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Abstract Many diagnostic methods using scintigraphic image sequence re-
quire decomposition of the sequence into tissue images and their time-activity
curves. Standard procedure for this task is still manual selection of regions
of interest (ROIs) which can be highly subjective due to their overlaps and
poor signal-to-noise ratio. This can be overcome by automatic decomposi-
tion, however, the results may not have good physiological meaning. In this
contribution, we aim to combine these approaches in semi-supervised proce-
dure which is based on Bayesian blind source separation with the possibility
of manual interaction after each run until an acceptable solution is obtained.
The manual interaction is based on manul ROI placement and using its posi-
tion to modify the corresponding prior parameters of the model. Performance
of the proposed method is studied on real scintigraphic image sequence as
well as on estimation of the speci�c diagnostic parameter on representative
dataset of 10 scintigraphic sequences.

Keywords: Dynamic Renal Scintigraphy, Regions of Interest, Blind Source
Separation, Factor Analysis, Variational Bayes Method

1 Introduction

In dynamic scintigraphy, radiopharmaceuticals, i.e. pharmaceutical drugs
with radioactivity, are applied into a human body. Subsequently, the emit-
ted gamma radiation is repetitively captured by a scintigraphic camera. By
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doing this, a sequence of images is obtained. By analyzing the sequence, an
accumulation and distribution of the radioactive substance in the organ of
interest can be studied. Such information is important for examination of
the organ's function. In this paper, we will be concerned mainly with renal
studies (analysis of function of kidneys), however, the approach is applicable
in other types of sequences as well.

The key problem of separation of activity of di�erent organs in planar
scintigraphy is that the activity from di�erent organs is recorded by the
same pixel in the scintigraphic image. From the camera point of view, the
organ images overlap. One possible approach to overcome this di�culty is
to manually select regions of interest (ROIs) [9], that marks pixels that are
believed to belong to one organ only.

In nuclear medicine practice, methods based on the manual selection of the
ROIs are mostly employed [5] which is, however, time consuming and prone
to errors. There is a wide range of methods for automation of ROIs selection.
User-independent approach using factor analysis, which separates structures
automatically, has been presented in [14] and later in [4]. The segmentation of
the whole kidney is studied in [8] while the automatic segmentation method
that combines Fast Marching Method with Multi Agent System is proposed
in [3] and its improved version in [2]. Recently, methods with the use of
probability modeling have been proposed such as [11] favoring sparse solution
or modeling speci�c behavior of time-activity curves [12]. Extensive study on
modeling and estimation of time-activity curves has been given, e.g. in [6, 13].

In this paper, we follow up the probabilistic approach to modeling of scinti-
graphic sequences and estimation of the underlying source images and time-
activity curves. Although the blind source separation step of the algorithm is
automatic, we also consider the possibility of manual intervention of a user
when the results are not anatomically correct. The manually selected ROIs
should be used as a prior information to the separation method where an im-
age signal should be suppressed or strengthened. The process can be iterated
until an acceptable solution is found.

Performance of the presented approach is studied on dynamic medical
sequences from the database of real data [1]. Speci�cally, we determine the
relative renal function for the �rst 10 sequences and compare it to the results
obtained by an experienced physician.

2 Mathematical Methods

Here, we will formulate a probabilistic model for blind and semi-supervised
source separation of scintigraphic image sequence. We assume that the num-
ber of images in a sequence is n and each image consists of p pixels. The
images are stored column-wise in columns of data matrix D ∈ Rp×n. Then
the mathematical model of separation can be written as
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D = AXT + E, (1)

where source images (i.e., individual physiological structures) are stored
column-wise in columns of the matrix A, A ∈ Rp×r, associated �ow of ra-
dioactive substances through these structures, called time-activity curves, are
in columns of the matrix X, X ∈ Rn×r, and E ∈ Rp×n is error matrix. The
inner dimension of the product (1), r, is unknown. An upper bound on r has
to be preselected for the studied problem, but the number of relevant sources
will be determined automatically.

Our aim is to estimate unknown parameters of the model, A and X. We
use Bayesian probability theory to do so since it allows to express our beliefs,
assumptions and knowledge about parameters in the form of prior distribu-
tions. The prior distributions are then updated by the observed data.

2.1 Probabilistic Model

In (1), the model of each pixel di,j , i = 1, ..., p and j = 1, ..., n, can be seen
as the result of a product aTi and xj :

di,j = aTi xj + ei,j , (2)

where aTi ∈ R1×r is i-th row of A, xj ∈ Rr×1 is j-th column of XT and ei,j
associated element of E. We assume that ei,j is independently and identi-
cally Gaussian distributed as f (ei,j |ω) = Nei,j

(
0, ω−1

)
, where N denotes

Gaussian distribution with given mean and variance, and ω in the unknown
variance of the noise common for all pixels, see [10] for details. Then the
model of each data element di,j can be written as

f (di,j |ai,xj , ω) = Ndi,j
(
aTi xj , ω

−1
)
, (3)

f (ω|ϑ0, ρ0) = Gω (ϑ0, ρ0) , (4)

where G denotes Gamma distribution with prior parameters ϑ0 and ρ0. The
parameters ϑ0 and ρ0 are assumed to be known with common choice being
ϑ0 = ρ0 = 10−10 which correspond to non-informative prior. The Gamma
prior is chosen because it is conjugate with unknown variance of Gaussian
likelihood of di,j (3). In nuclear medicine, each pixel di,j is obtained as a count
of radioactive particles and therefore di,j is known to be Poisson-distributed
and hence may be considered approximately Normal.

For model of A, we follow [12] and assume the pixel-element model as

f (ai,k|ξi,k) = tNai,k
(
0, ξ−1

i,k , [0,∞)
)
, (5)

f (ξi,k|φ0, ψ0) = Gξi,k
(
φ0i,k , ψ0i,k

)
, (6)
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where tN denotes truncated Gaussian distribution with given positive sup-
port and unknown precision hyperparameter ξi,k. The prior distribution for
ξi,k in (6) is chosen to favor sparse solution of the source images which is bio-
logically motivated assumption since we assume that a tissue do not cover the
whole area, see [12] for details. The prior parameters φ0, ψ0 are set to non-
informative 10−10. The prior model of elements of the time-activity curves
is selected as f (xj,k) = tN xj,k

(0, 1, [0,∞)) , where no speci�c assumption of
time-activity curves has been made.

Since the exact determination of the model parameters is not tractable,
we employ the variational Bayes method [10] to obtain approximate posterior
densities which leads to a set of implicit equations that needs to be solved
iteratively. This algorithm will be denoted as sparse blind source separation
SparseBSS.

2.2 Semi-supervised Source Separation

After the run of the SparseBSS algorithm from Section 2.1, it could happen
that some pixels that physiologically belong to one structure are incorrectly
estimated to belong to another structure. We propose a way how to incorpo-
rate physiological information which could improve the resulting estimates.
We exploit the possibility of modifying the prior parameters φ0i,k , ψ0i,k which
can encourage the method to favor or not favor sparse solution in the selected
regions. These prior parameters are in�uenced by manual intervention. They
determine the shape of probability distribution of ξi,k in (6) where ξi,k is the
inverse variance of pixel ai,k. By setting the values of φ0i,k , ψ0i,k smaller than
10−10, the Gamma distribution becomes �atter thus making larger values
of ξi,k more likely. Consequently, the inverse of ξi,k can become smaller and
therefore the estimate of ai,k is closer to zero. On the other hand, we can
encourage higher values of pixel ai,k by setting the parameters φ0i,k , ψ0i,k

larger than 10−10. This process is summarized in Algorithm 1.

Algorithm 1 Proposed semi-supervised source separation algorithm.
1. Initialization:

a. Set prior parameters ϑ0, ρ0, φ0i,k , ψ0i,k to non-informative values 10−10.
b. Set assumed number of sources r.

2. Iterate until su�cient results are obtained:

a. Run SparseBSS algorithm, Section 2.1.
b. Perform manual selection of ROIs and assign new values of prior parameters

φ0i,k , ψ0i,k in those ROIs.

3. Report estimates of A and X.
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Selection of a ROI that should have di�erent prior parameters is done by
manual marking of its boundary. An example of the selected ROI as well
as the graphical user interface can be seen in Fig. 1. The options for re-
selection of prior parameters φ0i,k , ψ0i,k are 10

−2 (suppressing pixels activity),
10−5, 10−10, 10−15 and 10−20 (encouraging picels activity). After the change
in the selected ROIs, we apply the SparseBSS algorithm again. The process
can be repeated until su�cient results are obtained. This stopping rule is
subjective and for us it means repeat until the structures are separated from
each other.

Fig. 1 Graphical user interface of the proposed semi-supervised source separation method.
An example of manual ROI boundary drawing is displayed on the left.

3 Real Data Experiments

The derived probabilistic model was tested on real scintigraphic sequences
from dynamic renal scintigraphy available from the online database [1]. Each
sequence consists of 180 images taken repetitively every 10 seconds during
dynamic scintigraphic examination. Each image has a dimension of 128×128
pixels. Since we will estimate relative renal function, we need to analyze each
kidney separately. Hence, we select a square region of interest that contains
the whole kidney surrounded by background and exclude the other kidney.
Thus, it is possible to estimate the associated time-activity curves separately.
The region can be placed manually and the size of the region is 47×47 pixels
in all cases. Consequently, the dimension of the considered data matrix D is
2209× 180.
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First, we will demonstrate the separation on one selected sequence. Second,
we will study the estimation of speci�c diagnostic parameter on a represen-
tative set of 10 sequences.

3.1 Selected Sequence Separation

We select one sequence to demonstrate the properties of the derived algo-
rithm. The main task is to separate the sources, e.g., parenchyma, pelvis, and
tissue background, from each other. For example, separation of parenchyma
and pelvis is a very di�cult task since the pelvis is surrounded by parenchyma
which implicates that there are pixels corresponding to both parenchyma and
pelvis. After applying radioactive substance into the human body, the �rst
images detects activity of the tracer coming from the blood stream. Then
comes the renal uptake phase in which the blood activity decreases and the
activity of the parenchyma increases. So-called out�ow phase follows when
the parenchyma activity decreases and the activity of the pelvis increases.
Eventually, the substance �ows from pelvis into the urinary bladder.

We demonstrate the behavior of our method on the region with the right
kidney. Every �fth image of this sequence is shown in Fig. 1.

5. 10. 15. 20. 25. 30. 35. 40. 45.

50. 55. 60. 65. 70. 75. 80. 85. 90.

95. 100. 105. 110. 115. 120. 125. 130. 135.

140. 145. 150. 155. 160. 165. 170. 175. 180.

Fig. 1 Example scintigraphic image sequence where each 5th image is shown.

The inner dimension r is overestimated as 4 since we expect images to
include at least activities from tissue background, parenchyma, and pelvis.
Parameters φ0 and ψ0 were set equal to 10−10. The results of the method is
shown in Fig. 2, top panel. Evidently, our algorithm managed to separate the
blood activity of the background (source 1) from the kidney (source 2). On the
other hand, the algorithm was not able to separate the renal parenchyma from
the pelvis. Source 3 represents residual pixels of the parenchyma and source 4



Semi-supervised Bayesian Source Separation 7

represents the noise with negligible activity during the whole dynamic renal
scintigraphy.
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Fig. 2 Top panel: results of the SparseBSS algorithm. Bottom panel: Results of the
SparseBSS algorithm after manual intervention.

In order to obtain pelvis as an individual factor, we try to suppress pixels of
parenchyma in source 2 by setting parameters φ0 and ψ0 equal to 10−15.
The mask of pixels, where these parameters were changed can be seen in
Fig. 3. The results of the second run of the algorithm are shown in Fig. 2,
bottom panel. In this case, the method was able to estimate tissue
background activity (source 1) and parenchyma (source 2) as individual
factors and simultaneously separate pelvis (source 3) from parenchyma. The
consequence is that their time-activity curves are also well separated.



8 Lenka Bódiová, Ond°ej Tichý, and Václav �mídl

source 2 mask

Fig. 3 Source 2 (left) and mask of suppressed pixels (right).

3.2 Relative Renal Function Estimation

In our experiment, the relative renal function (RRF) will be estimated and
compared to the values obtained by a physician which are also included in
the database. The RRF is generally determined from the parenchyma and
its associated time-activity curves as the relative activity of the left and the
right parenchyma. The consensus is that only �rst 12 images (i.e., 2 minutes)
of the scintigraphy sequence are used [7] where no other activities then from
parenchyma and background are typically present. It is usually called the
uptake phase of the sequence. The RRF can be computed as

RRF =
SLA · SLX

SLA · SLX + SRA · SRX
· 100 [%] , (7)

where SA denotes the sum of a column of the matrix A which is associated
with the estimate of the parenchyma. Analogously, SX denotes the sum of a
row of the matrix X which belongs to the estimate of the activity curve for
the parenchyma. Upper indexes L and R denote left and right parenchyma
respectively.

The �rst 10 sequences from the database ([1], note that we preserve se-
quences numbering from [1] where the sequence number 3 is missing) were
chosen for the experimental purposes in order to estimate the RRF. The re-
sults obtained using the equation (7) after applying the derived algorithm are
compared with those determined by the physician in Tab. 1. In six cases out
of ten, the di�erence is smaller than 3% and in other four cases the di�erence
is greater than 10% (sequences 4, 5, 6 and 9). As the next step, we try to
improve the estimates of parenchyma of both kidneys to get even more ac-
curate values of RRF by manual selection of regions, where prior parameters
φ0 and ψ0 should be changed. The results after manual intervention and the
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second cycle of the algorithm are also summarized in Tab. 1. It is apparent
that in these four cases, we were able to signi�cantly enhance the estimate.
Nonetheless, some estimates of RRF that were close to those chosen by physi-
cian before manual intervention are now a little bit worse but the di�erence
is still less than 6%.

Relative renal function [%]

by physician after �rst run of SparseBSS after manual intervention

Sequence 1 62 59 59

Sequence 2 52 49 46

Sequence 4 57 70 63

Sequence 5 87 70 76

Sequence 6 18 39 30

Sequence 7 51 52 53

Sequence 8 39 37 40

Sequence 9 24 54 17

Sequence 10 54 52 59

Sequence 11 18 18 21

Table 1 Comparison of the estimated relative renal function.

To conclude, changing of parameters φ0 and ψ0 which in�uence the vari-
ance of individual pixels in manually selected areas can improve the estima-
tion of the sources and corresponding time-activity curves.

4 Conclusion

In this contribution, we presented a new method for semi-supervised source
separation of dynamic medical image sequences. We use the factor analysis
model together with Bayesian approach where parameters of the model are
considered as unknown variables to be estimated using the variational Bayes
method. We allow manual intervention of the user by selecting regions of
interest and changing parameters of the prior distribution. The user can in-
crease or decrease the probability that the region belong to that source. The
same algorithm is run again with modi�ed prior information.

The usefulness of the method is demonstrated on selected real medical
image sequence where improved separation is shown. Moreover, the method
is used to estimate relative renal function on a set of 10 sequences. Here, we
observe that the results of the basic method can be signi�cantly improved
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using proposed manual intervention and incorporation into the estimating
procedure.
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