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ABSTRACT
The traditional use of global and centralised control methods fails for large, complex, noisy and highly con-
nected systems, which typify many real-world industrial and commercial systems. This paper provides an
efficient bottom-up design of distributed control in which many simple components communicate and
cooperate to achieve a joint system goal. Each component acts individually so as tomaximise personal util-
ity whilst obtaining probabilistic information on the global systemmerely through local message-passing.
This leads to an implied scalable and collective control strategy for complex dynamical systems, without the
problems of global centralised control. Robustness is addressed by employing a fully probabilistic design,
which can cope with inherent uncertainties, can be implemented adaptively and opens a systematic rich
way to information sharing. This paper opens the foreseen direction and inspects the proposed design on
a linearised version of coupled map lattice with spatio-temporal chaos. A version close to linear quadratic
design gives an initial insight into possible behaviours of such networks.

1. Introduction
Many systems in nature, technology and society can be regarded
as complex networks which consist of a large number of ele-
ments interacting with each other. The scale and nature of
such systems make them pervasive, inherently nonlinear, cou-
pled and operating under high levels of uncertainty. These
attributes make the analysis, estimation and especially control
of such systems a significant challenge which has yet to be ade-
quately addressed. Several estimation and control methods have
been proposed in the literature, including synchronising chaos
(Boccaletti, Kurths, Osipov, Valladares, & Zhou, 2002; Tan,
Zhang, & Yang, 2003), pinning control (Porfiri & diBernardo,
2008), multi-agent control (van den Broek, Wiegerinck, & Kap-
pen, 2008), probabilistic control (Herzallah, 2011; Herzallah &
Lowe, 2003, 2007), decentralised control (Šiljak&Zečević, 2005)
and distributed control (Wang, Lu, & Shen, 2014). However,
these control techniques suffer from either representing single-
agent architectures as far as the controller design is concerned,
which are centralised and so complete observation of the global
state must be known, or are decentralised and decisions are
based only on disconnected knowledge.

This paper proposes a third alternative which (a) has not
been explored before, and (b) provides potentially new insight
that could lead to significant advances in current control the-
ory. No centralised control is assumed and overall behaviour
emerges from the low-level component interaction. In partic-
ular, we propose decomposing the global control problem by
designing multicontrollers at the low component levels that act
tomaximise personal utility whilst obtaining probabilistic infor-
mation on the global system through local message-passing.
This leads to an implied collective control strategy without the
problems of global centralised control. This idea of combining
distributed control and probabilistic message-passing allows the

CONTACT Randa Herzallah r.herzallah@aston.ac.uk

inclusion of multiple and diverse noise sources, asynchronous
information update, and nonlinear and non-stationary dynam-
ics; thereby circumventsmany of the problems of current control
theory.

Access to cheap computational and communication
resources now allows improvement of the overall behaviour of
the network of such controlled architectures by allowing the
individual nodes to share information with their neighbours
without aiming for unattainable global solutions. The synchro-
nisation can then be achieved via message-passing. It is one of
the new classes of distributed methods for managing systems
with large ensembles of interconnected nodes (Aji & McEliece,
2000), where information is retrieved and disseminated in a
consistent probabilistic fashion. This approach has emerged
independently in a number of fields, including communications
theory (Gallager, 1963), artificial intelligence (Pearl, 1988) and
statistical physics (Parisi, Mézard, & Virasoro, 1987). However,
the techniques and their potential generalisations have not yet
penetrated into the control community.

An objective of this paper is to generalise these methods
in the context of distributed probabilistic control by extending
them from a passive to an active domain. This approach of a col-
lection of distributed probabilistic controllers passing informa-
tion through probabilistic ‘messages’, can decompose the con-
trol of the large–scale networks into a collection of smaller
control problems, one for each connected subnetwork in the sys-
tem. These sub-control problems are treated independently and
can therefore be analysed and implemented individually.

This paper, therefore, proposes a novel way of reducing
the amount of computation required in the optimisation, con-
trol and estimation of complex networked systems. Instead
of designing a global probabilistic controller as in the fully
probabilistic design (FPD) of single dynamical systems, we
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2 R. HERZALLAH ANDM. KÁRNÝ

propose designing distributed multicontrollers in such a way
that the global behaviour of the complex system is achieved.
Our assumption is based on targeting the global performance
of complex systems through local actions designed to control
the subsystems constituting the complex system. According to
this assumption, the complex property (global behavioural per-
formance) can be realised by understanding simpler subsystems
behaviour (the localised behaviour of controlled subsystems).
Thus, to realise our hypothesis we aim to design and develop
distributed control methods for the individual subsystems so
that the desired global behavioural performance of the system
is achieved. Nodes exchange information or messages with their
neighbours according to the topology of the graph. The mes-
sages are then updated iteratively in a probabilistic framework,
and are used to estimate the dynamics of decision variables in the
network. FPD of controllers (Kárńy, 1996; Herzallah & Kárný,
2011) is adopted here for designing each controller. These con-
trollers are then equipped with probabilistic message passing
techniques in order to exchange information about the vari-
ous subsystems constituting the complex dynamical system. In
FPD, the optimal controller is the minimiser of the Kullback–
Leibler divergence (KLD) of the probability density function
(pdf) describing closed-loop dynamics of the controlled sys-
tem to its ideal counterpart. Its relevance is due to (a) its abil-
ity to cope with stochastic nature of the controlled nodes, (b)
the direct way to adaptive controllers, (c) use of the unified
probabilistic language for modelling and control-aims expres-
sion, hence, significantly simplifying the use of message-passing
schemes.

The final aim of the reported research is quite ambitious.
This paper provides a basic understanding of the proposed dis-
tributed probabilistic control formulation andmessage-passing.
For that purpose, the foreseen design is inspected on a simple
linear quadratic example. The proposed distributed probabilis-
tic control methodology is compared with the standard pinning
control technique. Simulation results indicate the efficacy of the
distributed controllers in achieving the optimal performance of
the controlled system with potentially less computational and
design efforts when compared to pinning control.

Preliminaries are given in Section 2. Section 3 formulates and
solves the problem. Section 4 recalls classical linear quadratic
design in non-classical fully probabilistic formulation. Also,
both centralised and distributed versions are presented and
discussed. Section 5 provides the algorithm of the FPD dis-
tributed control method. Coupled map lattice (CML) network
and numerical experiments are given in Section 6. Section 7 pro-
vides concluding remarks.

2. Preliminaries
In this paper, we consider the general form of stochastic dynam-
ical system which consists of large number of states, xt ∈ R

n,
that are determined by the system inputs ut ∈ R

m. The sys-
tem exhibits random behaviour; therefore, only the conditional
pdf, of the future state xt+1 conditioned on the current input ut
and the current state xt can be specified at each instant of time
t ∈ {1, . . . ,H}, where H is a finite control horizon,

s(xt+1 | ut , xt ). (1)

The objective is to design a randomised controller, described by
the conditional pdf:

c(ut | xt ), t = 1, . . . ,H (2)

that shapes the joint pdf of the closed-loop behaviour of the
dynamical system. The optimal controller shouldmake this joint
pdf as close as possible to a desired pdf. To achieve this con-
trol aim, the FPD approach considers the minimisation of the
KLD between the actual joint pdf f (D) of the observed data,
D = (x(1), . . . , x(H), u(1), . . . , u(H)), and a predefined ideal
(desired) pdf I f (D) :

D (
f ||I f ) ≡

H∑
t=1

∫
f (D) ln

(
f (D)

I f (D)

)
dD. (3)

This design methodology was originally presented in Kárný
(1996), where the optimal probabilistic controller is derived. The
joint pdf f (D) of the data sequence D is the most complete
probabilistic description of the closed-loop system behaviour.
By using the chain rule (Peterka, 1981), f (D) can be factorised
as follows:

f (D) = s(xt+1|ut , xt )c(ut |xt ). (4)

The factors s(xt+1|ut , xt ) defined in (1) and c(ut |xt ) defined
in (2) describe the pdfs of the system dynamics and the con-
troller, respectively, as stated above. Similarly, the ideal joint pdf,
I f (D), can be factorised as follows:

I f (D) = Is(xt+1|ut , xt )Ic(ut |xt ), (5)

where Is(xt + 1|ut, xt) and Ic(ut|xt) represent the pdfs of the
desired system dynamics and ideal controller, respectively.

Minimisation of (3) with respect to randomised control
input (2) can be obtained recursively from the following back-
ward recurrence equation (Herzallah & Kárný, 2011):

− ln(γ (xt )) = min
c(ut |xt )

∫
s(xt+1|ut , xt )c(ut |xt )

×
[
ln

(
s(xt+1|ut , xt )c(ut |xt )
Is(xt+1|ut , xt )Ic(ut |xt )

)
︸ ︷︷ ︸
≡ partial costU (xt+1, ut , xt )

− ln(γ (xt+1))︸ ︷︷ ︸
optimal cost-to-go

]
d(xt+1, ut ), (6)

where we have substituted (4) and (5) in (3), and where

− ln(γ (xt )) = min
c(uτ |xτ )Hτ≥t

H∑
τ=t

∫
D (

f ||I f )

is the expected minimum cost-to-go function for arbitrary τ �
{1,… , H}. Full derivation of (6) can be found in Herzallah and
Kárný (2011).
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The pdf of optimal controller, c∗(ut |xt ), minimising the
cost-to-go function (6) is determined by the following back-
ward recursion (see e.g. Herzallah & Kárný, 2011; Herzallah,
2013):

c∗(ut |xt ) =
Ic(ut |xt ) exp[−β(ut , xt )]

γ (xt )
,

γ (xt ) =
∫

Ic(ut |xt ) exp[−β(ut , xt )]dut ,

β(ut , xt ) =
∫

s(xt+1|ut , xt )

×
[
ln

( s(xt+1|ut , xt )
Is(xt+1|ut , xt )

)
− ln(γ (xt+1))

]
dxt+1.

(7)

In large-scale systems, the above methodology for designing
probabilistic controllers becomes formidable. This is typically
because of the large number of nodes where it becomes impos-
sible to add controllers to all nodes. Therefore, the FPD has
been extended in Herzallah (2012) to control complex stochas-
tic dynamical networks via pinning control. Optimised proba-
bilistic pinning control laws have the same form as specified by
Equation (7), but inputs are applied only to a fraction of nodes in
the network. Although pinning control requires a significantly
smaller number of controllers, it requires that the network needs
not be controllable with a technically feasible amount of con-
trolled nodes.

Thus in this paper, we propose an alternative formulation that
minimises the computational and design efforts in large-scale
systems via distributed control architecture. The proposed dis-
tributed control method will be discussed in the next section. It
will be developed using the concept of FPD.

3. Problem formulation and solution
Within the proposed distributed control framework, we con-
sider that the complex system is decomposed intoK subsystems,
each controlled independently by a probabilistic controller. The
individual probabilistic controllers consider the dynamics of
their subpart of the system only and treat the dynamics of other
subsystems as a measurable external disturbance. These sub-
systems share information with each other to achieve a global
system goal in a cooperative manner where various subsystems
have access to different and local information. The message-
passing method to be employed in this paper includes subsys-
tems that constitute the complex system as individual nodes in
order to optimise and manage the global system goal through
the local control of subsystems.

In the following discussion, the subscript (k) refers to the
kth subsystem of the complex system, whereas the subscript k
refers to the k th subpart of the overall system state. To fur-
ther clarify the notation, the architecture of this framework for
a two-node system is shown in Figure 1. Following this nota-
tion, the kth subsystem is to be controlled by a randomised
controller described by pdf, c(k)(ut;(k)|xt ), k ∈ {1, . . . ,K}, with
possibly large K. The overall input ut is composed of non-
overlapping inputs generated by respective controllers uTt =
(uTt;(1), . . . , u

T
t;(K)), where T denotes transposition. The k th

controller is designed to control the k th subpart of the over-
all state xt+1;k, i.e. xTt+1 = (xTt+1;1, . . . , x

T
t+1;K ). It models the rest

of the state as a measurable external disturbance. This means
that the k th controller describes the subsystem state by the pdf
s(k)(xt+1|ut;(k), xt ) structured as follows:

s(k)(xt+1|ut;(k), xt )
= s(k)(xt+1;k|ut;(k), xt )s(k)(xt+1;−k|xt;−k), (8)

Figure . The architecture of the proposed distributed control for a two-node system. The solid lines at the outputs of the twomodels are the estimation of the kth subpart
of the system, while the dashed lines at the output of the twomodels are the estimation of the external variables by these models, obtained by message-passing. Dashed
lines between the two models are the communicated messages between them.
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4 R. HERZALLAH ANDM. KÁRNÝ

where xt+1;−k is the state part obtained by removing xt+1;k from
the overall state xt+1. To achieve the objective of considering
xt+1;−k as a measurable external disturbance, the ideal descrip-
tion of pdf of the system dynamics is defined as follows:

Is(k)(xt+1|ut;(k), xt )
= Is(k)(xt+1;k|ut;(k), xt )s(k)(xt+1;−k|xt;−k). (9)

This definition of the ideal pdf of the system dynamics means
that the pdf describing the ‘external’ variables xt+1;−k is taken to
be the same as their ideal (desired) pdf (Kárný et al., 2006), thus
not influencing their behavioural outputs.

Following on from this formulation, the FPD leading to the
k th controller is described by the following theorem.

Theorem 3.1: If the k th subsystem (a) selects inputs ut;(k), (b)
models the state evolution by (8), (c) expresses its aims by the ideal
system model (9) and by an ideal controller Ic(k)(ut;(k) | xt ), then
the optimal controller minimising the cost-to-go function (6) is
given by

c∗(k)(ut;(k)|xt ) =
Ic(k)(ut;(k)|xt ) exp[−β(ut;(k), xt )]

γ(k)(xt )

γ(k)(xt ) =
∫

Ic(k)(ut;(k)|xt ) exp[−β(ut;(k), xt )]dut;(k)

β(ut;(k), xt ) =
∫

s(k)(xt+1;k|ut;(k), xt )

×
[
ln

( s(k)(xt+1;k|ut;(k), xt )
Is(k)(xt+1;k|ut;(k), xt )

)

− ln(γ̃(k)(xt+1;k, xt;−k))

]
dxt+1;k

ln(γ̃(k)(xt+1;k, xt;−k))

=
∫

s(k)(xt+1;−k|xt;k) ln(γ(k)(xt+1)) dxt+1;−k.

(10)

Proof: The result is implied by the following sequence of equal-
ities in which one cost-to-go function (6) is dedicated to obtain
the optimal control solution for each of the k th controllers.
We also use Fubini’s theorem on multiple integration (Rao,
1987), marginalisation, normalisation and the chain rule of
pdfs (Peterka, 1981), together with conditional independence
expressed by the assumption stated above.

Hence the k th cost-to-go function for the assumedmodels of
the k th subpart of the system can be obtained from (6) to yield

ln(γ(k)(xt ))

= min
c(k) (ut;(k)|xt )

∫
s(k)(xt+1|ut;(k), xt )c(k)(ut;(k)|xt )

×
[
ln

(
s(k)(xt+1|ut;(k), xt )c(k)(ut;(k)|xt )
Is(k)(xt+1|ut;(k), xt )Ic(k)(ut;(k)|xt )

)
︸ ︷︷ ︸

≡ partial costU (xt+1, ut;(k), xt )

− ln(γ(k)(xt+1))︸ ︷︷ ︸
optimal cost-to-go

]
d(xt+1, ut;(k)). (11)

Using the k th state model (8), the ideal distribution of the k
th subsystem (9), the ideal distribution of the k th controller
Ic(k)(ut;(k) | xt ) and the chain rule, Equation (11) can be rewrit-
ten as follows:

− ln(γ(k)(xt ))

=
∫

s(k)(xt+1;k|ut;(k), xt )s(k)(xt+1;−k|xt )c(k)(ut;(k)|xt )

×
[
ln

( s(k)(xt+1;k|ut;(k), xt )
Is(k)(xt+1;k|ut;(k), xt )

)

+ ln
( c(k)(ut;(k)|xt )
Ic(k)(ut;(k)|xt )

)
− ln(γ(k)(xt+1))

]

× d(xt+1;k, xt+1;−k, ut;(k)). (12)

Now using Fubini’s theorem, we introduce the following
definitions:

ln(γ̃(k)(xt+1;k, xt;−k))

=
∫

s(k)(xt+1;−k|xt;−k) ln(γ(k)(xt+1))dxt+1;−k, (13)

and,
β(ut;(k), xt )

=
∫

s(k)(xt+1;k|ut;(k), xt )

×
[
ln

( s(k)(xt+1;k|ut;(k), xt )
Is(k)(xt+1;k|ut;(k), xt )

)

− ln(γ̃(k)(xt+1;k, xt;−k))

]
dxt+1;k,

=
∫

s(k)(xt+1;k|ut;(k), xt )

× ln
( s(k)(xt+1;k|ut;(k), xt )
Is(k)(xt+1;k|ut;(k), xt )γ̃(k)(xt+1;k, xt;−k)

)
dxt+1;k.

(14)

Substitution of (14) and (13) in (12) gives

− ln(γ(k)(xt ))

=
∫

c(k)(ut;(k)|xt )
[
β(ut;(k), xt ) + ln

( c(k)(ut;(k)|xt )
Ic(k)(ut;(k)|xt )

)]
dut;(k)

=
∫

c(k)(ut;(k)|xt ) ln
( c(k)(ut;(k)|xt )
Ic(k)(ut;(k)|xt ) exp(−β(ut;(k), xt ))

)
dut;(k)

=
∫

c(k)(ut;(k)|xt )
[
ln

( c(k)(ut;(k)|xt )
I c(k) (ut;(k)|xt ) exp(−β(ut;(k),xt ))

γ(k) (xt )

)

− ln(γ(k)(xt ))

]
dut;(k). (15)

By adding and subtracting ln(γ(k)(xt )), the first term in (15) has
become a conditional version of the KLD. The independence
of ln(γ(k)(xt )) on the optimised c(k)(ut;(k)|xt ) implies that the
expression is minimised by the claimed pdf (10). �
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Remark 3.1: The occurrence of the modified cost-to-go
ln γ̃(k)(xt+1;k, xt;−k) is the key modification over the standard
FPD induced by treating xt+1;−k as an external variable. The
model of the external variables s(k)(xt+1;−k|xt;−k) maps ln γ(k)
to ln γ̃(k) by averaging over the external variables. It substan-
tially decreases the computational load as shown on the FPD
version leading to the standard linear Gaussian quadratic design
(see Section 4).

Remark 3.2: To exploit the explorative property of the FPD,
control inputs can be generated by sampling from the esti-
mated conditional density, c∗

(k)(ut;(k)|xt ), of the optimal con-
troller. Depending on the nature of the control problem, more
specific quantities can also be calculated. One of the simplest of
these is the mean corresponding to the conditional average of
control inputs.

4. Linear Gaussian quadratic design
To demonstrate the distributed control development discussed
in the previous section, we consider the regulation problem
of a stochastic linear Gaussian state-space model described
by

xt+1 = Axt + But + ωt+1,

s(xt+1 | xt , ut ) � Nxt+1 (Axt + But , �), (16)

where A and B are the state and control matrices, respectively,
ωt+1 is zero-meanwhite normal innovations and� is the covari-
ance of the innovations. The matrices A,B and � > 0 are
assumed to be known.

For the considered regulation problem, the system is initially
in state xt and the aim is to return the system state to the origin.
Before we discuss the distributed control solution for this reg-
ulation problem, we briefly review the standard solution to the
problem using the global FPD control method.

4.1. Global FPD control method
The standard solution to the regulation problem described
above using global FPD control method starts by specify-
ing the ideal distribution of the system states given in Equa-
tion (16). This ideal state distribution is assumed to be given
by

Is(xt+1|ut , xt ) = Nxt+1 (0, �). (17)

It reflects the regulation problem with the realistic aim of reach-
ing the zero state, with a spread being determined by the covari-
ance of the innovations, �.

The randomised controller to be designed is described by

c(ut |xt )� Nut (Cxt , �)

ut = Cxt + εt , (18)

where C is the matrix of the controller parameters, εt is zero-
mean white normal innovations and � is the covariance of the
innovations of control. The distribution of the ideal controller is

assumed to be

Ic(ut |xt ) = Nut (0,
I�), (19)

where I� specifies the allowed range of optimal inputs. By using
the randomised controller (18), the stochastic equation of the
system state (16) can be recast as follows:

xt+1 = (A + BC)xt + Bεt + ωt+1. (20)

If the pair (A,B) is stabilisable, i.e. if there is such a controllerC
that makes all eigenvalues of the matrix A + BC lie inside the
unit circle, then the optimal randomised controller as can be
obtained from the evaluation of (7) for horizon H → ∞ is sta-
bilising and has the following form (Herzallah, 2012):

ut = Cxt + εt , (21)

with

C = −(BTMB + BT�−1B + I�−1)−1(BTMA + BT�−1A),

(22)
and
M = AT�−1A + ATMA

− (ATMB + AT�−1B)(BTMB + BT�−1B + I�−1)−1

× (BTMA + BT�−1A), (23)
� = (BTMB + BT�−1B + I�−1)−1,

whereM is the matrix of the attained quadratic cost function,

− ln(γ (xt )) = 0.5xTt Mxt + Q0, (24)

and where Q0 ≥ 0 is some positive constant. The derived solu-
tion (23) coincides with the stationary algebraic Riccati equation
for linear quadratic design (Meditch, 1969).

4.2. Distributed FPD control method
The application of FPD-distributed controllers to regulate the
system (16) is carried out by designingK randomised controllers
described by

c(k)(ut;(k)|xt )� Nut;(k) (C(k)xt , �(k))

ut;(k) = C(k)xt + εt;(k), (25)

where k ∈ {1, . . . ,K}, C(k) is the matrix of the k th controller
parameters, εt;(k) is zero-mean white normal innovations of the
k th control input and �(k) is the covariance of the innovation
of k th control. Each of these randomised controllers is respon-
sible for controlling the state values of the corresponding k th
subsystem while not influencing the rest of the states xt+1;−k. As
such, K models to estimate the dynamics of the K subsystems
must be identified, where one model is to be identified for each
randomised controller. The k th model of the k th subsystem
describes the small controlled subpart xt+1;k of the state, while
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6 R. HERZALLAH ANDM. KÁRNÝ

models the rest of the state xt+1;−k as an external observable dis-
turbance:

xt+1;(k) = A(k)xt + B(k)ut;(k) + ωt+1;(k)
s(k)(xt+1|ut;(k), xt ) = s(k)(xt+1;k|ut;(k), xt )s(k)(xt+1;−k|xt;−k)

� Nxt+1;k (A(k);kxt + B(k);kut;(k), �(k);k)
× Nxt+1;−k (A(k);−kxt;−k, �(k);−k), (26)

whereA(k);k is the statematrix from the k thmodel related to the
k th (controlled) subpart of the state, A(k);−k is the state matrix
from the k th model related to the external variables of the state,
B(k);k is the control matrix from the k th model related to the
controlled states, �(k);k is the covariance matrix from the k th
model related to the controlled states and �(k);−k is the covari-
ancematrix from the k thmodel related to the external variables.
Following the discussion in Section 3, the ideal distribution of
the closed-loop model of the k th subsystem does not consider
the synchronisation of the ‘external’ variables xt+1;−k, i.e. the pdf
modelling the external variables is taken to be equal to the ideal
(desired) pdf of external variables as follows:

Is(k)(xt+1;k|ut;(k), xt )s(k)(xt+1;−k|xt;−k)

� Nxt+1;k (0, �(k);k)Nxt+1;−k (A(k);−kxt;−k, �(k);−k). (27)

It reflects the aim of regulating xt+1;k to zero while treating
xt+1;−k as an external variable. The distribution of the k th ideal
controller is assumed to be

Ic(k)(ut;(k)|xt ) = Nut;(k) (0,
I�(k)). (28)

By associating the k th controller (25) with its k th model (26),
the stochastic equation (26) of the k th model can be recast as
follows:

xt+1;(k) = (A(k) + B(k)C(k))xt + B(k)εt;(k) + ωt;(k). (29)

Similarly, under the assumption that all eigenvalues of the
matrix A(k) + B(k)C(k) in (29) lie inside the unit circle, a sta-
bilisable randomised control c(k)(ut;(k)|xt ) can be obtained
from (10). This is achieved by substituting the assumed model
of the subpart of the system states (26), the ideal distribution of
the k th subsystem (27) and the ideal distribution of the k th con-
troller (28) in (10). Hence, the optimal feedback control law can
be specified in the following theorem.

Theorem 4.1: For the distributed-type linear Gaussian FPD con-
troller with external variables considered in this paper, if the k th
node (a) selects inputs ut;(k), (b)models the state evolution by (26),
(c) expresses its aims by the ideal system model (27) and by an
ideal controller Ic(k)(ut;(k) | xt ), then the optimal controller min-
imising the cost-to-go function (11) is given by either one of the
two equivalent forms:

I. Form 1 of the optimal controller:

ut;(k) = C(k)xt + εt;(k), (30)

with

C(k) = −(BT
(k)M(k)B(k) + BT

(k)�
−1
k B(k) + I�−1

(k) )
−1

× (BT
(k)M(k)A(k) + BT

(k)�
−1
k A(k)), (31)

M(k) = AT
(k)�

−1
k A(k) + AT

(k)M(k)A(k)

− (AT
(k)M(k)B(k) + AT

(k)�
−1
k B(k))

× (BT
(k)M(k)B(k) + BT

(k)�
−1
k B(k) + I�−1

(k) )
−1

× (BT
(k)M(k)A(k) + BT

(k)�
−1
k A(k)),

�(k) = BT
(k)M(k)B(k) + BT

(k)�
−1
k B(k) + I�−1

(k),

(32)

where M(k) is the matrix of the obtained quadratic cost
function from the k th model, and �k is the covariance
matrix which considers the spread around the k th sub-
part of the state and takes the rest of the state as external
variables.

II. Form 2 of the optimal controller:
The second form can be obtained by partitioning the state,
A(k), control B(k) and covariance �k matrices in the fol-
lowing forms:

A(k) =
[
Ak;k Ak;−k
A−k;k A−k;−k

]
B(k) =

[
Bk
B−k

]

�k =
[

�k;k �k;−k
�−k;k �−k;−k

]
,

where according to the assumed models, Ak;k is a square
matrix which relates the controlled states to themselves,
Ak;−k is the matrix which relates the controlled states to
the external variables, A−k;k = 0, and A−k;−k is a square
matrix which relates the external variables to themselves.
Here also Bk is the control matrix of the controlled states,
B−k = 0 is the control matrix of the external variables,
�k;k is the covariance matrix which specifies the spread
on the controlled state variables and �k;−k = 0, �−k;k =
0, �−k;−k = 0.
Partition M(k) conformably to the partitioning of A(k) :
M(k) = [ Mk;k Mk;−k

M−k;k M−k;−k
], then Equation (32) is equivalent to

the three equations:
(a) The Riccati equation of the controlled states without

the external variables,

Mk;k = AT
k;k�

−1
k;kAk;k + AT

k;kMk;kAk;k

− (AT
k;kMk;kBk + AT

k;k�
−1
k;kBk)

× [BT
k Mk;kBk + BT

k �−1
k;kBk + I�−1]−1

× (BT
k Mk;kAk;k + BT

k �−1
k;kAk;k). (33)

(b) The equation respecting the influence of the external
variables on the controlled state,

Mk;−k = AT
k;k�

−1
k;kAk;−k + AT

k;kMk;kAk;−k

+ AT
k;kMk;−kA−k;−k
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− (AT
k;kMk;kBk + AT

k;k�
−1
k;kBk)

× [BT
k Mk;kBk + BT

k �−1
k;kBk + I�−1]−1

× (BT
k Mk;kAk;−k + BT

k Mk;−kA−k;−k

+ BT
k �−1

k;kAk;−k). (34)

(c) The equation concerning external variables only,

M−k;−k

= AT
k;−kx�

−1
k;kAk;−k + AT

k;−kMk;kAk;−k

+ 2AT
−k;−kMk;−kAk;−k + AT

−k;−kM−k;−kA−k;−k

− (AT
k;−kMk;kBk + AT

−k;−kMk;−kBk + AT
k;−k�

−1
k;kBk)

× [BT
k Mk;kBk + BT

k �−1
k;kBk + I�−1]−1

× (BT
k Mk;kAk;−k + BT

k Mk;−kA−k;−k + BT
k �−1

k;kAk;−k).

(35)

With the partitioned form of the Riccati matrix, the feed-
back control matrix (31) is equivalent to

C(k) = −(BT
k Mk;kBk + BT

k �−1
k;kBk + I�−1

(k) )
−1

× ([BT
k Mk;kAk;k BT

k Mk;kAk;−k + BT
k Mk;−kA−k;−k]

+ [BT
k �−1

k;kAk;k BT
k �−1

k;kAk;−k]). (36)

Proof: The first part of the theorem can be proven by adapting
the proof of Theorem 1 in Herzallah (2012). The second part
of the theorem can be proven by considering the partitioned
formof the state, control, covariance andRiccatimatrix as stated
above. �
Remark 4.1: The second form of the optimal control law as
given by Equation (36) implies that only the first two equa-
tions (33) and (34) equivalent to the Riccati need to be solved.
Moreover, Equation (34) determiningMk;−k is linear. The third
equation (35), the block of the Riccati equation that relates exter-
nal variables to themselves, does not need to be solved. This
structure significantly decreases the computational efforts in
obtaining the optimal control law within the FPD-distributed
control framework and also as compared to the global FPD con-
trol method.
Remark 4.2: Only the parts of the state matrix that relate the
controlled states to themselves and to external variables, i.e.
Ak;k and Ak;−k have to be estimated by the k th node. Bayesian
methodology (Peterka, 1981) serves well to this purpose and it
essentially boils down to recursive least squares applied to lin-
ear auto-regression on xt;k combined with regression on xt;−k,
typically with a suitable forgetting factor in the estimation pro-
cess. Either the classical version of the Bayesian methodol-
ogy (Kulhavý & Zarrop, 1993) or the advanced partial version
(Dedecius, Nagy, & Kárný, 2012) can be implemented. The esti-
mation of the parametersAk;k is feasible as the k th node consid-
ers the part of state having a small dimension. The dimension
of xt;−k and thus Ak;−k could generally be large when consid-
ering the full state of the network. However, according to our
hypothesis, it is sufficient to include only partial states of the
node neighbours from xt;−k. Following this, the joint estimation

of [Ak;k,Ak;−k] becomes an undemanding routine task. More-
over, A−k;−k can be obtained by message-passing from neigh-
bours. They are essentially state transitionmatrices of the closed
loops of the neighbours’ dynamics. This latter statement is elab-
orated in the next section.

5. Algorithm of the FPD-distributed controller
The distributed optimised controllers discussed in Section 4.2
will exchange information or messages about the parameters
of the dynamics of the subparts of the system and will update
these parameters iteratively in a probabilistic framework until
they converge. Specifically, the k th optimised randomised con-
troller offers its neighbour the part of the resulting optimal
closed loop related to the variables it perceives as external vari-
ables. It improves their description. The following algorithm
can be readily applied to the neighbour-distributed controllers
and models and can be used for updating the parameters of the
dynamics of the various subparts in the system.

� Given the initial state values xt
� For the k th node, estimate the parameters modelling the k
th subpart of the system states, Ak;k, Ak;−k and Bk

� For the k th node, initialise the estimate of parameters
describing the −k th subpart of the system states, A−k;−k

� At each time instant t
� Loop
� Use Equation (33) to calculate the part of the Riccati
matrix,Mk;k determining the feedback gain of the k th con-
troller from controlled states.

� Use the linear equation (34) to calculate the part of the Ric-
cati matrix, Mk;−k determining the feedback gain of the k
th controller from ‘external’ variables.

� Use Equation (36) to calculate the feedback control matrix
C(k).

� Update the parameters for ‘external’ variables of the j th
subpart of the system as follows:

xt+1;( j)←(k) ⇒ A( j);− jxt = (A(k);k + B(k);kC(k))xt ,
(37)

where xt+1;( j)←(k) is used to denotemodels of the j th node
as obtained from the k th node. The optimally tuned closed
loop from the viewpoint of the k th controller has the form
given in Equation (29), repeated here:

xt+1;(k) = (A(k) + B(k)C(k))xt + B(k)εt;(k) + ωt+1;(k).
(38)

To further explain Equation (37), we implement it on a sys-
tem consisting of two states. The system is first decomposed into
two subsystems or nodes, where the first node is controlled by a
control signal ut,(1) and the second node is controlled by a con-
trol signal ut,(2). The first node is concerned with the regula-
tion of the first state, hence takes the second state as an exter-
nal signal. Consequently, this node is governed by the following
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8 R. HERZALLAH ANDM. KÁRNÝ

model:

xt+1,(1) =
[
xt+1,(1;1)
xt+1,(1;2)

]
=

[
a1;1 a1;−1
0 a−1;−1

] [
xt,1
xt,2

]
+

[
b1
0

]
ut,(1).

(39)
The second node, on the other hand, focuses on the regulation
of the second state and takes the first state as an external signal,
hence governed by the following model:

xt+1,(2) =
[
xt+1,(2;1)
xt+1,(2;2)

]
=

[
a−2;−2 0
a2;−2 a2;2

] [
xt,1
xt,2

]
+

[
0
b2

]
ut,(2).

(40)
According to Equation (38), the optimally tuned closed loop
from the viewpoint of the first controller, neglecting the noise
terms to simplify the presentation, is given by

xt+1,(1) =
[
xt+1,(1;1)
xt+1,(1;2)

]
=

[
a1;1 a1;−1
0 a−1;−1

] [
xt,1
xt,2

]

+
[
b1
0

] [
c1;1 c1;2

] [
xt,1
xt,2

]
, (41)

and the optimally tuned closed loop from the viewpoint of the
second controller, neglecting the noise terms to simplify the pre-
sentation, is given by

xt+1,(2) =
[
xt+1,(2;1)
xt+1,(2;2)

]
=

[
a−2;−2 0
a2;−2 a2;2

] [
xt,1
xt,2

]

+
[
0
b2

] [
c2;1 c2;2

] [
xt,1
xt,2

]
. (42)

By comparing Equations (41) and (42), the two optimised con-
trollers will exchange information about the parameters of the
dynamics of the two nodes and will then update these parame-
ters according to the following equations:

a−2;−2 = a1;1 + b1c1;1,
0 = a1;−1 + b1c1;2,
0 = a2;−2 + b2c2;1,

a−1;−1 = a2;2 + b2c2;2.

6. Coupledmap lattice network and numerical results
We validate and illustrate the distributed probabilistic control
method presented in Section 4.2 using the stochastic version of
a CML (Herzallah, 2012) with a periodic boundary condition as
an example of complex dynamical networks, which was origi-
nally introduced inGang andZhilin (1994). The obtained results
of the distributed probabilistic controllers will also be compared
to the global pinning control solution to the considered CML
problem as discussed in Section 4.1.We first give an overview of
the CML control problem.

6.1. Overview of coupledmap Lattice
Consider a CML consisting of L nodes with periodic boundary
conditions,

z jt+1 = F(z j−1
t , z jt , z

j+1
t )

= f [(1 − 2ε)z jt + ε(z j−1
t + z j+1

t )] + κ
j
t+1, (43)

where j = 1, 2, . . . , L are the lattice sites, L is the system size, ε
is the coupling strength, κ j

t+1 is an additive noise signal assumed
to have zero-meanGaussian distribution of covarianceρ and the
periodic boundary conditions are given by z j+L

t = z jt . The local
map f (z) is defined to be a nonlinear function of the following
form:

f (z) = az(1 − z). (44)

This CML exhibits chaotic characteristics in the regime 3.57 <

a ≤ 4.0 and has a homogeneous steady state z� = 1 − 1/a.
The control objective here is to stabilise the homogeneous

state of the lattice. Because of the complexity and the large num-
ber of nodes of the CML, this goal is conventionally achieved via
pinning control methodology by applying M periodically con-
trol actions placed at sites { j1, . . . , jM} in the following way:

z jt+1 = F(z j−1
t , z jt , z

j+1
t ) +

M∑
m=1

δ( j − jm)umt + κ
j
t+1, (45)

where δ(0) = 1 and 0 otherwise, umt is the control action at time
t applied at sitem.

Traditionally in pinning control, the theory of linear
quadratic control is used to calculate the feedback control
actions. For that purpose, Equation (43) is linearised about
the homogeneous steady state zt = (z�

1, . . . , z�
L) to become as

follows:

xt+1 = Axt + But + ωt+1, (46)

in which x = z − z� represents the state vector, the L × L Jaco-
bian matrix A, is given by

A = α

⎡
⎢⎢⎢⎢⎢⎣
1 − 2ε ε 0 . . . ε

ε 1 − 2ε ε . . . 0
0 ε 1 − 2ε . . . 0
...

...
...

. . .
...

ε 0 0 . . . 1 − 2ε

⎤
⎥⎥⎥⎥⎥⎦ ,

where α = ∂ f (z)
∂z |z=z� , and B is an L × M control matrix with

Bji = ∑
m δ(i − m)δ( j − jm).

Following the discussion in Section 4.1, the pinning con-
trolled network as a result of the designed randomised con-
troller (21) will have the form given by Equation (20), repeated
here as follows:

xt+1 = (A + BC)xt + Bεt + ωt+1, (47)

where C is calculated as specified by Equation (22). In Grig-
oriev, Cross, and Schuster (1997), the control matrix, B, is cho-
sen such that the network of systems is made controllable as
opposed to stabilisable. Since the CML considered has parity
symmetry (Grigoriev et al., 1997), the eigenvalues of its Jaco-
bian are doubly degenerate. Therefore, the minimal number of
controllers that yields a controllable system in this case is two,
which will be assumed in this paper.
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In contrast to the pinning control method, the proposed
distributed control method considers designing and optimis-
ing K number of controllers, each is responsible for controlling
and regulating a predefined collective number of neighbouring
nodes in the lattice. For the linearised version of CML (46),
the distributed controllers can be designed as discussed in Sec-
tion 4.2. In the following numerical simulations, for both pin-
ning and distributed control, the conditional means of the con-
trollers, represented byCxt andC(k)xt respectively, will be taken
as inputs to the system. HereC is to be calculated as specified by
Equation (22), andC(k) as specified by Equation (36).

6.2. Numerical results of global FPD
The example considered here is for the logistic CML, f (z) =
az(1 − z) in its non-chaotic regime with a = 3.0, ε = 0.33
and L = 5 and with an external Gaussian random input,
ωt+1 affecting the dynamics. Following the pinning control
method (Herzallah, 2012), two controllers are used and they are
placed next to each other at the sides of the lattice. Hence the
equation of the CML becomes

xt+1 = Axt + But + ωt+1, (48)

where

A =

⎡
⎢⎢⎢⎢⎣

−0.34 −0.33 0 0 −0.33
−0.33 −0.34 −0.33 0 0

0 −0.33 −0.34 −0.33 0
0 0 −0.33 −0.34 −0.33

−0.33 0 0 −0.33 −0.34

⎤
⎥⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎢⎣
1 0
0 0
0 0
0 0
0 1

⎤
⎥⎥⎥⎥⎦ � = E[ωt+1ω

T
t+1] = 0.001I5×5.

The lattice is initially at time t = 0 in state x = 0.25 and the
aim is to return the lattice to the origin (the fixed-point posi-
tion) or a state close to the origin. The matrices A and B and the
covariance matrix� > 0 are assumed to be known. The covari-
ance matrix of the controller is taken to be I� = 0.1I2×2. The
resulted states of the lattice network and the obtained control
efforts are illustrated in Figure 2(a) and 2(b), respectively, which
show that the controlled network is globally synchronised by the
designed global probabilistic pinning controller. Please note that
the fluctuations of the state values around the origin are due to
the stochastic nature of the considered variant of CML. If the
additive noise term ωt+1 was to be neglected, all states of the
coupled map lattice would have attained an exact value of zero.
Figure 2(c) gives the solution of the control matrix C. This fig-
ure shows that the control effort is larger for those sites that
are far away from the pinning site. This is expected as reported
inHerzallah (2012) andmeans that the perturbation introduced
by the controllers decays with the increasing distance to the pin-
ning site. These obtained results will be compared to the dis-
tributed control results which will be discussed in the following
section.
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Figure . States and control efforts of a non-chaotic coupled map lattice with, L =
5, a = 3 and ε = 0.33 as a result of the global FPD controller (Section ., Equa-
tion ()): (a) states as a result of the global FPD controller; (b) control efforts from
the global controller; (c) control gain of the global controller.
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10 R. HERZALLAH ANDM. KÁRNÝ

6.3. Numerical results of distributed FPD control
For comparison purposes, the same logistic CML, f (z) =
az(1 − z), in its non-chaotic regime with a = 3.0, ε = 0.33
and L = 5 and with an external Gaussian random input, ωt+1
affecting the dynamics will be considered here for the design of
distributed probabilistic controller. We design two distributed
probabilistic controllers ut;(1) and ut;(2). The first probabilistic
controller ut;(1) is concernedwith the regulation of the first three
nodes in the lattice while modelling the rest of the states as an
external observable disturbance:

xt+1;(1) = A(1)xt + B(1)ut;(1) + ωt+1;(1), (49)

where

A(1) =

⎡
⎢⎢⎢⎢⎣

−0.34 −0.33 0 0 −0.33
−0.33 −0.34 −0.33 0 0

0 −0.33 −0.34 −0.33 0
0 0 0 a(1);44 0
0 0 0 0 a(1);55

⎤
⎥⎥⎥⎥⎦ , B(1) =

⎡
⎢⎢⎢⎢⎣
1
1
1
0
0

⎤
⎥⎥⎥⎥⎦

and �1 = E[ωt+1;(1)ωT
t+1;(1)] =

[
0.001I3×3 03×2

02×3 02×2

]
,

because the last two states are taken as external variables. The
second probabilistic controller ut;(2) is concerned with the reg-
ulation of the last three nodes in the lattice while modelling the
rest of the states as an external observable disturbance:

xt+1;(2) = A(2)xt + B(2)ut;(2) + ωt+1;(2), (50)

where

A(2) =

⎡
⎢⎢⎢⎢⎣
a(2);11 0 0 0 0
0 a(2);22 0 0 0
0 −0.33 −0.34 −0.33 0
0 0 −0.33 −0.34 −0.33

−0.33 0 0 −0.33 −0.34

⎤
⎥⎥⎥⎥⎦ , B(2) =

⎡
⎢⎢⎢⎢⎣
0
0
1
1
1

⎤
⎥⎥⎥⎥⎦

�2 = E[ωt+1;(2)ωT
t+1;(2)] =

[
02×2 02×3
03×2 0.001I3×3

]
,

because the first two states are taken as external variables. The
four unknown parameters a(1);44, a(1);55, a(2);11 and a(2);22 are
related to the external observable states from the point of view of
the first and second controllers and are initialised randomly. The
two controllers then exchange information about the closed-
loop response of the system which is used to update these
unknown parameters as discussed in Section 4.2.

Similarly here for comparison purpose, the lattice is assumed
to be initially at time t = 0 in state x = 0.25 and the aim is
to return the lattice to the origin (the fixed-point position)
or a state close to the origin. The covariance matrices of the
first and second controllers are taken to be I�(1) = 0.1, I�(2) =
0.1, respectively. The resulted states of the lattice network and
the obtained control efforts are illustrated in Figure 3(a) and
3(b), respectively. As can be seen from these figures, although
the distributed probabilistic controllers are optimised indepen-
dently using local information of the controlled subsystems,
they are very effective in globally regulating the controlled CML
network. Obtained control results are very close to the global
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Figure . States and control efforts of a non-chaotic coupled map lattice with, L =
10, a = 3 and ε = 0.33 as a result of the distributed FPD controller (Section .,
Equation ()): (a) states as a result of the distributed FPD controller; (b) control
efforts from the distributed controller; (c) control gain of the distributed controllers.
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probabilistic pinning control solution. Similarly here, the fluctu-
ations of the state values around the origin are due to the stochas-
tic nature of the considered variant of CML. Figure 3(c) gives
the solution of the control matrices C1 and C2. This figure, as
expected, shows that the control effort is larger for those sites
controlled by the corresponding controller and smaller for those
sites whose states are perceived as external variables.

7. Conclusion
The problem of controlling complex dynamical systems with a
large number of nodes has been considered in this paper. The
proposed solution is developed via distributed stochastic con-
trol where noise and uncertainties are contained using proba-
bilistic approaches. This solution considers a bottom-up strategy
where simple controllers are designed to focus on the control of
the individual subparts of the system either completely indepen-
dently, or within various structures like cascade control. By util-
ising the FPD approach, we developed the general methodology
for distributed control proposed in this paper. The developed
distributed controllers exchange information about the various
nodes in the network and use this information to update their
governing dynamical relations. The theoretical findings were
then validated on a CML network as an example of complex
dynamical networks. Numerical results confirm the effective-
ness of the proposed distributed probabilistic control approach
in globally regulating the states of the network. This makes the
outlined research direction worth developing. Surely, it is neces-
sary and possible to elaborate on

� a direct analogy to controlled Markov chains (Markov
Decision Processes);

� adaptive versions of local controllers;
� sharing of model parts when they result from estimation
and thus they are uncertain (cf. Kárný,Guy, Bodini, &Rug-
geri, 2009; Sečkárová, 2013).

It is desirable but hard to

� generalise the analogy of the second form of the optimal
controller, which is themain tool for decreasing the overall
complexity, to FPD;

� analyse emerging properties (stability, stationary
behaviour, control quality) of the proposed distributed
control;

� apply the proposed control on non-trivial practical prob-
lems.

Note
1. Theorem 3.1 below indicates how to get this recursion. The general case

with noisy measurements of the state is in Kárný and Guy (2006).
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Šiljak, D.D., & Zečević, A.I. (2005). Control of large scale systems:
Beyond decentralised feedback. Annual Reviews in Control, 29, 169–
179.

Zhang, J., & Yang, Y. (2003). Synchronizing chaotic systems using backstep-
ping design. Chaos, Solitons and Fractals, 16, 37–45.

Broek, B., Wiegerinck, W., & Kappen, B. (2008). Graphical model inference
in optimal control of stochastic multi-agent systems. Journal of Artifi-
cial Intelligence Research, 33, 95–122.

Wang, Z., Lu, R., & Shen, B. (2014). Distributed estimation and control
for general systems. International Journal of General Systems, 43(3–4),
247–253.

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

B
ot

an
y]

, [
M

ir
os

la
v 

K
ar

ny
] 

at
 0

8:
34

 2
4 

Ju
ne

 2
01

6 


	Abstract
	1.Introduction
	2.Preliminaries
	3.Problem formulation and solution
	4.Linear Gaussian quadratic design
	4.1.Global FPD control method
	4.2.Distributed FPD control method

	5.Algorithm of the FPD-distributed controller
	6.Coupled map lattice network and numerical results
	6.1.Overview of coupled map Lattice
	6.2.Numerical results of global FPD
	6.3.Numerical results of distributed FPD control

	7.Conclusion
	Note
	Acknowledgments
	Funding
	References



