u� , associated to
the rate of gene expression, the value ut

� D u�.t/ of this variable at the time moment
t can be influenced by the values u	

j D uj.	/, j D 1; : : : ; p, at the time moments
preceding t, i.e., 	 < t. This influence is realized through the regulatory proteins
produced by genes. Moreover, gene expression levels u	

j are often interpreted and
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Fig. 3 Causality network of
the human cancer cell line
HeLa from the BioGRID
database
(www.thebiogrid.org).

CDKN3

CDC2

PCNA

CCNA2

CDC6 E2F1

CCNB1 CCNE1

RFC4

measured in terms of levels or amounts of such proteins. Therefore, time series gene
expression data can be used for detecting causal relationships between genes and
constructing gene regulatory networks allowing better insights into the underlying
cellular mechanisms.

A gene regulatory network or, more generally, a causality network is a directed
graph with nodes that are variables u� , � D 1; 2; : : : ; p, and directed edges
representing causal relations between variables. We write u�  uj if the variable
uj has the causal influence on the variable u� . An example of such a network is
presented in Fig. 3. This network contains genes that are active in the human cancer
cell line HeLa [37]. This network was derived from the biological experiments
in [21], and then, it was used for testing several algorithms devoted to the causality
detection [23, 27, 30, 32]. Using the same data as in the above papers, we discuss an
applicability of our approach in reconstructing the causalities within this network.

A causality network can be characterized by the so-called adjacency matrix A D
fA�;jgp�;jD1 with the following elements A�;j D 1 if u�  uj, otherwise, A�;j D 0.
In Fig. 4 we present the adjacency matrix A D Atrue corresponding to the causality
network displayed in Fig. 3. Adjacency matrices allow a convenient comparison of
different reconstruction methods of causality networks.

Note that causality networks arise in various scientific contexts. A detailed
overview of the approaches for measuring a causal influence can be found in [17].
A concept of causality in the analysis of time series data has been proposed by
Clive W. J. Granger [14], who was awarded the Nobel Prize in Economic Sciences
in 2003.

The concept of causality in the Granger approach is based on the assumption that
(i) the cause should precede its effect, and (ii) the cause contains information about
the effect that is in no other variable. A consequence of these assumptions is that
the causal variable uj can help to forecast the effect variable u� . In this restricted
sense of causality, referred to as Granger causality, the variable uj is said to cause
another variable u� if future values ut

� , t D LC 1; LC 2; : : : ; T , of u� can be better
predicted using the past values u	

j , u	
� , 	 D t� 1; t� 2; : : : ; t� L, of uj and u� rather
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than using only the past values of u� . Here L is the maximum lag allowed in the past
observations, and we assume that the available time series data are fut

jgTtD1, fut
�gTtD1.

The notion of Granger causality was originally defined for a pair of time series
and was based on linear regression models. If we are interested in cases in which p
time series variables are presented, and we wish to determine causal relationships
between them, then we naturally turn to the Graphical Granger modeling [1] based
on the linear multivariate regression of the form

ut
� 


pX

jD1

LX

lD1

ˇl
ju

t�l
j ; t D LC 1; LC 2; : : : ; T: (29)

Then, uj is said to be Granger-causal for u� if the corresponding coefficients ˇl
j ,

l D 1; 2; : : : ; L, are in some sense significant. Thus, we are interested in selecting
the most important coefficients. For this purpose, a particular relevant class of
methodologies is those that combine regression with variable selection, such as the
Lasso [33, 41], which minimizes the squared discrepancy plus a penalty on the sum,
or the weighted sum of the absolute values of the regression coefficients ˇl

j .
Lasso-type estimates have been used for discovering graphical Granger causality

by a number of researchers, including [1, 27, 32]. Note that in regularization theory
Lasso is known as the l1-Tikhonov regularization. It has been extensively studied in
the framework of the reconstruction of the sparse structure of an unknown signal.
It should be also mentioned that the sparsity enforcing regularization techniques,
such as Lasso, are viewed now as a methodology for the quantitative inverse
problems in systems biology [11].

At the same time, as it is mentioned in [23], the Lasso estimate of the graphical
Granger causality may result in a model (29) in which the large (significant)

coefficients ˇl
j appear in many sums

LP
lD1

ˇl
ju

t�l
j . Such a model is hard to interpret,

because of natural groupings existing between time series variables fut�l
j gLlD1, j D

1; 2; : : : ; p: We mean that the time series variables fut�l
j gLlD1 with the same index,

say j D j1; should be either selected or eliminated as a whole. The group Lasso
procedure [39, 40] was invented to address this issue, and it was used in [23] in order
to obtain the corresponding Granger graphical model of gene regulatory networks.
According to this model, a gene uj1 causes a gene u� if in (29) the coefficients ˇl

j1
,

l D 1; 2; : : : ; L, are significant components of the vector ˇ D .ˇl
j/ solving the

minimization problem

TX

tDLC1

0

@ut
� �

pX

jD1

LX

lD1

ˇl
ju

t�l
j

1

A
2

C �

pX

jD1

 
LX

lD1

.ˇl
j/

2

!1=2

! min
ˇ

: (30)

Here note that similarly to (3) by using the square root .�/1=2 in the penalty term,
one encourages the coefficients associated with each particular gene to be similar in
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amplitude, as contrary to using the l1-norm, for example. The opposite side of this
is that the procedures of minimizing (30) are nonlinear and require the solution of
O.pL/ equations on each iteration step. This can be computationally expensive for
large number p of genes.

On the other hand, the above-mentioned natural groupings between the values
u	

j of variables uj can be introduced already in the multivariate regression by
considering instead of (29) the following form

ut
� 


pX

jD1

fj

 
LX

lD1

ˇl
ju

t�l
j

!
; t D LC 1; LC 2; : : : ; T; (31)

where fj are univariate functions in some Reproducing Kernel Hilbert Spaces Hj.
Note that (31) can be seen as a particular form of structural equation models
discussed in [26]. Then a conclusion that the gene uj1 causes the gene u� can be
drawn by determining that the variable xj1 is a relevant variable of a function of the
form (1) whose values at the points

xi
j D

LX

lD1

ˇl
ju

LCi�l
j ; i D 1; 2; : : : ; T � L; j D 1; 2; : : : ; p; (32)

are equal to

yi D uLCi
� ; i D 1; 2; : : : ; T � L: (33)

Of course, the latter conclusion can be drawn only when in (32) some values of
the coefficients ˇl

j have been already set. For example, these regression coefficients
can be precomputed in (29) by some inexpensive algorithm such as the ordinary or
regularized least squares (OLS or RLS). Note that such a precomputation step is
also required in Adaptive Lasso [41] that has been discussed in the context of the
regulatory networks discovery in [23], and where an auxiliary vector estimator of
the coefficients in (29) is usually obtained by OLS or Ridge Regression.

Another possibility of determining the coefficients ˇl
j in (32) is to use the output

vector of any of the graphical Granger models based on (29) such as [23, 32]. In this
case, the discussed approach provides an opportunity of additional evaluation of
these models in the sense that causal relationships detected by them and confirmed
in the discussed approach can be considered as more certain.

After specifying the coefficients ˇl
j in (32), the values (32), (33) can form the

data set ZN D f.xi
1; xi

2; : : : ; xi
p I yi/gNiD1, N D T � L. Then, the detection of the

relevant variables from the data ZN follows the approach described in Sect. 1 and
analyzed in Sect. 2. The only adjustment is that in view of the idea of Granger
causality (comparison of the accuracy of regressing for u� in terms of its own past
values with that of regressing in terms of the values u� and the values of a possible
cause), we start the ranking list of variables with the variable x� when looking for
the genes causing the gene u� .
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Below we present the results of the application of the proposed approach to the
data of the gene expressions for the network of genes displayed in Fig. 3. These
data is taken as in [23, 30, 32]. In (9), (10), (31) all univariate functions fj are
assumed to be in the same RKHS generated by the Gaussian kernel K.x; v/ D
e�.x�v/2

. Moreover, the standard RLS-algorithm has been used for precomputing
the regression coefficients in (31), (32). The regularization parameter in RLS has
been chosen according to the quasi-optimality criterion. As in [23, 30, 32] the gene
expressions fut

jg are observed for t D 1; 2; : : : ; 47, and, as in [23, 27], the maximum
lag was chosen as L D 4. Then, we follow the same steps as in the illustrating
example in Sect. 2. In particular, we use the same sets �small

50 , �
large
50 .

The application of the proposed approach to the above-mentioned data results in
the adjacency matrix AMP displayed in Fig. 4. The corresponding causality network
can be found in Fig. 5.

As it has been already mentioned, the data corresponding to the causality network
in Fig. 3 was used for testing several methods devoted to the regulatory networks
modeling. First, it was used in [30], where the authors developed a search-based
algorithm, called CNET, and applied it to this set of data. Then, the same set of nine
genes was also analyzed in [23] by means of group Lasso (GL) algorithm based
on the minimization of the functionals of the form (30). In [32] the authors pointed
out some limitations of GL-algorithm and proposed to overcome them by means of
the so-called truncating Lasso (TL) penalty algorithm. Fig. 4 presents the adjacency
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Fig. 4 The adjacency matrix Atrue for the causality network in Fig. 3 and its various estimations.
The white squares correspond to Ai;j D 1; the black squares — to the zero-elements. The genes are
numbered in the following order: CDC2, CDC6, CDKN3, E2F1, PCNA, RFC4, CCNA2, CCNB1,
CCNE1.
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Table 1 The values of the
performance measures for the
adjacency matrices in Fig. 4.

P R F1

AMP 1 0.78 0.88

ACNET 0.36 0.44 0.4

AGL 0.24 0.44 0.3

ATL 0.3 0.33 0.32

matrices ACNET, AGL, ATL of the estimated causality network with the genes from
Fig. 3 obtained, respectively, by the algorithms from [23, 30, 32]. The corresponding
causality networks are presented in Fig. 5.

As in [32] to assess the performance of the discussed algorithms, we use three
well-known performance measures: precision (P), recall (R), and their harmonic
mean (F1) (see, e.g., [38]). Table 1 contains the values of these measures for the
adjacency matrices given by the discussed methods and displayed in Fig. 4. This
table shows that the best performance is achieved by our approach.

To illustrate the steps of our approach in reconstructing the network from Fig. 3,
we present Fig. 6 displaying the behavior of the discrepancies, which in the present
context play the role of the indicators for the causal relationships. This figure is
related to gene CDC2 numbered as x1. We take this gene as an example because its
causing genes are poorly detected by the CNET, GL, and TL algorithms.

Using the data for this gene and transforming them into (32),(33) with � D 1, we
receive the following sequence of the variables ordered according to their ranks

x1; x3; x7; x5; x4; x9; x6; x2; x8:

Fig. 6 displays the behavior of the discrepancies

D
�

f �1

1 ; f �3

3 ; f �5

5 I ZN

�
;

D
�

f �1

1 ; f �3

3 ; f �5

5 ; f �9

9 ; f �6

6 I ZN

�
;

D
�

f �1

1 ; f �3

3 ; f �5

5 ; f �9

9 ; f �8

8 I ZN

�

considered, respectively, at 3th, 6th, and 8th steps of our approach. The reason to
present these steps as examples is explained below.

The behavior of the discrepancy displayed in Fig. 6 (top) indicates that according
to our approach, the variable x5, which corresponds to gene PCNA, should be
considered as the cause for CDC2. From Fig. 3 one can see that this causal
relationship is true, but it has not been detected by any other considered algorithms.

According to our approach, the interpretation of the erratic behavior of the
discrepancies in Fig. 6 (middle) is that x6 is not the relevant variable, and therefore,
the corresponding gene RFC4 does not cause CDC2. This conclusion is also in
agreement with Fig. 3. At the same time, the relationship RFC4!CDC2 is wrongly
detected by both Lasso-based algorithms GL and TL.
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Fig. 6 Behavior of the discrepancies in the experiment with the gene expressions data; x-axis
corresponds to the simulation number, y-axis — to the discrepancy value. Red solid line depicts
the values of the discrepancy when all regularization parameters are randomly chosen from �small

50 .
Blue dashed line depicts the values of the discrepancy when the last regularization parameter is
randomly chosen from �

large
50 , and other regularization parameters are randomly chosen from �small

50 .
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The situation in Fig. 6 (bottom) is opposite. According to our approach, the
behavior displayed in this Fig. means that x8 is the relevant variable and, thus,
CCNB1 ! CDC2. This relationship is true, but it was not detected by the Lasso-
based algorithms.

Therefore, in our opinion, Table 1 and Fig. 6 can be seen as an evidence of the
reliability of the proposed approach in the application to the real data.

4 Conclusion

We have proposed a new method for detecting relevant variables. The method
is based on the inspection of the behavior of discrepancies of multi-penalty
regularization with a component-wise penalization for small and large values of
the regularization parameters. An ordered behavior suggests the acceptance of the
hypothesis that the corresponding variable is the relevant one, while an erratic
behavior of discrepancies is the signal for the rejection of the hypothesis.

We provided a justification of the proposed method under the condition that
the corresponding sampling operators share a common singular system in R

n.
We also demonstrated the applicability of the method on the inverse problem of
the reconstruction of a gene regulatory network.

The promising performance of the method in the mentioned application calls for
its further investigation. In particular, it is interesting to study the conditions on
the sampling points/operators guaranteeing or preventing the detection of relevant
variables. It is also interesting to study the application of the proposed approach
to the detection of the cause-effect relationships in various scientific contexts. As
it was mentioned, the approach can be realized on the top of different techniques
for discovering Granger causality. Therefore, the coupling of the known techniques
with the presented approach is a further interesting point for detailed investigations.
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