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Abstract. Cooperation and negotiation are important elements of human interaction
within extensive, flatly organized, mixed human-machine societies. Any sophisticated ar-
tificial intelligence cannot be complete without them. Multi-agent system with dynamic
locally independent agents, that interact in a distributed way is inevitable in majority
of modern applications. Here we consider a modified Ultimatum game (UG) for studying
negotiation and cooperation aspects of decision making. The manuscript proposes agent’s
optimizing policy using Markov decision process (MDP) framework, which covers implicit
negotiation (in contrast with explicit schemes as in [5]). The proposed solution replaces the
classical game-theoretical design of agents’ policies by an adaptive MDP that is: i) more
realistic with respect to the knowledge available to individual players; ii) provides a first
step towards solving negotiation essential in conflict situations.

Keywords: cooperation, negotiation, economic game, ultimatum game, Markov decision
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1 Introduction

Human intelligence develops in a context of different social interactions (within family, school,
etc.) and their importance can hardly be overestimated. Artificial intelligence cannot be com-
plete without supporting cooperation and negotiation as the basics of any dynamic (repetitive,
history-dependent). Many applications in the fields of Artificial Intelligence, Computer Science
and Economics (cooperative control, flocking, distributed sensor networks, communication net-
works, transportation) represent multi-agent systems with dynamic locally independent agents
that need to coordinate to reach certain quantities of interest for mutual satisfaction. Dynamics,
i.e. significant dependence of the actual decision-making task on the past history of agents’ in-
teractions is one of the important characteristics of these systems. Studying cooperation without
a facilitator can bring us a better understanding of human behavior [9, 3] as well as an improving
of overall performance of distributed computer systems [12, 21].

Cooperative aspects can be well studied using economic games [9], [19]. Here we consider
a modification of the Ultimatum game (UG) [10], which is an economic game with simple rules.
Two players (hereinafter agents) are to decide how to divide some goods between themselves. In
the standard UG roles of agents are asymmetric: one agent proposes a division and the second
one either accepts it or decides that none of agents gets anything.

It has been reported [6] that human-players do not behave rationally and their decisions do
not follow the normative strategy implied by game theory [18]. The irrationality of a human-
player in the Ultimatum Game has been already discussed. The paper [7] suggests that the human



is also driven by the sense for fairness. The paper further introduces three models of player’s
distinguishing of an affection degree with which the player is under influence of his individual
tendency to consider a social profit (fairness) or an economic profit. The experimental results [7]
have shown people do behave rationally with the reward that respected fairness.

The considered modification of UG balances the roles of both agents. The good division then
can be interpreted as cake splitting. Both agents make a request for a certain number of pieces
of the cake. In case of the demands compatibility, the cake is divided accordingly and they both
get what they asked for. Oppositely, in case of the number of pieces of the cake exceeding, they
both get nothing. This modification is close to the Nash’s bargaining game [13].

There are some examples illustrating the real-life use of bargaining in human decision making:
negotiating over a price by a seller and a buyer, bargaining over a trade agreement by two
companies, finding a balance between the needs of employees and the interests of the employer
by a company and a labor union or immigration quotas debating by European countries. In all
of these examples, the common objective of all parties is reaching a consensus.

There is a number of studies focused on cooperation in decision making [11], [20], [14]. How-
ever, a reliable solution, applicable to distributed facilitator-free scenario and especially to the
problem of human decision-making, still does not exist. The main goal of this paper is to make
a step towards distributed negotiation allowing cooperation within a flatly organized, dynamic
human-machine society. This goal can be reached if the policy of each individual agent is de-
signed from the agent’s perspective only. This justifies a formulation when the co-players are
taken as a part of the agent’s environment modeled in a feasible way. The theory of Markov
decision processes (MDP) provides such a feasible approach. The intention to reach unlimited
scalability excludes the (otherwise relevant) framework of Bayesian games [8]. It should be em-
phasized that the article does not aim to challenge existing solutions of UG, but uses modified
version of UG for studying negotiation aspects.

Section 2 introduces necessary notations, recalls Markov Decision Process (MDP) and outlines
a solution concept. Section 3 introduces modified UG and formulates it in terms of MDP. The
key step is defining reward function that implicitly motivates negotiation. Section 4 describes
two different models of a non-optimizing agent. Section 5 describes simulation experiments and
Section 6 summarizes the results and adds some remarks on future research directions.

2 Preliminaries

This section introduces notations and recalls necessary notions.

N, R set of natural numbers, set of real numbers
x ∈ X value x from the set of values X
xt value of x at discrete time t
p(x|y) conditional probability of random variable x conditioned on random variable y
E[x] expectation of random variable x
E[x|y] conditional expectation of random variable x conditioned on random variable y

2.1 Markov Decision Process

The addressed problem is formulated as a discrete-time discrete-valued Markov Decision Process
(MDP). Let us remind a single-agent MDP (a detailed description can be found in [17]).

Definition 1 (MDP). The fully observable MDP is characterized by {T,S,A, p, R}, where
T = {1, 2, ..., N}, N ∈ N, is a set of decision epochs; S is a set of all possible system states and



A denotes a set of all actions available to the agent. Function p : S ×A × S 7→ [0, 1] expresses
the transition probability pt(st+1|st, at) that moves the system from state st ∈ S to state st+1 ∈ S
after an agent chooses action at ∈ A; R : S×A× S 7→ R is a real-valued function representing
the agent’s reward rt(st+1, st, at) after taking action at ∈ A in state st ∈ S stimulating the
transition to state st+1.

The full observability means that the agent observes precise state st+1 reached after action at is
taken. This does not imply however that the agent is able to precisely predict future states.

In each decision epoch t ∈ T, the agent chooses the action at ∈ A based on the randomized
DM rule pt(at|st), which is a non-negative function representing a probability of the action
at in the given state st ∈ S. The agent’s goal is to find an optimal DM policy πt, that is
a sequence of DM rules mapping states to actions to maximize expected reward over some
horizon h ∈ {1, 2, ..., N − t}:

πt,h =

{
pτ (aτ |sτ )

∣∣∣sτ ∈ Sτ , aτ ∈ Aτ ,
∑

aτ∈Aτ

pτ (aτ |sτ ) = 1,∀sτ ∈ Sτ

}t+h
τ=t

. (1)

MDP with finite horizon h evaluates quality of the DM policy by an expected total reward

E

[
t+h∑
τ=t

rτ (sτ+1, sτ , aτ )|st
]
.

In game round t ∈ T and state st ∈ S, the expected reward function is defined as:

Et
[
rt(st+1, st, at)|st

]
=

∑
st+1∈St+1at∈At

rt(st+1, st, at)pt(st+1, at|st), (2)

where pt(st+1, at|st) = pt(st+1|at, st)pt(at|st).

The solution to MDP [17] is a sequence of functions
{
poptτ (aτ |sτ )

}t+h
τ=t

that maximizes the
expected reward and forms the optimal decision policy:

πoptt,h = arg max
{πt,h}

E

[
t+h∑
τ=t

rτ (sτ+1, sτ , aτ )|st

]
. (3)

3 Modified Ultimatum Game

We use a modified version of the UG, a so-called cooperative UG scenario considering two agents
A and B and an available amount of money (goods) q to split. Unlike the classical UG [18] roles
of both players are the same. In the considered modification of the UG each round is treated
as a round of an N -round repeated game. In the round, there is an action stage and a reward
stage. During the action stage, each agent decides on own demand without knowing that of
the co-player. Note that their interests are competitive. At the reward stage both agents get
their rewards depending on whether amount q can cover the sum of their demands. In addition
to plausibility for modeling cooperation and negotiation, the modified UG allows to adjust the
amount of information the agents obtain (the degree of uncertainty), which is obviously an
important aspect of the policy choice.

The overall scenario is as follows. At the beginning of the round t ∈ T, each agent k ∈ {A,B}
chooses action akt ∈ Ak that is a portion of q he wants to receive in this round. In case that
demands sum up to less than q, both agents receive what they had asked for, otherwise, neither
of the agents gets anything. Thus, the pure economic profit of agent A in round t ∈ T equals:

zAt = aAt χ(a
A
t , a

B
t ), zAt ∈ ZA (4)



where ZA = {0, 1, 2, ..., q − 1} is a set of all possible profits of agent A in one game round, and

χ(aAt , a
B
t ) =

{
1 if aAt + aBt ≤ q,
0 if aAt + aBt > q.

(5)

3.1 Modified UG as MDP

Interactive nature of the game implies that effect of the agent’s individual actions depends on
actions of the opponent. They are perceived and also modified in dependence on the game history,
here, for simplicity restricted to Markovian case. We are interested in a distributed solution of
the cooperation and consider the game from a point of view of a single agent A. Generally the
whole approach can be applied to agent B too as the process is fully observable to each of them
and they may work with the structurally same reward function.

Definition 2 (Modified UG as MDP of the Agent A). The modified UG is modeled by
{T,S,A, p, R}, Definition 1, where

• A = AA = {1, 2, ..., q − 1} is a set of all possible actions; aAt ∈ AA

• st = (aAt−1, a
B
t−1) ∈ S, where aBt ∈ AB is a portion of q demanded by agent B at t ∈ T,

AB = {1, 2, ..., q − 1}

• initial state s1 = (aA0 , a
B
0 ) is preset to a fair offer corresponding to half of q, i.e. aA0 = aB0 = q

2

• reward of agent A is defined by rt = aAt χ(a
A
t , a

B
t ) − ωA | q − (aAt + aBt ) |, where ωA ∈ [0, 1]

is a weight reflecting the degree of cooperation of the agent A.

In the definition of the reward function, the first term represents pure economical profit,
cf. (4). The second term expresses “unused potential” if some monetary amount left after division;
and “overshoot” in case when sum of demands being greater than q. The reward thus equals
aAt − ωA· | q − (aAt + aBt ) | if χ(aAt , aBt ) = 1 and −ωA· | q − (aAt + aBt ) | when no consensus has
been reached.

The cooperativeness weight ωA depends on the personality traits of an agent and reflects
importance of the second term in the agent’s reward definition.Thus, ωA is specific and private
for each agent working with it. Value ωA = 0 implies reward depending on pure economical
profit, while ωA > 0 makes the designed strategy to be respecting the degree of influence of
“overshoot” as well as “unused potential” on the agent. This weight reflects the human style of
playing and therefore the optimal policy is implicitly forced by the discussed summand to take
into account actions of the co-player, i.e. to cooperate.

The optimal policy, see Definition 2, can be computed by solving classical MDP using a dy-
namic programming algorithm [2], [16]. It needs the transition probability p(st+1|aAt , st). Condi-
tional independence of agents’ actions and the definition of the state imply

p(st+1|aAt , st) = p(aAt+1|aAt , aBt )p(aBt+1|aAt , aBt ). (6)

The first factor is a part of the optimized policy. The second factor models agent B and can
be recursively estimated using Bayesian paradigm [15]. To simplify explanation, it is assumed to
be given. Its considered forms are discussed below.



4 Models of the Agent B

To bring better understanding of the role and the effect of the introduced reward (see Defini-
tion 2), two different models of the non-optimizing agent B are presented and further studied.
Studies of learning and optimizing agents with different prior knowledge and different coopera-
tiveness degrees are straightforward natural extensions of the current work and are supposed to
be reported in the future. The goal is to verify whether considering or conforming the second
agent’s actions leads to a higher profit and a higher number of successful rounds comparing to
a non-cooperative strategy.

In each round, the non-optimizing agent B heuristically adjusts demands according to the
results of the previous round. Generally, if the sum of both agents’ demands is greater than
available amount q, the agent B lowers the demand by a portion of the excess to avoid repeating
the failure. Oppositely, if q is not used up and some amount left, the agent B raises the demand
by a portion of the amount left to increase the chance of distributing of the whole amount q in
the current round.

The proposed models of the non-optimizing agent B differ in the degree of an aggression of
the agent or, in other words, in the extent to which the demand changes. In both models, we
assume that the transition probabilities do not change during the whole game.

4.1 Type B1

The non-optimizing agent B of type B1 represents the basic concept of the agent B. This type
of the agent is less aggressive and more fair. The DM aim of this agent’s type is to reduce the
difference between q and the sum of demands from the previous round by roughly one half. This
means that in the round t, the agent B increases or decreases next demand by 1

2 [q−(a
A
t−1+a

B
t−1)]

accordingly to the “unused potential” or the “overshoot” of the available amount q.
The transition probability used for the model of the agent B of the type B1 can be mod-

eled by the discretized Gaussian probability distribution with the corresponding expected mode
1
2 (q − a

A
t−1 + aBt−1):

pt(a
B
t |aAt−1, aBt−1) ∝ exp

(
−
(
aBt − 1

2 (q − a
A
t−1 + aBt−1)

)2
2σ2

)
, (7)

where aAt−1, aBt−1 ∈ A are the demands of the agents at round (t− 1) ∈ T, and σ2 is the variance
of the discrete Gaussian distribution.

Such behavior can be explained by an effort to act fairly in terms of utilizing the whole
amount q. The type B1 agent anticipates that the agent A step back by a half of an excess or
raise their demands by a half of the remained part of the available amount q. However, the agent
B does not take into consideration the difference between the individual demands. In case of the
large difference, the split then becomes unfair.

Even though the model (7) serves the creation of an active opponent of the agent A, the
agent’s strategy does not correspond well to human thinking [3].

4.2 Type B2

Proposed type B2 is more complex and efficient variant of the non-optimizing agent B. It reflects
human style of playing. As described in the previous subsection, the type B1 agent adapts the
actions in dependence on the difference between the sum of demands and the available amount
q. For the type B2 agent, change of demand depends on the agent A action from the previous



round. The action range of the agent A is divided into three regions for which the offset of the
new demand of the agent B is set differently.

Let q = 10, t ∈ T be the current game round and aAt−1, aBt−1 ∈ A be the demands from the
previous game round. Then demand aAt−1 can belong to the following sets: {1, 2, 3}, {3, 4, 5} and
{6, 7, 9}. Transition probabilities related to the type B2 are set for each set as follows.

Case 1: The demand of the agent A when aAt−1 ∈ {1, 2, 3}.

1. If q − (aAt−1 + aBt−1) ≥ 0, i.e. some amount of q is left in the previous round, then the
agent of the type B2 increases the demand by one third of the part of q lost in round
(t− 1):

pt(a
B
t |aAt−1, aBt−1) ∝ exp

(
−
(
aBt − 1

3 (q − a
A
t−1 + 2aBt−1)

)2
2σ2

)
.

2. If q− (aAt−1+a
B
t−1) < 0, i.e. the agents’ demands exceed amount q in the previous round,

the agent of the type B2 decreases the demand by two thirds of the amount that exceeded
q:

pt(a
B
t |aAt−1, aBt−1) ∝ exp

(
−
(
aBt − 2

3 (q − a
A
t−1 +

1
2a
B
t−1)

)2
2σ2

)
.

Case 2: The demand of the agent A when aAt−1 ∈ {4, 5, 6}.

1. The agent of the type B2 behaves identically to the type B1 (7):

pt(a
B
t |aAt−1, aBt−1) ∝ exp

(
−
(
aBt − 1

2 (q − a
A
t−1 + aBt−1)

)2
2σ2

)
.

Case 3: The demand of the agent A when aAt−1 ∈ {7, 8, 9}.

1. If q− (aAt−1 + aBt−1) ≥ 0, the agent of the type B2 raises the demand by two thirds of the
amount not distributed in round (t− 1):

pt(a
B
t |aAt−1, aBt−1) ∝ exp

(
−
(
aBt − 2

3 (q − a
A
t−1 +

1
2a
B
t−1)

)2
2σ2

)
.

2. If q − aAt−1 − aBt−1 < 0, then the agent of the type B2 lowers the demand by one third of
the exceeded amount:

pt(a
B
t |aAt−1, aBt−1) ∝ exp

(
−
(
aBt − 1

3 (q − a
A
t−1 + 2aBt−1)

)2
2σ2

)
.

Case 1 can be interpreted as the type B2 agent either decreases the demand in case of an
excess to prevent it happening again, or the agent increases the demand by a smaller amount in
case of not spending the full amount q because of the tolerance assumption of the agent A.

In Case 2, the type B2 agent expects the fairness of the agent A, which means that such
agent anticipates from the agent A to ask for only a half of the amount left or to drop a half of
the excess.

In Case 3, the type B2 agent tries to stop the agent A from continuing to take actions of the
high value (the actions from the region {7, 8, 9}), because these actions lead to an unfair splitting
of the amount q. By this reason, the agent asks for the larger portion of the amount lost and is
willing to retreat less in case of the excess.

Such model of the agent B better corresponds to the anticipated behavior of a human [7, 9].



5 Illustrative Experiments

The proposed approach is illustrated on several simulated examples ran in Matlab environment.
Each game hadN = 30 rounds. The available amount to split was q = 10CZK1 in each round. The
simulation ran for five different values of the cooperativeness weight ωA ∈ {0, 0.25, 0.5, 0.75, 1}.
The reward (see Definition 2) used the design of the optimal policy of the agent A that was found
by the dynamic programming [2]. The weight ωA reflected individual tendency of the agent A
to consider negotiations (0 < ωA ≤ 1) or not (ωA = 0).

In case of ωA = 0, the agentA is interested only in the monetary profit and does not cooperate.
In case of 0 < ωA ≤ 1, the agent is also, to some degree, committed to use the potential of each
round. It means that the agent tries do not exceed the available amount q and to split it fully.
This weight ωA does not express a balance between the importance of the economic profit and
the cooperation.

The first example is a game of two non-optimising agents (so-called type B agents, see Section
4). We need it for the later comparison with a game when one of the players cooperates and
optimizes.

In the current example, one agent was of the type B1 (see Section 4.1) while another of the
type B2 (see Section 4.2), so the transition probabilities of both models were proportional to
the Gaussian distribution. Let’s recall the agent of the type B2 is a more complex version of
the agent of the type B1 whose demand depends on the previous action of the opponent. The
standard deviation of σ = 3 was chosen and the seed parameter for the reproducibility was set
to the value of 90 during the simulation. The numerical results are summarized in the Table 1.
Plots of the cumulative profits of the agents and their corresponding actions are shown in Fig. 1
and Fig. 2.

Standard deviation σ = 3
Percentage of the successful rounds (%) 63.3
Total profit of the agent B of the type B1 (CZK) 71
Total profit of the agent B of the type B2 (CZK) 85

Table 1. Game of type B1 agent and type B2 agent

As it can be seen from the results, the higher flexibility to the actual situation of the agent
B of the type B2 causes the better choice of actions and so the reaching the higher total profit
of such agent type.

The second example represents a set of the games with the optimizing agent A and the non-
optimizing agent B of the type B1 (see Section 4.1). The simulation ran with five values of the
cooperativeness weight ωA and three different values of the standard deviation σ ∈ {3, 4, 5} in
the model of the agent B. The seed parameter was set to 13. The numerical results can be seen in
Table 2. The progress of the cumulative profits of the agents for ωA = 0.25 and σ = 3 is plotted
in Fig. 3.

The last example focuses on a set of the games with the optimizing agent A and the non-
optimizing agent B of the type B2 (see Section 4.2). The simulation also ran for five values of
the cooperativeness weight ωA and three values of the standard deviation σ ∈ {3, 4, 5}. The seed
parameter for the reproducibility was set to the value of 20. The numerical results are presented

1 Czech crowns



Standard deviation σ = 3
Weight ωA 0.00 0.25 0.50 0.75 1.00
Percentage of the successful rounds (%) 70.0 76.7 70.0 70.0 66.7
Total profit of the agent A (CZK) 126 137 129 131 121
Total profit of the agent B (CZK) 61 68 64 62 56

Standard deviation σ = 4
Weight ωA 0.00 0.25 0.50 0.75 1.00
Percentage of the successful rounds (%) 70.0 76.7 70.0 76.7 76.7
Total profit of the agent A (CZK) 119 133 126 126 128
Total profit of the agent B (CZK) 66 75 75 75 75

Standard deviation σ = 5
Weight ωA 0.00 0.25 0.50 0.75 1.00
Percentage of the successful rounds (%) 76.7 73.3 73.3 73.3 73.3
Total profit of the agent A (CZK) 122 116 121 123 119
Total profit of the agent B (CZK) 78 73 70 70 71

Table 2. Game with the optimizing agent A and the agent B of the type B1.

in Table 3. The course of the cumulative profits of the agents, using ωA = 0.25 and σ = 3, are
plotted in Fig. 5. The actions of the agents can be seen in Fig. 6.

Standard deviation σ = 3
Weight ωA 0.00 0.25 0.50 0.75 1.00
Percentage of the successful rounds (%) 53.3 60.0 60.0 50.0 50.0
Total profit of the agent A (CZK) 88 102 100 87 86
Total profit of the agent B (CZK) 61 67 67 53 53

Standard deviation σ = 4
Weight ωA 0.00 0.25 0.50 0.75 1.00
Percentage of the successful rounds (%) 63.3 60.0 56.7 56.7 53.3
Total profit of the agent A (CZK) 99 94 92 91 88
Total profit of the agent B (CZK) 76 71 62 64 58

Standard deviation σ = 5
Weight ωA 0.00 0.25 0.50 0.75 1.00
Percentage of the successful rounds (%) 73.3 56.7 56.7 56.7 56.7
Total profit of the agent A (CZK) 111 88 89 91 91
Total profit of the agent B (CZK) 91 62 62 62 61

Table 3. Game with the optimizing agent A and the agent B of the type B2.

The results show that the optimization positively leads to the higher profit independently
of the cooperativeness weight. Once again, the higher flexibility to the actual situation of the
agent B of the type B2 brings the possibility to assert at the expense of the agent A. Another
interesting point is that too much effort to maximize the potential of each game round leads
to a worsening of overall results that can be seen mainly from the percentage of the successful
rounds.
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6 Concluding remarks

The paper introduces an innovative approach to the implicit cooperation in the modified UG.
The optimizing agent is modeled via Markov decision process. The key step of the proposed
approach is the special reward function (see Definition 2) respecting not only the economic profit
of the agent but also reflecting the agent’s willingness for the cooperation. Such a reward function
implicitly forces the agent to negotiate. By optimizing overall behavior of the agents their optimal
degree of cooperation can be searched for.

The adopted approach was driven by our main concern: the search for a feasible, fully scalable,
design of approximately optimal DM policy under the need for a cooperation. The inspected
framework also allows respecting the influence of such subtle phenomena as emotions in decision
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making [1]. In this respect, the gained results are the first promising step in creating the applicable
DM strategies allowing for the fully scalable distributed cooperation and negotiation in the
extensive mixed human-machine societies.

The foreseen research will consider: i) different types of the agents (learning, optimizing ones,
differing in cooperativeness degree, using more realistic non-symmetric reward [4] and others);
ii) including the fairness aspects into the reward function [7]; iii) dependence of economic profit
on the cooperativeness weight; iv) learning the co-player’s model and its cooperativeness weights.
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References

1. Avanesyan, G., Kárný, M., Knejflová, Z., Guy, T.V.: Demo: What lies beneath players’ non-rationality
in ultimatum game? In: Preprints of the 3rd Int. Workshop on Scalable Decision Making held in
conjunction with ECML-PKDD 2013. ÚTIA AVČR, Prague, Czech Republic (2013)

2. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton, NJ (1957)
3. Fehr, E., Fischbacher, U., Gächter, S.: Strong reciprocity, human cooperation, and the enforcement

of social norms. Human Nature 13, 1–25 (2002)
4. Fehr, E., Schmidt, K.: A theory of fairness, competition, and cooperation. Quarterly Journal of

Economics 114(3), 817–868 (1999)
5. Goranko, V., Turrini, P.: Non-cooperative games with preplay negotiations. CoRR abs/1208.1718

(2012)
6. Güth, W., Schmittberger, R., Schwarze, B.: An experimental analysis of ultimatum bargaining.

Journal of Economic Behavior & Organization 3(4), 367 – 388 (1982)
7. Guy, T.V., Kárný, M., Lintas, A., Villa, A.: Theoretical models of decision-making in the ultimatum

game: Fairness vs. reason. Springer Singapore pp. 185–191 (2016)
8. Harsanyi, J.: Games with incomplete information played by Bayesian players, I–III. Management

Science 50(12) (2004), supplement
9. Haselhuhn, M.P., Mellers, B.A.: Emotions and cooperation in economic games. Cognitive Brain

Research 23, 24–33 (2005)



10. Hula, F., M.Ruman, Kárný, M.: Adaptive proposer for ultimatum game. In: Villa, A., Masulli, P.,
J., A. (eds.) Artificial Neural Networks and Machine Learning ICANN 2016. Theoretical Computer
Science and General Issues, vol. 9886–9887, pp. 330–338. Springer (2016)

11. Johansson, B., Speranzon, A., Johansson, M., Johansson, K.H.: On decentralized negotiation of
optimal consensus. Automatica 44(4), 1175 – 1179 (2008)

12. Kraus, S.: Negotiation and cooperation in multi-agent environments. Artificial Intelligence 94(1–2),
79–97 (1997)

13. Nash, J.F.: The bargaining problem. Econometrica 18(2), 155–162 (1950)
14. Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent systems.

Proceedings of the IEEE 95(1), 215–233 (2007)
15. Peterka, V.: Bayesian approach to system identification. In: Eykhoff, P. (ed.) In Trends and Progress

in System Identification. pp. 239–304. Pergamon Press (1981)
16. Powell, W.B.: Approximate Dynamic Programming. John Wiley and Sons, 2nd edition edn. (2011)
17. Puterman, M.L.: Markov Decission Processes. John Wiley & Sons, Inc. (1994)
18. Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50(1), 97–109 (1982)
19. Sanfey, A.G.: Social decision-making: Insights from game theory and neuroscience. Science 318,

598–602 (2007)
20. Semsar-Kazerooni, E., Khorasani, K.: Multi-agent team cooperation: A game theory approach. Au-

tomatica 45(10), 2205 – 2213 (2009)
21. Xuan, P., Lesser, V., Zilberstein, S.: Communication decisions in multiagent cooperation: Model

and experiments. In: Proceedings of the Fifth International Conference on Autonomous Agents. pp.
616–623. Montreal, Canada (2001), http://rbr.cs.umass.edu/shlomo/papers/XLZagents01.html


