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Abstract. The choice of regularization for an ill-conditioned linear in-
verse problem has significant impact on the resulting estimates. We con-
sider a linear inverse model with on the solution in the form of zero
mean Gaussian prior and with covariance matrix represented in modi-
fied Cholesky form. Elements of the covariance are considered as hyper-
parameters with truncated Gaussian prior. The truncation points are
obtained from expert judgment as range on correlations of selected ele-
ments of the solution. This model is motivated by estimation of mixture
of radionuclides from gamma dose rate measurements under the prior
knowledge on range of their ratios. Since we aim at high dimensional
problems, we use the Variational Bayes inference procedure to derive
approximate inference of the model. The method is illustrated and com-
pared on a simple example and on more realistic 6 hours long release of
mixture of 3 radionuclides.

1 Introduction

Linear inverse problems are fundamental in many areas of science, signal pro-
cessing, or machine learning. The conventional least squares method fails when
the problem is ill-conditioned. In these cases, appropriate regularizations are
beneficial to obtain desirable solution. Most commonly used regularizations are
the Tikhonov [3] and LASSO [12] where different norms of the unknown vector
are used, Iy and [; respectively.

Both of these methods have Bayesian interpretation with different prior dis-
tribution of the unknown vector. However, parameters of these prior distribu-
tions are assumed to be known. More flexible models allow for estimation of the
hyper-parameters, e.g. in the form of diagonal elements of the prior covariance
matrix, which is known as the automatic relevance determination principle [14]
since it favors sparse solutions. Theoretically, full covariance matrix can be also
estimated using Wishart distribution [13,6]. However, the problem is then over-
parametrized and the influence of additional regularization is significant. In this
contribution, we are concerned with models where some elements of the covari-
ance matrix are vaguely known and need to be estimated from the data. We
assume the knowledge of ranges of selected elements of the covariance matrix.
We follow idea of Daniels and Pourahmadi [2] where modified Cholesky decom-
position of the covariance matrix is used for longitudinal data. In our model,



we restricted the possible interval for specific elements of the covariance matrix
using truncated Gaussian distribution. These intervals are expert information
and are considered as input of our algorithm.

The proposed approach is illustrated on simple synthetic example where com-
parison with Tikhonov and LASSO regularizations will be given. In addition, we
apply the resulting algorithm on a problem of determination of the source term
of an atmospheric release of radiation where ratios of the released nuclides are
vaguely known. This scenario is relevant to the case of the Fukushima Dai-ichi
nuclear power plant accident [8]. We aim for estimation of the time profile of the
release using gamma dose rate (GDR) measurements, so our measurement vector
does not contain nuclide-specific concentration activity measurements but bulk
gamma dose rates from a mixture of nuclides. Particularly important are prior
assumptions on the nuclide ratios and their treatment. These can be obtained,
e.g, from physical analysis of the power plant state (reactor inventory combined
with assumptions on the accident type) or from a few available nuclide-specific
activity concentration samples downwind the release. In our simulated scenario,
6 hours release of a mixture of 3 nuclides is considered and Austria monitoring
network is used together with realistic meteorological data.

2 Mathematical Method

We study the following linear inverse problem
y = Mx+e, 1)

where y € RP*! is vector of measurements corrupted by error vector e of the
same size, M € RP*" is known matrix, and x € R™*! is the unknown vector
to be estimated. Solution of the noise-less problem via ordinary least square
method is x = (M7 M)~ M7y, which is often infeasible due to ill-conditioned
matrix M.

The problem is typically recast as an optimization problem

x* = argmin {|ly — Mx|3 + ag(x)} 2)

where ¢g(x) is a regularization term and « is its weight. Common regularization
terms are Tikhonov regularization [3] or LASSO regularization [12]:

ITikhonov(X) =||x/[3, gr.asso(x) =||x]|1, (3)

however, the parameter a needs to be carefully selected or determined. The
optimization approach (2) can be interpreted as a maximum a posteriori estimate
of a Bayesian model. Many detailed analysis of Bayesian interpretations and also
extensions are available, e.g. [7]. For the purpose of this text, we only note that
the Tikhonov regularization is equivalent to MAP estimation of probabilistic
model

X" = arg min {=logp(y|M, x) — log p(x|a)}, (4)



with
p(y|M,X) :Ny (MX’IP)’ p(x|a) = Nx (0,04_1[”) ) (5)

where N denotes Gaussian distribution and I, denotes identity matrix with
given size. For given «, the Bayesian model is fully equivalent to the optimization
problem (2). However, the unknown parameters, « in this case, can be modeled
using hierarchical priors and estimated within the model [1].
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Fig. 1. Example of the Gaussian distribution N(1,1), blue line, and the truncated
Gaussian distribution tN (1,1, [0, o)), red line.

For problem specific tasks where assumption on same parameters arise such
as non-negativity of x, the optimization approach (2) can be supplemented using
“subject to” condition. In Bayesian formulation, this condition can be enforced
using truncated Gaussian prior denoted as tA, see one dimensional example in
Fig. 1 and Appendix for details.

2.1 Bayesian Hierarchical Model

Consider probabilistic formulation of linear inverse problem (1) with isotropic
Gaussian noise
plylx,w) = Ny (Mx,0™'1), (6)

where w is precision of noise. For unknown w, we assume prior model in the form
of Gamma G, (¥, po). All prior parameters (subscripted by 0) are set to non-
informative values of 1071°. We assume the unknown vector x to have Gaussian
prior; however, with truncated support to positive values,

p(x|02) = tNy (0,0271,[0,+00]) . (7)

We aim to model the precision matrix {2 in more detail; hence, we assume {2 in
the form of modified Cholesky decomposition as

Q=LYL", (8)



where 7" is diagonal matrix with diagonal entries v = [vq,...,v,] with prior
Gamma model G, (ao, Bo) for each element and L is lower triangular matrix

1 0 0 0
lby 10 0
L= " , (9)
1 0
ln,l . ln,n—l 1
with unknown off-diagonal elements forming column vectors 1; = [l;41.4, lit2.4; - - -, lm-]T S

R(=9*1 for 4 = 1,...n — 1. We will introduce prior model for vectors 1; whose
estimates together with estimate of vector v fully determine the covariance ma-
trix decomposition (8). The prior model for each non-zero element of L, [; i, are
chosen as

p (Lo ki k) = tN, (O,w;,i, [ai,k;bi,k]) , (10)

where 1); 1, is unknown precision parameter with prior Gamma model Gy, , (o, 70)
and with selected interval [a; , i k] of truncated Gaussian distribution. These
intervals allow us to select boundaries for each element of the covariance matrix.

Estimation of the model parameters is analytically intractable; hence, we
employ the Variational Bayes method [10] to yield an approximate solution. The
Variational Bayes method estimates the posterior solution in the form of condi-
tionally independent distributions that minimize the Kullback-Leibler divergence
to the true posterior. This minimization leads to a set of implicit equations which
have to be solved iteratively. Here, shaping parameters of recognized posterior
distributions

P(xly) = tNx (b, x, [0, +00]) (11)
ﬁ(vjb’) = gvj ( j,ﬂj), (12)
Plikly) =tV (0,05 21, laiks bik]) (13)
P(ikly) = Gy i (CiskrMik) (14)
p(wly) = Gu (9, p) (15)

are iteratively evaluated, see Algorithm 1. The algorithm will be denoted as the
least square with the prior adaptive covariance with interval restrictions (LS-
APCi) algorithm.

3 Experiments

To test and compare the studied LS-APCi algorithm, we first design a simple
synthetic dataset. Second, we perform experiment on realistic gamma dose rate
measurement, with vaguely known ratios of selected radionuclides.

3.1 Toy Example

We select an ill-conditioned matrix M € R5*3 with elements within 0 and
1 with eigenvalues [2 x 1077,0.19,0.23]. The original vector x is selected as



Algorithm 1 The least square with the prior adaptive covariance with interval
restrictions (LS-APCi) algorithm.

1. Initialization

(a) Set all prior parameters (subscripted by 0) to 1071°.
(b) Set initial values: (L) = (") = I, and (w) = m
2. Tterate until convergence or maximum number of iteration is reached:

(a) Compute moments of (x) using Appendix and shaping parameters of (11):
—1
T = ()M + (LTL7)) (16)
= (@IM"y), (17)

(b) Compute moment (") using shaping parameters of (12):

1

a:ao+2

1n1, B=fo+ %diag (<LTxxTL>) , (18)

(c) Compute moments of (L) with restricted ranges using Appendix and shaping
parameters of (13):

S = (0 (e w1 ) + ding((Wir) (19)
Hi; e = Zli,k (_<Ui><xix(i+1),k>) ) (20)

(d) Compute moment (w)using shaping parameters of (15):
1 1
9 =790+ g, p=po+ Etr <<xxT>MTM) —y M (x) + EyTy7 (21)

3. Report resulting estimated source term (x)
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Fig. 2. The results of the LS-APCi algorithm with restricted (a) and unrestricted (b)
parameter v.



Xerue = [1,2,3]7 and measurement vector is generated according to the assumed
model (1) with e ~ A/(0,0.1). The negative elements of y are cropped to 0. We
will test two settings of the LS-APCi algorithm: (i) the space of possible solutions
is restricted using fixed ratios of elements of vector v: v = [v1, 10v1, 10v4], and
(ii) unrestricted v. The prior intervals for the unknown elements of matrix L are

lag,1,b21] = [=10; =1], [a31,b3.1] = [-10; 1], (22)

while the simulated are I ; = —2 and l3; = —3.

The results of the LS-APCi algorithm are given in Fig. 2. The results suggest
that the restriction of the space of possible solutions are beneficial and the esti-
mates converge to the true values, see Fig. 2 (a). On the other hand, estimation
of full vector v = [vy, v2, v3] results in over-parametrization of the problem and
the estimates of the ratios in matrix L converge to the centers of the selected
intervals. In result, the estimated vector x differs from the true vector, see Fig.
2 (b).

For comparison, we provide results of the LASSO algorithm, Fig. 3 left, and
of the Tikhonov algorithm, Fig. 3 right. Since both algorithms need to preselect
suitable regularization parameter, we run both algorithms for a wide range of
the regularization parameters and select the best result for each algorithm. The
key differences is in estimation of x;. The LASSO algorithm estimates exact 0
which corresponds to its preference of a sparse solution. The Tikhonov algorithm
estimates very similar result to the LS-APCi with unrestricted parameter w.
However, the LS-APCi with restriction is clearly closer to the true vector x as
well as to the true covariance matrix and we will use this version of the algorithm
in the next experiment.
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Fig. 3. The results of the LASSO algorithm (left) and Tikhonov algorithm (right).

3.2 Realistic Example

The linear inverse problem (1) is common in estimation of the source term of
an atmospheric release. Here, the vector y contains gamma dose rate (GDR)
measurements and the matrix M is a source-receptor-sensitivity matrix com-
puted using an atmospheric transport model [9]. Note that the vector y does
not contain any nuclide-specific information but only sum of GDR of a mixture



of nuclides and the matrix M cumulates errors from atmospheric model includ-
ing errors from the estimates of meteorological conditions (in this case, ECMWF
Era-Interim data).

GDR ground+cloud of cloud_ground_GDR (2013-03-15 11:00)
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Fig. 4. Gamma dose rate from the cloud shine and deposition.

In this case, a 6 hours long constant rate release is simulated using 3 nuclides:
Cs-137, I-131, and Xe-133 from the Czech nuclear power plant Temelin. The
Austrian radiation monitoring network is considered to provide measurements
from more than 300 receptors implying M € R*032X18 gee Fig. 4. To simulate
realistic conditions, different meteorological data were used for generation matrix
M and for generation of simulated measurements y. The problem is critically ill-
conditioned and classical optimization methods provide unsuitable results. For
our algorithm, we use the following expert-defined intervals of nuclide ratios:

lar:12,1, br12,1) = [—10,=3],  [a13.18,1, b1g:1s,1] = [—20, —50], (23)

covering the true (simulated) ratios l7.121 = —3.8 and ly3.18,1 = —31.3 (which
is, however, unknown in reality).

The results of the LS-APCi algorithm are given in Fig. 5 using subplot for
each nuclide. We conclude that the results well correspond to the true releases.
Note that in sums of the elements, Xiue and the estimated x are almost equal.
The dissimilarities can be caused by mismatch in the metheorological conditions
as well as by uncertainty of the measurement. We perform also run of the LS-
APCi algorithm with unrestricted v with significantly worse results; hence, we
conclude that the restriction of v is crucial for the algorithm.
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Fig. 5. The results of the source term estimation of 6 hour constant release of 3 nuclides
using LS-APCi algorithm.

The results are compared with those of optimization approach with LASSO
and Tikhonov regularization with the same ranges restrictions (23) as the LS-
APCi algorithm. For this experiment, we used CVX toolbox [4,5] where the
optimization problem (2) can be formulated to respect the ranges given in (23).
Since the crucial parameter of the optimization approach (2) is «, we run the
LASSO and Tikhonov algorithms with o € [107°,10°]. Similarly, we identify
as the most significant initial parameter of the LS-APCi algorithm as 1" = al,;
hence, we compare these 3 algorithm with respect to this parameter oe. We nor-
malize each nuclide activity to interval [0, 1] and compute mean squared error
(MSE) for each a and for each algorithm. The MSE depending on selected pa-
rameter « are given in Fig. 6, top, accompanied by the estimated sum of total
activity of the source term. From these results, we can identify two main modes
of the LS-APCi solution. Note that the natural choice T = I,,, see Algorithm
1, lies in the correct mode of the solution, see Fig. 5, while the second mode of
solution is clearly degenerate. Another situation is in the case of the optimiza-
tion approaches where continuum of results are observed. Both optimization
approaches were able to obtain slightly better results in terms of MSE for spe-
cific a;; however, it would be difficult to select the correct parameter o without
knowledge of the true solution.

4 Conclusion

The linear inverse problem was studied with specific regularization using mod-
eling of a covariance matrix in the modified Cholesky form. We employed the
Variational Bayes inference which allows us to deal with vague prior information
about range of elements of the covariance matrix using truncated Gaussian prior.
We have shown an advantage of the proposed LS-APCi method over the classic
optimization approach with LASSO or Tikhonov regularizations. Moreover, we
applied the methods to estimation of the source term of atmospheric release from
realistic scenario where 6 hours release of mixture of 3 nuclides is simulated. The
results suggest that all methods are capable to reach a suitable solution using
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Fig. 6. Top row: mean squared error between the true source term and the estimated
source term for each tested algorithm and each parameter a. Bottom row: sum of
total activity of the source term for each algorithm accompanied by the true sum of
the source term (red dashed line).

particular setting of parameters; however, LS-APCi method is much more robust
to selection of the tuning parameters.
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Appendix

Truncated Gaussian distribution, denoted as t/\f of a scalar variable x on interval

. V2exp(—5 (= a—
[a; b] is defined as tN(u, 0, [a,b]) = \/ﬁ—;(;(f 3 (erf”()a)))([a (), where o = £2E,

B8 = %, function x4 () is a characteristic function of interval [a,b] defined

as X[qp)(7) = Lif z E [a,b] and X[q4)(z) = O otherwise. erf() is the error function
defined as erf(t) \/— fo e~ du.

) —exp(—a?)]

The moments of truncated Gaussian distribution are (z) = u—/o V2l e’;pirf[z DR

and (2°) = 0 + pZ — \/_\/_[bf/x—p(erf(ﬁ)) Zf;zi()) <Yl For multivariate case, see [11].

erf(a))
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