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Abstrat. The hoie of regularization for an ill-onditioned linear in-

verse problem has signi�ant impat on the resulting estimates. We on-

sider a linear inverse model with on the solution in the form of zero

mean Gaussian prior and with ovariane matrix represented in modi-

�ed Cholesky form. Elements of the ovariane are onsidered as hyper-

parameters with trunated Gaussian prior. The trunation points are

obtained from expert judgment as range on orrelations of seleted ele-

ments of the solution. This model is motivated by estimation of mixture

of radionulides from gamma dose rate measurements under the prior

knowledge on range of their ratios. Sine we aim at high dimensional

problems, we use the Variational Bayes inferene proedure to derive

approximate inferene of the model. The method is illustrated and om-

pared on a simple example and on more realisti 6 hours long release of

mixture of 3 radionulides.

1 Introdution

Linear inverse problems are fundamental in many areas of siene, signal pro-

essing, or mahine learning. The onventional least squares method fails when

the problem is ill-onditioned. In these ases, appropriate regularizations are

bene�ial to obtain desirable solution. Most ommonly used regularizations are

the Tikhonov [3℄ and LASSO [12℄ where di�erent norms of the unknown vetor

are used, l2 and l1 respetively.

Both of these methods have Bayesian interpretation with di�erent prior dis-

tribution of the unknown vetor. However, parameters of these prior distribu-

tions are assumed to be known. More �exible models allow for estimation of the

hyper-parameters, e.g. in the form of diagonal elements of the prior ovariane

matrix, whih is known as the automati relevane determination priniple [14℄

sine it favors sparse solutions. Theoretially, full ovariane matrix an be also

estimated using Wishart distribution [13,6℄. However, the problem is then over-

parametrized and the in�uene of additional regularization is signi�ant. In this

ontribution, we are onerned with models where some elements of the ovari-

ane matrix are vaguely known and need to be estimated from the data. We

assume the knowledge of ranges of seleted elements of the ovariane matrix.

We follow idea of Daniels and Pourahmadi [2℄ where modi�ed Cholesky deom-

position of the ovariane matrix is used for longitudinal data. In our model,



we restrited the possible interval for spei� elements of the ovariane matrix

using trunated Gaussian distribution. These intervals are expert information

and are onsidered as input of our algorithm.

The proposed approah is illustrated on simple syntheti example where om-

parison with Tikhonov and LASSO regularizations will be given. In addition, we

apply the resulting algorithm on a problem of determination of the soure term

of an atmospheri release of radiation where ratios of the released nulides are

vaguely known. This senario is relevant to the ase of the Fukushima Dai-ihi

nulear power plant aident [8℄. We aim for estimation of the time pro�le of the

release using gamma dose rate (GDR) measurements, so our measurement vetor

does not ontain nulide-spei� onentration ativity measurements but bulk

gamma dose rates from a mixture of nulides. Partiularly important are prior

assumptions on the nulide ratios and their treatment. These an be obtained,

e.g, from physial analysis of the power plant state (reator inventory ombined

with assumptions on the aident type) or from a few available nulide-spei�

ativity onentration samples downwind the release. In our simulated senario,

6 hours release of a mixture of 3 nulides is onsidered and Austria monitoring

network is used together with realisti meteorologial data.

2 Mathematial Method

We study the following linear inverse problem

y =Mx+ e, (1)

where y ∈ Rp×1
is vetor of measurements orrupted by error vetor e of the

same size, M ∈ Rp×n
is known matrix, and x ∈ Rn×1

is the unknown vetor

to be estimated. Solution of the noise-less problem via ordinary least square

method is x = (MTM)−1MTy, whih is often infeasible due to ill-onditioned

matrix M .

The problem is typially reast as an optimization problem

x∗ = argmin
x∈X

{
||y −Mx||22 + αg(x)

}
, (2)

where g(x) is a regularization term and α is its weight. Common regularization

terms are Tikhonov regularization [3℄ or LASSO regularization [12℄:

g
Tikhonov

(x) =||x||22, g
LASSO

(x) =||x||1, (3)

however, the parameter α needs to be arefully seleted or determined. The

optimization approah (2) an be interpreted as a maximum a posteriori estimate

of a Bayesian model. Many detailed analysis of Bayesian interpretations and also

extensions are available, e.g. [7℄. For the purpose of this text, we only note that

the Tikhonov regularization is equivalent to MAP estimation of probabilisti

model

x∗ = argmin
x∈X

{− log p(y|M,x) − log p(x|α)} , (4)



with

p(y|M,x) = Ny (Mx, Ip) , p(x|α) = Nx

(
0, α−1In

)
, (5)

where N denotes Gaussian distribution and Ip denotes identity matrix with

given size. For given α, the Bayesian model is fully equivalent to the optimization

problem (2). However, the unknown parameters, α in this ase, an be modeled

using hierarhial priors and estimated within the model [1℄.
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Fig. 1. Example of the Gaussian distribution N (1, 1), blue line, and the trunated

Gaussian distribution tN (1, 1, [0,∞]), red line.

For problem spei� tasks where assumption on same parameters arise suh

as non-negativity of x, the optimization approah (2) an be supplemented using

�subjet to� ondition. In Bayesian formulation, this ondition an be enfored

using trunated Gaussian prior denoted as tN , see one dimensional example in

Fig. 1 and Appendix for details.

2.1 Bayesian Hierarhial Model

Consider probabilisti formulation of linear inverse problem (1) with isotropi

Gaussian noise

p(y|x, ω) = Ny

(
Mx, ω−1Ip

)
, (6)

where ω is preision of noise. For unknown ω, we assume prior model in the form

of Gamma Gω(ϑ0, ρ0). All prior parameters (subsripted by 0) are set to non-

informative values of 10−10
. We assume the unknown vetor x to have Gaussian

prior; however, with trunated support to positive values,

p(x|Ω) = tNx

(
0, Ω−1, [0,+∞]

)
. (7)

We aim to model the preision matrix Ω in more detail; hene, we assume Ω in

the form of modi�ed Cholesky deomposition as

Ω = LΥLT , (8)



where Υ is diagonal matrix with diagonal entries υ = [υ1, . . . , υn] with prior

Gamma model Gυj
(α0, β0) for eah element and L is lower triangular matrix

L =




1 0 0 0
l2,1 1 0 0
.

.

.

.

.

. 1 0
ln,1 . . . ln,n−1 1


 , (9)

with unknown o�-diagonal elements forming olumn vetors li = [li+1,i, li+2,i, . . . , ln,i]
T ∈

R(n−i)×1
for i = 1, . . . n− 1. We will introdue prior model for vetors li whose

estimates together with estimate of vetor υ fully determine the ovariane ma-

trix deomposition (8). The prior model for eah non-zero element of L, li,k, are

hosen as

p (li,k|ψi,k) = tNli,k

(
0, ψ−1

i,k , [ai,k, bi,k]
)
, (10)

where ψi,k is unknown preision parameter with prior Gamma model Gψi,k
(ζ0, η0)

and with seleted interval [ai,k, bi,k] of trunated Gaussian distribution. These

intervals allow us to selet boundaries for eah element of the ovariane matrix.

Estimation of the model parameters is analytially intratable; hene, we

employ the Variational Bayes method [10℄ to yield an approximate solution. The

Variational Bayes method estimates the posterior solution in the form of ondi-

tionally independent distributions that minimize the Kullbak-Leibler divergene

to the true posterior. This minimization leads to a set of impliit equations whih

have to be solved iteratively. Here, shaping parameters of reognized posterior

distributions

p̃(x|y) = tNx (µx, Σx, [0,+∞]) , (11)

p̃(υj |y) = Gυj
(αj , βj) , (12)

p̃(li,k|y) = tNli,k

(
µli,k , Σli,k , [ai,k, bi,k]

)
, (13)

p̃(ψi,k|y) = Gψi,k
(ζi,k, ηi,k) (14)

p̃(ω|y) = Gω (ϑ, ρ) , (15)

are iteratively evaluated, see Algorithm 1. The algorithm will be denoted as the

least square with the prior adaptive ovariane with interval restritions (LS-

APCi) algorithm.

3 Experiments

To test and ompare the studied LS-APCi algorithm, we �rst design a simple

syntheti dataset. Seond, we perform experiment on realisti gamma dose rate

measurement with vaguely known ratios of seleted radionulides.

3.1 Toy Example

We selet an ill-onditioned matrix M ∈ R6×3
with elements within 0 and

1 with eigenvalues [2 × 10−7, 0.19, 0.23]. The original vetor x is seleted as



Algorithm 1 The least square with the prior adaptive ovariane with interval

restritions (LS-APCi) algorithm.

1. Initialization

(a) Set all prior parameters (subsripted by 0) to 10−10
.

(b) Set initial values: 〈L〉 = 〈Υ 〉 = In and 〈ω〉 = 1
max(MT M)

.

2. Iterate until onvergene or maximum number of iteration is reahed:

(a) Compute moments of 〈x〉 using Appendix and shaping parameters of (11):

Σx =
(

〈ω〉MT
M +

〈

LΥL
T
〉)

−1

, (16)

µx = Σx

(

〈ω〉MT
y

)

, (17)

(b) Compute moment 〈Υ 〉 using shaping parameters of (12):

α = α0 +
1

2
1n,1, β = β0 +

1

2
diag

(〈

L
T
xx

T
L
〉)

, (18)

() Compute moments of 〈L〉 with restrited ranges using Appendix and shaping

parameters of (13):

Σli,k =
(

〈υi〉
〈

x(i+1),kx
T
(i+1),k

〉

+ diag(〈ψi,k〉)
)

−1

, (19)

µli,k = Σli,k

(

−〈υi〉
〈

xix(i+1),k

〉)

, (20)

(d) Compute moment 〈ω〉using shaping parameters of (15):

ϑ = ϑ0 +
p

2
, ρ = ρ0 +

1

2
tr
(〈

xx
T
〉

M
T
M

)

− y
T
M〈x〉+

1

2
y
T
y, (21)

3. Report resulting estimated soure term 〈x〉
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Fig. 2. The results of the LS-APCi algorithm with restrited (a) and unrestrited (b)

parameter υ.



x
true

= [1, 2, 3]T and measurement vetor is generated aording to the assumed

model (1) with e ∼ N (0, 0.1). The negative elements of y are ropped to 0. We

will test two settings of the LS-APCi algorithm: (i) the spae of possible solutions

is restrited using �xed ratios of elements of vetor υ: υ = [υ1, 10υ1, 10υ1], and
(ii) unrestrited υ. The prior intervals for the unknown elements of matrix L are

[a2,1, b2,1] = [−10;−1], [a3,1, b3,1] = [−10;−1], (22)

while the simulated are l2,1 = −2 and l3,1 = −3.
The results of the LS-APCi algorithm are given in Fig. 2. The results suggest

that the restrition of the spae of possible solutions are bene�ial and the esti-

mates onverge to the true values, see Fig. 2 (a). On the other hand, estimation

of full vetor υ = [υ1, υ2, υ3] results in over-parametrization of the problem and

the estimates of the ratios in matrix L onverge to the enters of the seleted

intervals. In result, the estimated vetor x di�ers from the true vetor, see Fig.

2 (b).

For omparison, we provide results of the LASSO algorithm, Fig. 3 left, and

of the Tikhonov algorithm, Fig. 3 right. Sine both algorithms need to preselet

suitable regularization parameter, we run both algorithms for a wide range of

the regularization parameters and selet the best result for eah algorithm. The

key di�erenes is in estimation of x1. The LASSO algorithm estimates exat 0
whih orresponds to its preferene of a sparse solution. The Tikhonov algorithm

estimates very similar result to the LS-APCi with unrestrited parameter υ.

However, the LS-APCi with restrition is learly loser to the true vetor x as

well as to the true ovariane matrix and we will use this version of the algorithm

in the next experiment.
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Fig. 3. The results of the LASSO algorithm (left) and Tikhonov algorithm (right).

3.2 Realisti Example

The linear inverse problem (1) is ommon in estimation of the soure term of

an atmospheri release. Here, the vetor y ontains gamma dose rate (GDR)

measurements and the matrix M is a soure-reeptor-sensitivity matrix om-

puted using an atmospheri transport model [9℄. Note that the vetor y does

not ontain any nulide-spei� information but only sum of GDR of a mixture



of nulides and the matrix M umulates errors from atmospheri model inlud-

ing errors from the estimates of meteorologial onditions (in this ase, ECMWF

Era-Interim data).

Fig. 4. Gamma dose rate from the loud shine and deposition.

In this ase, a 6 hours long onstant rate release is simulated using 3 nulides:

Cs-137, I-131, and Xe-133 from the Czeh nulear power plant Temelin. The

Austrian radiation monitoring network is onsidered to provide measurements

from more than 300 reeptors implying M ∈ R4032×18
, see Fig. 4. To simulate

realisti onditions, di�erent meteorologial data were used for generation matrix

M and for generation of simulated measurements y. The problem is ritially ill-

onditioned and lassial optimization methods provide unsuitable results. For

our algorithm, we use the following expert-de�ned intervals of nulide ratios:

[a7:12,1, b7:12,1] = [−10,−3], [a13:18,1, b13:18,1] = [−20,−50], (23)

overing the true (simulated) ratios l7:12,1 = −3.8 and l13:18,1 = −31.3 (whih

is, however, unknown in reality).

The results of the LS-APCi algorithm are given in Fig. 5 using subplot for

eah nulide. We onlude that the results well orrespond to the true releases.

Note that in sums of the elements, x
true

and the estimated x are almost equal.

The dissimilarities an be aused by mismath in the metheorologial onditions

as well as by unertainty of the measurement. We perform also run of the LS-

APCi algorithm with unrestrited υ with signi�antly worse results; hene, we

onlude that the restrition of υ is ruial for the algorithm.
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Fig. 5. The results of the soure term estimation of 6 hour onstant release of 3 nulides

using LS-APCi algorithm.

The results are ompared with those of optimization approah with LASSO

and Tikhonov regularization with the same ranges restritions (23) as the LS-

APCi algorithm. For this experiment, we used CVX toolbox [4,5℄ where the

optimization problem (2) an be formulated to respet the ranges given in (23).

Sine the ruial parameter of the optimization approah (2) is α, we run the

LASSO and Tikhonov algorithms with α ∈
[
10−5, 105

]
. Similarly, we identify

as the most signi�ant initial parameter of the LS-APCi algorithm as Υ = αIn;

hene, we ompare these 3 algorithm with respet to this parameter α. We nor-

malize eah nulide ativity to interval [0, 1] and ompute mean squared error

(MSE) for eah α and for eah algorithm. The MSE depending on seleted pa-

rameter α are given in Fig. 6, top, aompanied by the estimated sum of total

ativity of the soure term. From these results, we an identify two main modes

of the LS-APCi solution. Note that the natural hoie Υ = In, see Algorithm

1, lies in the orret mode of the solution, see Fig. 5, while the seond mode of

solution is learly degenerate. Another situation is in the ase of the optimiza-

tion approahes where ontinuum of results are observed. Both optimization

approahes were able to obtain slightly better results in terms of MSE for spe-

i� α; however, it would be di�ult to selet the orret parameter α without

knowledge of the true solution.

4 Conlusion

The linear inverse problem was studied with spei� regularization using mod-

eling of a ovariane matrix in the modi�ed Cholesky form. We employed the

Variational Bayes inferene whih allows us to deal with vague prior information

about range of elements of the ovariane matrix using trunated Gaussian prior.

We have shown an advantage of the proposed LS-APCi method over the lassi

optimization approah with LASSO or Tikhonov regularizations. Moreover, we

applied the methods to estimation of the soure term of atmospheri release from

realisti senario where 6 hours release of mixture of 3 nulides is simulated. The

results suggest that all methods are apable to reah a suitable solution using
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Fig. 6. Top row: mean squared error between the true soure term and the estimated

soure term for eah tested algorithm and eah parameter α. Bottom row: sum of

total ativity of the soure term for eah algorithm aompanied by the true sum of

the soure term (red dashed line).

partiular setting of parameters; however, LS-APCi method is muh more robust

to seletion of the tuning parameters.
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Appendix

Trunated Gaussian distribution, denoted as tN , of a salar variable x on interval

[a; b] is de�ned as tNx(µ, σ, [a, b]) =
√
2 exp(− 1

2σ
(x−µ)2)√

πσ(erf(β)−erf(α))χ[a,b](x), where α = a−µ√
2σ
,

β = b−µ√
2σ
, funtion χ[a,b](x) is a harateristi funtion of interval [a, b] de�ned

as χ[a,b](x) = 1 if x ∈ [a, b] and χ[a,b](x) = 0 otherwise. erf() is the error funtion

de�ned as erf(t) = 2√
π

∫ t
0
e−u

2

du.

The moments of trunated Gaussian distribution are 〈x〉 = µ−√
σ

√
2[exp(−β2)−exp(−α2)]√

π(erf(β)−erf(α))

and

〈
x2

〉
= σ+ µx̂−√

σ
√
2[b exp(−β2)−a exp(−α2)]√

π(erf(β)−erf(α))
. For multivariate ase, see [11℄.
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