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Abstra
t. The 
hoi
e of regularization for an ill-
onditioned linear in-

verse problem has signi�
ant impa
t on the resulting estimates. We 
on-

sider a linear inverse model with on the solution in the form of zero

mean Gaussian prior and with 
ovarian
e matrix represented in modi-

�ed Cholesky form. Elements of the 
ovarian
e are 
onsidered as hyper-

parameters with trun
ated Gaussian prior. The trun
ation points are

obtained from expert judgment as range on 
orrelations of sele
ted ele-

ments of the solution. This model is motivated by estimation of mixture

of radionu
lides from gamma dose rate measurements under the prior

knowledge on range of their ratios. Sin
e we aim at high dimensional

problems, we use the Variational Bayes inferen
e pro
edure to derive

approximate inferen
e of the model. The method is illustrated and 
om-

pared on a simple example and on more realisti
 6 hours long release of

mixture of 3 radionu
lides.

1 Introdu
tion

Linear inverse problems are fundamental in many areas of s
ien
e, signal pro-


essing, or ma
hine learning. The 
onventional least squares method fails when

the problem is ill-
onditioned. In these 
ases, appropriate regularizations are

bene�
ial to obtain desirable solution. Most 
ommonly used regularizations are

the Tikhonov [3℄ and LASSO [12℄ where di�erent norms of the unknown ve
tor

are used, l2 and l1 respe
tively.

Both of these methods have Bayesian interpretation with di�erent prior dis-

tribution of the unknown ve
tor. However, parameters of these prior distribu-

tions are assumed to be known. More �exible models allow for estimation of the

hyper-parameters, e.g. in the form of diagonal elements of the prior 
ovarian
e

matrix, whi
h is known as the automati
 relevan
e determination prin
iple [14℄

sin
e it favors sparse solutions. Theoreti
ally, full 
ovarian
e matrix 
an be also

estimated using Wishart distribution [13,6℄. However, the problem is then over-

parametrized and the in�uen
e of additional regularization is signi�
ant. In this


ontribution, we are 
on
erned with models where some elements of the 
ovari-

an
e matrix are vaguely known and need to be estimated from the data. We

assume the knowledge of ranges of sele
ted elements of the 
ovarian
e matrix.

We follow idea of Daniels and Pourahmadi [2℄ where modi�ed Cholesky de
om-

position of the 
ovarian
e matrix is used for longitudinal data. In our model,



we restri
ted the possible interval for spe
i�
 elements of the 
ovarian
e matrix

using trun
ated Gaussian distribution. These intervals are expert information

and are 
onsidered as input of our algorithm.

The proposed approa
h is illustrated on simple syntheti
 example where 
om-

parison with Tikhonov and LASSO regularizations will be given. In addition, we

apply the resulting algorithm on a problem of determination of the sour
e term

of an atmospheri
 release of radiation where ratios of the released nu
lides are

vaguely known. This s
enario is relevant to the 
ase of the Fukushima Dai-i
hi

nu
lear power plant a

ident [8℄. We aim for estimation of the time pro�le of the

release using gamma dose rate (GDR) measurements, so our measurement ve
tor

does not 
ontain nu
lide-spe
i�
 
on
entration a
tivity measurements but bulk

gamma dose rates from a mixture of nu
lides. Parti
ularly important are prior

assumptions on the nu
lide ratios and their treatment. These 
an be obtained,

e.g, from physi
al analysis of the power plant state (rea
tor inventory 
ombined

with assumptions on the a

ident type) or from a few available nu
lide-spe
i�


a
tivity 
on
entration samples downwind the release. In our simulated s
enario,

6 hours release of a mixture of 3 nu
lides is 
onsidered and Austria monitoring

network is used together with realisti
 meteorologi
al data.

2 Mathemati
al Method

We study the following linear inverse problem

y =Mx+ e, (1)

where y ∈ Rp×1
is ve
tor of measurements 
orrupted by error ve
tor e of the

same size, M ∈ Rp×n
is known matrix, and x ∈ Rn×1

is the unknown ve
tor

to be estimated. Solution of the noise-less problem via ordinary least square

method is x = (MTM)−1MTy, whi
h is often infeasible due to ill-
onditioned

matrix M .

The problem is typi
ally re
ast as an optimization problem

x∗ = argmin
x∈X

{
||y −Mx||22 + αg(x)

}
, (2)

where g(x) is a regularization term and α is its weight. Common regularization

terms are Tikhonov regularization [3℄ or LASSO regularization [12℄:

g
Tikhonov

(x) =||x||22, g
LASSO

(x) =||x||1, (3)

however, the parameter α needs to be 
arefully sele
ted or determined. The

optimization approa
h (2) 
an be interpreted as a maximum a posteriori estimate

of a Bayesian model. Many detailed analysis of Bayesian interpretations and also

extensions are available, e.g. [7℄. For the purpose of this text, we only note that

the Tikhonov regularization is equivalent to MAP estimation of probabilisti


model

x∗ = argmin
x∈X

{− log p(y|M,x) − log p(x|α)} , (4)



with

p(y|M,x) = Ny (Mx, Ip) , p(x|α) = Nx

(
0, α−1In

)
, (5)

where N denotes Gaussian distribution and Ip denotes identity matrix with

given size. For given α, the Bayesian model is fully equivalent to the optimization

problem (2). However, the unknown parameters, α in this 
ase, 
an be modeled

using hierar
hi
al priors and estimated within the model [1℄.
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Fig. 1. Example of the Gaussian distribution N (1, 1), blue line, and the trun
ated

Gaussian distribution tN (1, 1, [0,∞]), red line.

For problem spe
i�
 tasks where assumption on same parameters arise su
h

as non-negativity of x, the optimization approa
h (2) 
an be supplemented using

�subje
t to� 
ondition. In Bayesian formulation, this 
ondition 
an be enfor
ed

using trun
ated Gaussian prior denoted as tN , see one dimensional example in

Fig. 1 and Appendix for details.

2.1 Bayesian Hierar
hi
al Model

Consider probabilisti
 formulation of linear inverse problem (1) with isotropi


Gaussian noise

p(y|x, ω) = Ny

(
Mx, ω−1Ip

)
, (6)

where ω is pre
ision of noise. For unknown ω, we assume prior model in the form

of Gamma Gω(ϑ0, ρ0). All prior parameters (subs
ripted by 0) are set to non-

informative values of 10−10
. We assume the unknown ve
tor x to have Gaussian

prior; however, with trun
ated support to positive values,

p(x|Ω) = tNx

(
0, Ω−1, [0,+∞]

)
. (7)

We aim to model the pre
ision matrix Ω in more detail; hen
e, we assume Ω in

the form of modi�ed Cholesky de
omposition as

Ω = LΥLT , (8)



where Υ is diagonal matrix with diagonal entries υ = [υ1, . . . , υn] with prior

Gamma model Gυj
(α0, β0) for ea
h element and L is lower triangular matrix

L =




1 0 0 0
l2,1 1 0 0
.

.

.

.

.

. 1 0
ln,1 . . . ln,n−1 1


 , (9)

with unknown o�-diagonal elements forming 
olumn ve
tors li = [li+1,i, li+2,i, . . . , ln,i]
T ∈

R(n−i)×1
for i = 1, . . . n− 1. We will introdu
e prior model for ve
tors li whose

estimates together with estimate of ve
tor υ fully determine the 
ovarian
e ma-

trix de
omposition (8). The prior model for ea
h non-zero element of L, li,k, are


hosen as

p (li,k|ψi,k) = tNli,k

(
0, ψ−1

i,k , [ai,k, bi,k]
)
, (10)

where ψi,k is unknown pre
ision parameter with prior Gamma model Gψi,k
(ζ0, η0)

and with sele
ted interval [ai,k, bi,k] of trun
ated Gaussian distribution. These

intervals allow us to sele
t boundaries for ea
h element of the 
ovarian
e matrix.

Estimation of the model parameters is analyti
ally intra
table; hen
e, we

employ the Variational Bayes method [10℄ to yield an approximate solution. The

Variational Bayes method estimates the posterior solution in the form of 
ondi-

tionally independent distributions that minimize the Kullba
k-Leibler divergen
e

to the true posterior. This minimization leads to a set of impli
it equations whi
h

have to be solved iteratively. Here, shaping parameters of re
ognized posterior

distributions

p̃(x|y) = tNx (µx, Σx, [0,+∞]) , (11)

p̃(υj |y) = Gυj
(αj , βj) , (12)

p̃(li,k|y) = tNli,k

(
µli,k , Σli,k , [ai,k, bi,k]

)
, (13)

p̃(ψi,k|y) = Gψi,k
(ζi,k, ηi,k) (14)

p̃(ω|y) = Gω (ϑ, ρ) , (15)

are iteratively evaluated, see Algorithm 1. The algorithm will be denoted as the

least square with the prior adaptive 
ovarian
e with interval restri
tions (LS-

APCi) algorithm.

3 Experiments

To test and 
ompare the studied LS-APCi algorithm, we �rst design a simple

syntheti
 dataset. Se
ond, we perform experiment on realisti
 gamma dose rate

measurement with vaguely known ratios of sele
ted radionu
lides.

3.1 Toy Example

We sele
t an ill-
onditioned matrix M ∈ R6×3
with elements within 0 and

1 with eigenvalues [2 × 10−7, 0.19, 0.23]. The original ve
tor x is sele
ted as



Algorithm 1 The least square with the prior adaptive 
ovarian
e with interval

restri
tions (LS-APCi) algorithm.

1. Initialization

(a) Set all prior parameters (subs
ripted by 0) to 10−10
.

(b) Set initial values: 〈L〉 = 〈Υ 〉 = In and 〈ω〉 = 1
max(MT M)

.

2. Iterate until 
onvergen
e or maximum number of iteration is rea
hed:

(a) Compute moments of 〈x〉 using Appendix and shaping parameters of (11):

Σx =
(

〈ω〉MT
M +

〈

LΥL
T
〉)

−1

, (16)

µx = Σx

(

〈ω〉MT
y

)

, (17)

(b) Compute moment 〈Υ 〉 using shaping parameters of (12):

α = α0 +
1

2
1n,1, β = β0 +

1

2
diag

(〈

L
T
xx

T
L
〉)

, (18)

(
) Compute moments of 〈L〉 with restri
ted ranges using Appendix and shaping

parameters of (13):

Σli,k =
(

〈υi〉
〈

x(i+1),kx
T
(i+1),k

〉

+ diag(〈ψi,k〉)
)

−1

, (19)

µli,k = Σli,k

(

−〈υi〉
〈

xix(i+1),k

〉)

, (20)

(d) Compute moment 〈ω〉using shaping parameters of (15):

ϑ = ϑ0 +
p

2
, ρ = ρ0 +

1

2
tr
(〈

xx
T
〉

M
T
M

)

− y
T
M〈x〉+

1

2
y
T
y, (21)

3. Report resulting estimated sour
e term 〈x〉
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Fig. 2. The results of the LS-APCi algorithm with restri
ted (a) and unrestri
ted (b)

parameter υ.



x
true

= [1, 2, 3]T and measurement ve
tor is generated a

ording to the assumed

model (1) with e ∼ N (0, 0.1). The negative elements of y are 
ropped to 0. We

will test two settings of the LS-APCi algorithm: (i) the spa
e of possible solutions

is restri
ted using �xed ratios of elements of ve
tor υ: υ = [υ1, 10υ1, 10υ1], and
(ii) unrestri
ted υ. The prior intervals for the unknown elements of matrix L are

[a2,1, b2,1] = [−10;−1], [a3,1, b3,1] = [−10;−1], (22)

while the simulated are l2,1 = −2 and l3,1 = −3.
The results of the LS-APCi algorithm are given in Fig. 2. The results suggest

that the restri
tion of the spa
e of possible solutions are bene�
ial and the esti-

mates 
onverge to the true values, see Fig. 2 (a). On the other hand, estimation

of full ve
tor υ = [υ1, υ2, υ3] results in over-parametrization of the problem and

the estimates of the ratios in matrix L 
onverge to the 
enters of the sele
ted

intervals. In result, the estimated ve
tor x di�ers from the true ve
tor, see Fig.

2 (b).

For 
omparison, we provide results of the LASSO algorithm, Fig. 3 left, and

of the Tikhonov algorithm, Fig. 3 right. Sin
e both algorithms need to presele
t

suitable regularization parameter, we run both algorithms for a wide range of

the regularization parameters and sele
t the best result for ea
h algorithm. The

key di�eren
es is in estimation of x1. The LASSO algorithm estimates exa
t 0
whi
h 
orresponds to its preferen
e of a sparse solution. The Tikhonov algorithm

estimates very similar result to the LS-APCi with unrestri
ted parameter υ.

However, the LS-APCi with restri
tion is 
learly 
loser to the true ve
tor x as

well as to the true 
ovarian
e matrix and we will use this version of the algorithm

in the next experiment.
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Fig. 3. The results of the LASSO algorithm (left) and Tikhonov algorithm (right).

3.2 Realisti
 Example

The linear inverse problem (1) is 
ommon in estimation of the sour
e term of

an atmospheri
 release. Here, the ve
tor y 
ontains gamma dose rate (GDR)

measurements and the matrix M is a sour
e-re
eptor-sensitivity matrix 
om-

puted using an atmospheri
 transport model [9℄. Note that the ve
tor y does

not 
ontain any nu
lide-spe
i�
 information but only sum of GDR of a mixture



of nu
lides and the matrix M 
umulates errors from atmospheri
 model in
lud-

ing errors from the estimates of meteorologi
al 
onditions (in this 
ase, ECMWF

Era-Interim data).

Fig. 4. Gamma dose rate from the 
loud shine and deposition.

In this 
ase, a 6 hours long 
onstant rate release is simulated using 3 nu
lides:

Cs-137, I-131, and Xe-133 from the Cze
h nu
lear power plant Temelin. The

Austrian radiation monitoring network is 
onsidered to provide measurements

from more than 300 re
eptors implying M ∈ R4032×18
, see Fig. 4. To simulate

realisti
 
onditions, di�erent meteorologi
al data were used for generation matrix

M and for generation of simulated measurements y. The problem is 
riti
ally ill-


onditioned and 
lassi
al optimization methods provide unsuitable results. For

our algorithm, we use the following expert-de�ned intervals of nu
lide ratios:

[a7:12,1, b7:12,1] = [−10,−3], [a13:18,1, b13:18,1] = [−20,−50], (23)


overing the true (simulated) ratios l7:12,1 = −3.8 and l13:18,1 = −31.3 (whi
h

is, however, unknown in reality).

The results of the LS-APCi algorithm are given in Fig. 5 using subplot for

ea
h nu
lide. We 
on
lude that the results well 
orrespond to the true releases.

Note that in sums of the elements, x
true

and the estimated x are almost equal.

The dissimilarities 
an be 
aused by mismat
h in the metheorologi
al 
onditions

as well as by un
ertainty of the measurement. We perform also run of the LS-

APCi algorithm with unrestri
ted υ with signi�
antly worse results; hen
e, we


on
lude that the restri
tion of υ is 
ru
ial for the algorithm.
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Fig. 5. The results of the sour
e term estimation of 6 hour 
onstant release of 3 nu
lides

using LS-APCi algorithm.

The results are 
ompared with those of optimization approa
h with LASSO

and Tikhonov regularization with the same ranges restri
tions (23) as the LS-

APCi algorithm. For this experiment, we used CVX toolbox [4,5℄ where the

optimization problem (2) 
an be formulated to respe
t the ranges given in (23).

Sin
e the 
ru
ial parameter of the optimization approa
h (2) is α, we run the

LASSO and Tikhonov algorithms with α ∈
[
10−5, 105

]
. Similarly, we identify

as the most signi�
ant initial parameter of the LS-APCi algorithm as Υ = αIn;

hen
e, we 
ompare these 3 algorithm with respe
t to this parameter α. We nor-

malize ea
h nu
lide a
tivity to interval [0, 1] and 
ompute mean squared error

(MSE) for ea
h α and for ea
h algorithm. The MSE depending on sele
ted pa-

rameter α are given in Fig. 6, top, a

ompanied by the estimated sum of total

a
tivity of the sour
e term. From these results, we 
an identify two main modes

of the LS-APCi solution. Note that the natural 
hoi
e Υ = In, see Algorithm

1, lies in the 
orre
t mode of the solution, see Fig. 5, while the se
ond mode of

solution is 
learly degenerate. Another situation is in the 
ase of the optimiza-

tion approa
hes where 
ontinuum of results are observed. Both optimization

approa
hes were able to obtain slightly better results in terms of MSE for spe-


i�
 α; however, it would be di�
ult to sele
t the 
orre
t parameter α without

knowledge of the true solution.

4 Con
lusion

The linear inverse problem was studied with spe
i�
 regularization using mod-

eling of a 
ovarian
e matrix in the modi�ed Cholesky form. We employed the

Variational Bayes inferen
e whi
h allows us to deal with vague prior information

about range of elements of the 
ovarian
e matrix using trun
ated Gaussian prior.

We have shown an advantage of the proposed LS-APCi method over the 
lassi


optimization approa
h with LASSO or Tikhonov regularizations. Moreover, we

applied the methods to estimation of the sour
e term of atmospheri
 release from

realisti
 s
enario where 6 hours release of mixture of 3 nu
lides is simulated. The

results suggest that all methods are 
apable to rea
h a suitable solution using
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Fig. 6. Top row: mean squared error between the true sour
e term and the estimated

sour
e term for ea
h tested algorithm and ea
h parameter α. Bottom row: sum of

total a
tivity of the sour
e term for ea
h algorithm a

ompanied by the true sum of

the sour
e term (red dashed line).

parti
ular setting of parameters; however, LS-APCi method is mu
h more robust

to sele
tion of the tuning parameters.

A
knowledgement

The resear
h leading to these results has re
eived funding from the Norwegian

Finan
ial Me
hanism 2009-2014 under Proje
t Contra
t no. MSMT-28477/2014,

Sour
e-Term Determination of Radionu
lide Releases by Inverse Atmospheri


Dispersion Modelling (STRADI). The authors would like to thank to Radek

Hofman for data for the realisti
 experiment.

Appendix

Trun
ated Gaussian distribution, denoted as tN , of a s
alar variable x on interval

[a; b] is de�ned as tNx(µ, σ, [a, b]) =
√
2 exp(− 1

2σ
(x−µ)2)√

πσ(erf(β)−erf(α))χ[a,b](x), where α = a−µ√
2σ
,

β = b−µ√
2σ
, fun
tion χ[a,b](x) is a 
hara
teristi
 fun
tion of interval [a, b] de�ned

as χ[a,b](x) = 1 if x ∈ [a, b] and χ[a,b](x) = 0 otherwise. erf() is the error fun
tion

de�ned as erf(t) = 2√
π

∫ t
0
e−u

2

du.

The moments of trun
ated Gaussian distribution are 〈x〉 = µ−√
σ

√
2[exp(−β2)−exp(−α2)]√

π(erf(β)−erf(α))

and

〈
x2

〉
= σ+ µx̂−√

σ
√
2[b exp(−β2)−a exp(−α2)]√

π(erf(β)−erf(α))
. For multivariate 
ase, see [11℄.
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