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Preface
The  Equadiff  is  a  series  of  biannual  conferences  on  mathematical  analysis, 
numerical  approximation  and  applications  of  differential  equations.  It  is  held  in 
rotation in the Czech Republic, Slovakia and Western Europe. The last Equadiff 
(Equadiff 14 in the Czecho-Slovak series) was organized in Bratislava, Slovakia, 
July  24-28,  2017  by  the  Slovak  University  of  Technology,  in  cooperation  with 
Comenius  University,  Union  of  Slovak  Mathematicians  and  Physicists,  Slovak 
Mathematical Society and Algoritmy:SK, ltd.

During the last decades the Equadiff has clearly developed into the world platform 
for international exchange of ideas on all mathematical and numerical aspects of 
differential equations, ranging from fundamental concepts to applications.

The scientific program of Equadiff 2017 Conference  was proposed and prepared 
by the members  International  Scientific  Programme Committee:  Michal  Beneš 
(Czech Technical University, Prague, Czech Republic), Charlie Elliott (University of 
Warwick,  UK),  Eduard  Feireisl  (Czech  Academy  of  Sciences,  Prague,  Czech 
Republic),  Marek  Fila  (Comenius  University,  Bratislava,  Slovakia),  Raphaele 
Herbin  (University  of  Aix-Marseille,  France),  Grzegorz  Karch  (University  of 
Wroclaw,  Poland),  Karol  Mikula  (Slovak  University  of  Technology,  Bratislava, 
Slovakia),  Masayasu  Mimura  (Meiji  University,  Tokyo,  Japan),  Mario  Ohlberger 
(University  of  Münster,  Germany),  Peter  Poláčik  (University  of  Minnesota, 
Minneapolis, USA), Otmar Scherzer (University of Vienna, Austria), Pavol Quittner 
(Comenius  University,  Bratislava,  Slovakia),  Eiji  Yanagida  (Tokyo  Institute  of 
Technology, Japan). Organizing Committee of the conference consisted of Peter 
Frolkovič,  Angela  Handlovičová,  Martin  Kalina,  Karol  Mikula,  Daniel  Ševčovič, 
Róbert Špir and Peter Struk.  The conference was chaired by Karol Mikula and co-
chaired by Marek Fila. 

Proceedings of Equadiff 2017 Conference contain peer-reviewed contributions of 
participants  of  the  conference.  The  proceedings  cover  a  wide  range  of  topics 
presented by plenary, minisymposia and contributed talks speakers. The scope of 
papers  ranges  from  ordinary  differential  equations,  differential  inclusions  and 
dynamical systems towards qualitative and numerical analysis of partial differential 
equations, stochastic PDEs and their applications.



In  several  papers,  the  authors  studied  qualitative  and  numerical  properties  of 
solutions  to  cross-diffusion  systems  with  entropy  structure,  boundedness  and 
stabilization  of  solutions  in  a  three-dimensional  and  two-species  chemotaxis-
Navier-Stokes system, boundedness of solutions in a fully parabolic chemotaxis 
system with signal-dependent sensitivity and logistic term. Several authors studied 
well-posedness  of  solutions  for  a  mass conserved  Allen-Cahn equation  with  a 
nonlinear  diffusion  term,  the  porous  medium  equations  and  nonlinear  cross-
diffusion  systems  and  efficient  linear  numerical  scheme for  solving  the  Stefan 
problem.

The authors also investigated qualitative behavior of solutions of the undamped 
Klein-Gordon equation and entropy of the attractor of the strongly damped wave 
equation.  The conference proceedings contain papers on dynamical models of 
viscoplasticity  and Lyapunov stability in hypoplasticity  models.  The proceedings 
further include papers dealing with qualitative properties of solutions for systems of 
fractional  boundary  value  problems  and  analysis  of  inequalities  with  gradient 
nonlinearities  and fractional  Laplacian operators.  The proceedings also  contain 
papers  dealing  with  qualitative  properties  like  uniqueness  and  regularity  of 
solutions for systems of coupled elliptic and parabolic equations. 

Several papers are devoted to the numerical analysis of finite element and discrete 
Galerkin  methods  for  elliptic  problems  with  nonlinear  boundary  conditions. 
Applications of theoretical results cover viral infection modelling with diffusion and 
state-dependent  delay,  an analysis  of  a  model  of  suspension flowing down an 
inclined  plane  as  well  as  applications  of  tree-grid  and  finite  stencil  numerical 
methods in computational finance, optimal control and optimal design. Interesting 
applications  of  partial  differential  equations  in  image  segmentation  and 
computational differential geometry can be also found in the proceedings. 

We  thank  all  the  authors  for  their  interesting  contributions  to  the  conference 
proceedings.  We  also  thank  our  reviewers  for  their  valuable  comments  and 
suggestions which improved quality of presentation of results. 

Bratislava, November 30, 2017

                                                   Karol Mikula, Daniel Ševčovič, and Jozef Urbán

                                               Editors of Proceedings of Equadiff 2017 Conference
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VIRAL INFECTION MODEL WITH DIFFUSION AND
STATE-DEPENDENT DELAY: A CASE OF LOGISTIC GROWTH

ALEXANDER V. REZOUNENKO∗

Abstract. We propose a virus dynamics model with reaction-diffusion and logistic growth
terms, intracellular state-dependent delay and a general non-linear infection rate functional response.
Classical solutions with Lipschitz in-time initial functions are investigated. This type of solutions
is adequate to the discontinuous change of parameters due to, for example, drug administration.
The Lyapunov functions approach is used to analyse stability of interior infection equilibria which
describe the cases of a chronic disease.

Key words. Reaction-diffusion, evolution equations, Lyapunov stability, state-dependent delay,
virus infection model.

AMS subject classifications. 93C23, 34K20,35K57, 97M60

1. Introduction. Our goal is to discuss a wide class of mathematical models
of viral diseases. Many viruses (as Ebola virus, Zika virus, HIV, HBV, HCV and
others) continue to be a major global public health issues, according to World Health
Organization. Particularly, from The Global hepatitis report (WHO, April 2017)
[25] we know that ”a large number of people - about 325 million worldwide in 2015
- are carriers of hepatitis B or C virus infections, which can remain asymptomatic
for decades.” and ”Viral hepatitis caused 1.34 million deaths in 2015, a number
comparable to deaths caused by tuberculosis and higher than those caused by HIV.
However, the number of deaths due to viral hepatitis is increasing over time, while
mortality caused by tuberculosis and HIV is declining.”

In such a situation any steps toward understanding the dynamics of viral diseases
are important.

There are variety of models described by systems of ordinary differential equations
and/or partial differential equations with or without delays which describe dynamics
of different viral infections. Delays could be bounded or unbounded, concentrated or
distributed, constant, time-dependent or state-dependent.

The classical models [12, 14] contain ordinary differential equations (without de-
lay) for three variables: susceptible host cells T , infected host cells T ∗ and free virus
particles V . The intracellular delay is an important property of the biological problem,
so we start with the delay problem





Ṫ (t) = λ− dT (t)− f(T (t), V (t)),

Ṫ ∗(t) = e−ωhf(T (t− h), V (t− h))− δT ∗(t),
V̇ (t) = NδT ∗(t)− cV (t).

(1.1)

In system (1.1), susceptible cells T are produced at a rate λ, die at rate dT , and
become infected at rate f(T, V ). Properties and examples of incidence function f
are discussed below. Infected cells T ∗ die at rate δT ∗, free virions V are produced by
infected cells at rate NδT ∗ and are removed at rate cV (t). In (1.1) h denotes the delay

∗V.N.Karazin Kharkiv National University, Kharkiv, 61022, Ukraine (rezounenko@gmail.com)
and Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic,
P.O. Box 18, 182 08 Praha, CR
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54 ALEXANDER V. REZOUNENKO

between the time a virus particle contacts a target cell and the time the cell becomes
actively infected (start producing new free virions). It is clear that the constancy of
the delay is just an extra assumption which essentially simplifies the study, but has
no biological background.

To the best of our knowledge, viral infection models with state-dependent delay
(SDD) have been considered for the first time in [20] (see also [21]). It is well known
that differential equations with discrete state-dependent delay are always non-linear
by its nature (see the review [5] for more details and discussion).

As usual in the study of delay systems with (maximal) delay h > 0 [4, 8], for a
function v(t), t ∈ [a − h, b] ⊂ R, b > a, we denote the history segment vt = vt(θ) ≡
v(t+ θ), θ ∈ [−h, 0], t ∈ [a, b].

Consider a connected bounded domain Ω ⊂ Rn with a smooth boundary ∂Ω. Let
T (t, x), T ∗(t, x), V (t, x) represent the densities of uninfected cells, infected cells and
free virions at position x ⊂ Ω at time t.

In [22] the following system with SDD η is investigated





Ṫ (t, x) = λ− dT (t, x)− f(T (t, x), V (t, x)) + d1∆T (t, x),

Ṫ ∗(t, x) = e−ωhf(T (t− η(ut), x), V (t− η(ut), x))− δT ∗(t, x) + d2∆T ∗(t, x),

V̇ (t, x) = NδT ∗(t, x)− cV (t, x) + d3∆V (t, x).
(1.2)

Here the dot over a function denotes the partial time derivative i.g, Ṫ (t, x) = ∂T (t,x)
∂t ,

all the constants λ, d, δ,N, c, ω are positive while di, i = 1, 2, 3 (diffusion coefficients)
are non negative. In (1.2) (and in (1.3) below), a solution denoted by u(t) = u(t, ·) =
(T (t, ·), T ∗(t, ·), V (t, ·)), see the argument of the state-dependent delay η in the second
equation. The precise definition of a solution is given below (Def. 2.1).

We consider a general functional response f(T, V ) satisfying natural assumptions
presented below. In earlier models (with constant or without delay) the study was
started in case of bilinear f(T, V ) = const · TV and then extended to more general
classes of non-linearities. For more details and discussion see [1, 3, 7, 11, 22].

We mention that the term e−ωh in front of f (see the second equation (1.2)), in
fact, states that only a part of the cell population survived during the virus incubation
period. Clearly, it should be less than 1. It is an assumption which is not too precise
in nonlinear systems. It could be regarded as a coefficient (strictly smaller than 1)
and could be easily incorporated into the definition of the function f . We keep this
coefficient in the form of e−ωh for the only reason to simplify for the reader the
comparison of computations with the constant delay case.

In this note we are interested in the following PDEs system with state-dependent
delay η





Ṫ (t, x) = rT (t, x)
(

1− T (t,x)
TK

)
− dT (t, x)− f(T (t, x), V (t, x)) + d1∆T (t, x),

Ṫ ∗(t, x) = e−ωhf(T (t− η(ut), x), V (t− η(ut), x))− δT ∗(t, x) + d2∆T ∗(t, x),

V̇ (t, x) = NδT ∗(t, x)− cV (t, x) + d3∆V (t, x).
(1.3)

Let us discuss the principal difference in the first equations of (1.2) and (1.3). In
system (1.2), uninfected target cells T are produced by the body at a constant rate λ
which is relevant, for example, in case of HIV. In contrast, the first term in the first
equation of (1.3) is the classical logistic growth term (Pierre Verhulst term) for the
population of uninfected cells T . The constant TK is the so-called carrying capacity
for the population T , which has the clear biological meaning. System (1.3) is more
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relevant in case of chronic infections with viruses such as, for example, hepatitis B
(HBV) and hepatitis C (HCV). Here T (t, x) and T ∗(t, x) represent uninfected and
infected liver cells (hepatocytes). The carrying capacity could be also considered for
the sum of uninfected and infected cells (c.f. [6]), but we decide to use it for uninfected
hepatocytes (liver cells) only for the following biological reason. It is well-known that
the development of HBV, HCV infections is usually connected with development of
fibrosis. The last indicates that the regeneration of healthy hepatocytes is not quick
enough to fill all the available (free) space in liver. This available space appears as a
result of natural death of both uninfected and infected hepatocytes as well as killing
of infected cells by immune system. The above suggests that the presence of infected
cells does not make essential restriction on the regeneration of healthy hepatocytes T .

Boundary conditions are of Neumann type for the corresponding unknown if di 6=
0 i.e. ∂T (t,x)

∂n |∂Ω = 0 if d1 6= 0 and similarly for T ∗(t, x) and V (t, x). Here ∂
∂n is the

outward normal derivative on ∂Ω. In case di = 0, no boundary conditions are needed
for the corresponding unknown(s). For more discussion see [22].

Our main goals are to present the existence and uniqueness results for the model
(1.3) in the sense of classical solutions, and to study the local asymptotic stability
of non-trivial disease equilibria. We apply the Lyapunov approach [9] to the state-
dependent delay PDE model (1.3) and allow, but not require, diffusion terms in each
state equation. For the Lyapunov approach in context of viral infection models (with
constant delay or nondelay cases) see e.g. works by A.Korobeinikov, C.McCluskey
[7, 11] and references therein. Our main interest is in discussion of the state-dependent
delay.

2. Main results. We use the basic functional framework described in [10] and
applied to the system (1.2) in [22].

Define the following linear operator −A0 = diag (d1∆, d2∆, d3∆) in C(Ω;R3)
with D(A0) ≡ D(d1∆)×D(d2∆)×D(d3∆). Here, for di 6= 0 we set D(di∆) ≡ {v ∈
C2(Ω) : ∂v(x)

∂n |∂Ω = 0} and D(dj∆) ≡ C(Ω) for dj = 0. We omit the space coordinate

x, for short, for unknown u(t) = (T (t), T ∗(t), V (t)) ∈ X ≡ [C(Ω)]3 ≡ C(Ω;R3).
It is well-known that the closure −A (in X) of the operator −A0 generates a C0-
semigroup e−At on X which is analytic and nonexpansive [10, p.5]. We denote the
space of continuous functions by C ≡ C([−h, 0];X) equipped with the sup-norm
||ψ||C ≡ maxθ∈[−h,0] ||ψ(θ)||X .

We write, the system (1.3) in the following abstract form

d

dt
u(t) +Au(t) = F (ut), t > 0.(2.1)

The non-linear continuous mapping F : C → X is defined by

F (ϕ)(x) =




r ϕ1(0, x)
(

1− ϕ1(0,x)
TK

)
− dϕ1(0, x)− f(ϕ1(0, x), ϕ3(0, x))

e−ωhf(ϕ1(−η(ϕ), x), ϕ3(−η(ϕ), x))− δϕ2(0, x)
Nδϕ2(0, x)− cϕ3(0, x)


 .(2.2)

Here ϕ = (ϕ1, ϕ2, ϕ3) ∈ C. Mapping F is not Lipschitz on the space C which is
typical for a mapping which includes discrete state-dependent delays (see review [5]
for ODE case and works [15, 16, 17, 2] for PDEs).

We need initial conditions u(θ, x) = ϕ(θ, x) = (T (θ, x), T ∗(θ, x), V (θ, x)), θ ∈
[−h, 0] for the delay problem (2.1) (c.f. (1.3)):
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ϕ ∈ Lip([−h, 0];X) ≡
{
ψ ∈ C : sup

s6=t

||ψ(s)− ψ(t)||X
|s− t| <∞

}
, ϕ(0) ∈ D(A).(2.3)

In our study we use the standard (c.f. [13, Def. 2.3, p.106] and [13, Def. 2.1, p.105])

Definition 2.1. A function u ∈ C([−h, T ];X) is called a mild solution

on [−h, T ) of the initial value problem (2.1), (2.3) if it satisfies (2.3) and u(t) =

e−Atϕ(0) +
∫ t

0
e−A(t−s)F (us) ds, t ∈ [0, T ).

A function u ∈ C([−h, T );X)
⋂
C1((0, T );X) is called a classical solution

on [−h, T ) of the initial value problem (2.1), (2.3) if it satisfies (2.3), u(t) ∈ D(A)
for 0 < t < T and (2.1) is satisfied on (0, T ).

Assume the non-linear function f : R2 → R is Lipschitz continuous and satisfies

(Hf1) there exists µ > 0 such that |f(T, V )| ≤ µ|T | for all T, V ∈ R.(2.4)

We have the following result

Theorem 2.2. Let nonlinear function f be Lipschitz and satisfy (Hf1) (see
(2.4)), state-dependent delay η : C → [0, h] is locally Lipschitz. Then the initial value
problem (2.1), (2.3) has a unique classical solution which is global in time i.e. defined
for all t ≥ 0.

Proof of Theorem 2.2 follows the line of the proof of [22, Proposition 1].
Define the set (c.f. (2.3)), which is different from the one ΩLip in [22]:

ΩlogLip ≡
{
ϕ = (ϕ1, ϕ2, ϕ3) ∈ Lip([−h, 0];X)) ⊂ C, ϕ(0) ∈ D(A) :

0 ≤ ϕ1(θ) ≤
(

1− d

r

)
TK , 0 ≤ ϕ2(θ) ≤ µ

δ

(
1− d

r

)
TKe

−ωh,

0 ≤ ϕ3(θ) ≤ Nµ

c

(
1− d

r

)
TKe

−ωh, θ ∈ [−h, 0]

}
,(2.5)

where µ is defined in (Hf1) and all the inequalities hold pointwise w.r.t. x ∈ Ω.

We need further assumptions (which include (Hf1)) on Lipschitz function f :

(Hf1+)





f(T, 0) = f(0, V ) = 0, and f(T, V ) > 0 for all T > 0, V > 0;
f is strictly increasing in both coordinates for all T > 0, V > 0;
there exists µ > 0 such that |f(T, V )| ≤ µ|T | for all T, V ∈ R.

(2.6)

We have the following result

Theorem 2.3. Let non-linear Lipschitz function f satisfy (Hf1+) (see (2.6)),

state-dependent delay η : C → [0, h] is locally Lipschitz. Then ΩlogLip is invariant i.e.

for any ϕ ∈ ΩlogLip the unique solution to problem (2.1), (2.3) satisfies ut ∈ ΩlogLip for
all t ≥ 0.

Proof of Theorem 2.3. The existence and uniqueness of solution is proven in
theorem 2.2. The proof of the invariance part follows the invariance result of [10]
with the use of the almost Lipschitz property of nonlinearity F . The estimates (for
the subtangential condition) are the same as for the constant delay case, see e.g. [11,
Theorem 2.2]. We do not repeat it here. It is important to notice that the solutions
are classic for all t ≥ 0 (but not for t ≥ h as could be in the case of merely continuous
initial functions ϕ ∈ C). For more details see, e.g. [22]. The proof of Theorem 2.3 is
complete.
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2.1. Stationary solutions. Let us discuss stationary solutions of (1.3). By
such solutions we mean time independent û which, in general, may depend on x ∈ Ω.
Consider the system (1.3) with u(t) = u(t− η(ut)) = û and denote the coordinates (a

possible triple of coordinates) of a stationary solution by (T̂ , T̂ ∗, V̂ ) = û ≡ ϕ̂(θ), θ ∈
[−h, 0]. Since stationary solutions of (1.3) do not depend on the type of delay (state-
dependent or constant) we have

{
0 = rT̂

(
1− T̂

TK

)
− dT̂ − f(T̂ , V̂ ), 0 = e−ωhf(T̂ , V̂ )− δT̂ ∗,

0 = NδT̂ ∗ − cV̂ .
(2.7)

Equations hold pointwise w.r.t. x ∈ Ω.
It is easy to see that the trivial stationary solution (

(
1− d

r

)
TK , 0, 0) always exists.

We are interested in nontrivial disease stationary solutions of (1.3). We have from the

first and second equations of (2.7) T̂ ∗ = r
δ e
−ωh · T̂

(
1− T̂

TK

)
− d

δ e
−ωhT̂ and from the

third equation V̂ = Nδ
c T̂
∗. It gives the condition on the coordinate T̂ which should

belong to (0,
(
1− d

r

)
TK ]. Denote (c.f. [11, 20])

hlogf (s) ≡ f
(
s ,
Nr

c
e−ωh · s

(
1− s

TK

)
− Nd

c
e−ωh · s

)

−r · s
(

1− s

TK

)
+ d · s.(2.8)

Assume f satisfies

(Hf log2 ) hlogf (s) = 0 has at least one and at most a finite number

of roots on (0,
(
1− d

r

)
TK ].

We denote an arbitrary root of hlogf (s) = 0 by T̂ and define the corresponding T̂ ∗ ≡
r
δ e
−ωh · T̂

(
1− T̂

TK

)
− d

δ e
−ωhT̂ and V̂ ≡ Nδ

c T̂
∗ = Nr

c e
−ωh · T̂

(
1− T̂

TK

)
− Nd

c e
−ωhT̂ .

The point (T̂ , T̂ ∗, V̂ ) satisfies (2.7), so it is a a disease stationary solution of (1.3). We

notice that in [22] the corresponding equation was written for coordinate T̂ ∗, while

(2.8) is designed for s = T̂ .

Remark (c.f. [22]). We notice that the finiteness of roots (which are obviously
isolated) does not allow the existence of equilibria which depend on spatial coordinate
x ∈ Ω. We remind that Ω is a connected set, so a function v ∈ C(Ω) may take either

one or continuum values. Assumption (Hf log2 ) implies T̂ ∗(x) ≡ T̂ ∗ ∈ R, so (T̂ , T̂ ∗, V̂ )
is independent of x ∈ Ω.

Remark. It is important to mention that usually in study of stability properties
of stationary solutions (for viral dynamics problems) one uses conditions on the so-
called reproduction numbers. These conditions are used to separate the case of a
unique stationary solution. Then the global stability of the equilibrium is investigated.
In our study, taking into account the state-dependence of the delay, we discuss the
local stability. As a consequence, it allows the co-existence of multiple equilibria.
We believe this framework provides a way to model more complicated situations with
rich dynamics (in contrast to a globally stable equilibrium). The conditions on the
reproduction numbers do not appear explicitly here, but could be seen as particular
sufficient conditions for (Hf log2 ).
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2.2. Stability of disease stationary solutions. In this section we use the
following local assumptions on f in a small neighborhood of a disease equilibrium
(given by (Hf log2 )).

(Hf3)

(
V

V̂
− f(T, V )

f(T, V̂ )

)
·
(
f(T, V )

f(T, V̂ )
− 1

)
> 0.(2.9)

One can check that the DeAngelis-Beddington functional response [1, 3] of the
form f(T, V ) = kTV

1+k1T+k2V
, with k, k1 ≥ 0, k2 > 0 satisfies (Hf3) globally. We also

mention that the DeAngelis-Beddington functional response includes as a special case
(k1 = 0) the saturated incidence rate f(T, V ) = kTV

1+k2V
.

We will also use the assumption

(Hf4) Function f is differentiable in a neighborhood of (T̂ , V̂ ).

The main result is the following

Theorem 2.4. Let the nonlinear Lipschitz function f satisfy (Hf1+), (Hf log2 ),

(Hf3), (Hf4) (see (2.6), (2.9)), a root T̂ of hlogf (s) = 0 (see (2.8) and (Hf log2 )) satisfy

T̂ > 1
2 (1 − d

r )TK . Let state-dependent delay η : C → [0, h] be locally Lipschitz in

C and continuously differentiable in a neighbourhood of equilibrium ϕ̂ ≡ (T̂ , T̂ ∗, V̂ ).
Then the stationary solution ϕ̂ is locally asymptotically stable.

In the proof we use the following Lyapunov functional with state-dependent delay
along a solution of (1.3)

U sdd(t) ≡
∫

Ω

{(
T (t, x)− T̂ −

∫ T (t,x)

T̂

f(T̂ , V̂ )

f(θ, V̂ )
dθ

)
e−ωh + T̂ ∗ · v

(
T ∗(t, x)

T̂ ∗

)

+
V̂

N
· v
(
V (t, x)

V̂

)
+ δT̂ ∗

∫ t

t−η(ut)

v

(
f(T (θ, x), V (θ, x))

f(T̂ , V̂ )

)
dθ

}
dx.(2.10)

In (2.10) the Volterra function v(s) = s− 1− ln s : (0,+∞)→ R+ (c.f. [7, 11]) is
used. The form of the functional is standard except the low limit of the last integral
in (2.10) which is state-dependent. This state-dependence was first considered in [20]
(see also [21]). For PDE (1.2) with constant delay case and d1 = d2 = 0, see e.g.
[11] and for PDE with state-dependent delay (1.2) see [22]. We do not repeat here
detailed calculations of the time derivative of U sdd(t) along a solution of (1.3). They
are similar to the ones of [22] and differ in the parts where the connection between

coordinates of the stationary solution ϕ̂ = (T̂ , T̂ ∗, V̂ ) is used. The logistic growth
term also makes difference to the study presented in [20, 22].
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