
Stud. Nonlinear Dyn. E. 2016; aop

Krenar Avdulaj* and Jozef Barunik

A semiparametric nonlinear quantile 
regression model for financial returns
DOI 10.1515/snde-2016-0044

Abstract: Accurately measuring and forecasting value-at-risk (VaR) remains a challenging task at the heart of 
financial economic theory. Recently, quantile regression models have been used successfully to capture the 
conditional quantiles of returns and to forecast VaR accurately. In this paper, we further explore nonlineari-
ties in data and propose to couple realized measures with the nonlinear quantile regression framework to 
explain and forecast the conditional quantiles of financial returns. The nonlinear quantile regression models 
are implied by the copula specifications and allow us to capture possible nonlinearities, tail dependence, 
and asymmetries in the conditional quantiles of financial returns. Using high frequency data that covers most 
liquid US stocks in seven sectors, we provide ample evidence of asymmetric conditional dependence with dif-
ferent levels of dependence, which are characteristic for each industry. The backtesting results of estimated 
VaR favour our approach.

Keywords: copula quantile regression; realized volatility; value-at-risk. 

JEL: C14; C32; C58; F37; G32.

1  Introduction
A number of important financial decisions require proper specification and estimation of the entire finan-
cial returns distribution. Models for conditional quantiles help researchers and practitioners to measure and 
forecast value-at-risk (VaR) (quantiles of the return distribution), although most current approaches rely on 
unrealistic global distributional assumptions. In turn, many parametric approaches fail in estimation due 
to a fat tailed, non-elliptical empirical joint distribution of financial returns data in practice. The difficulty 
further increases if we expect the distributions to change over time, and if we need a proper strategy for 
capturing the dynamics in quantiles. In this paper, we propose to model the future conditional quantiles of 
returns using the realized volatility and nonlinear quantile regression (NQR) framework. Our approach is 
based on parametric copula models that allow the capture of potential nonlinear dynamics while retaining 
a semiparametric flexibility. Thus, a semiparametric NQR for financial returns should deliver more accurate 
estimates and forecasts of conditional quantiles that are robust to model misspecification.

Regression quantiles, as introduced in a seminal work by Koenker and Bassett (1978), remain a lively area 
of research with several recent advances. Koenker (2004) extends the quantile regression to panel data appli-
cations and introduces a general approach to estimating quantile regression models for longitudinal data. 
Xiao (2009) propose a co-integration model with quantile-varying coefficients that are allowed to be affected 
by the shocks received in each period over the innovation quantile. Chen et al. (2009) introduce nonlinear-in-
parameters quantile auto-regression (QAR) models using parametric copulas.

Koenker and Bassett (1978) introduced the regression quantiles more than three decades ago; however, 
only recently did the financial literature focus more on this. With these advances, quantile regression models 
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have important applications in risk management, portfolio optimization, and asset pricing. Engle and Man-
ganelli (2004) introduce the conditional autoregressive value at risk (CAViaR) modelling quantiles of the 
return distribution directly by regressing on its lagged values. In a recent work, Cappiello et al. (2014) measure 
co-movements by using regression quantiles. For any set of quantiles, the authors compute the conditional 
probability that a random variable is lower than a given quantile, when another random variable is also lower 
than its corresponding quantile.

Fewer contributions explore the relationship between returns and their realized volatility, measured 
using high frequency data. Andersen et al. (2003) integrate high-frequency data to model and forecast the 
realized volatility and returns distribution. Cle (2008) find the realized volatility to be useful for computing 
VaR forecasts. The authors calculate and evaluate quantile forecasts of the daily exchange rate returns of five 
currencies. Brownlees and Gallo (2010) forecast VaR using different volatility measures. The authors find 
that the predictive ability of VaR improves considerably when exploiting ultra-high-frequency data volatility 
measures. By employing two alternative joint specifications of daily returns and realized volatility, Maheu 
and McCurdy (2011) find that the realized volatility computed at high frequency improves the out-of-sample 
(OOS) forecasts of the return distribution. Finally, under a semi-parametric quantile regression framework, 
Žikeš and Baruník (2016) utilize nonparametric measures of the various components of ex post variation in 
asset prices to study the conditional quantiles of daily asset returns and realized volatility and to forecast their 
future values. We exploit the ideas in a nonlinear semiparametric conditional quantile regression framework 
to estimate the dependence between returns and the realized volatility at quantiles of interest. Under mild 
conditions, the model allows for the global misspecification of parametric copulas and marginals.

The contribution of this paper is two-fold. First, we propose to use realized measures in the NQR frame-
work to explain and forecast the conditional quantiles of financial returns. Second, we apply the proposed 
model to a pool of the most liquid US assets across different industries. The article is structured as follows. 
Section 2 introduces the copula quantile regression model. Section 3 describes the data under analysis. 
Section 4 presents an application to real data. Section 5 evaluates the quantile forecast, and Section 6 con-
cludes the article. Notably, the number of results produced by this study is very large, and the results are over-
lapping; therefore, we relegate our auxiliary results to the online supplementary Appendix that is available in 
the Supplementary data section published with the article.

2  Nonlinear quantile regression model for financial returns
Žikeš and Baruník (2016) propose a simple linear semiparametric model that successfully captures the con-
ditional quantiles of returns. The approach is based on quantile regressing (log) returns rt+1 on its own past 
realized volatility measured with high frequency data. Žikeš and Baruník (2016) Hence, we assume that the 
τ-quantile of future returns that are conditional on information set ℱt can be written as a linear function of 
its past quadratic variation,1

	 τ ϑ
β τ β τ ϑ+ = + ′1 0( | ) ( ) ( ) ,t t tq r F � (1)

where ϑt is a measure of quadratic variation σ=∫ 2
0

d
t

t sQV s  associated with the logarithmic price process 
dpt = μtdt+σtdWt that evolves over the time interval [0, T], and β0(τ), βϑ(τ) are vectors of coefficients to be estimated.

Under the assumption of no jumps in the underlying price process, Žikeš and Baruník (2016) establish 
a connection that exists between the linear quantile regression model (LQR) in Equation 1 and the assumed 
logarithmic price process. The researchers argue that the conditional quantile q

τ
(rt+1|ℱt) can be obtained from 

the conditional distribution of rt+1, the given information set ℱt that contains ϑt. Thus, the implied conditional 
quantiles of the returns density q

τ
(rt+1|ℱt) can be approximated conveniently at all quantiles τ∈(0, 1) by linear 

1 Note that Zikeš and Baruník (2016) allow a more general specification that includes various components of volatility and weakly 
exogenous variables to drive the conditional quantiles in the model.
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functions of the current and past values of volatility measures, and Equation 1 can be conveniently used to 
model and forecast VaR.

A LQR in Equation 1 can be estimated as a solution to the following problem (Koenker and Bassett, 1978):

	 1

1 0 1 0min | ( ) ( ) | (1 )| ( ) ( ) | ,
k t t t t

t t
r r

τ τ

ϑ ϑ
τ β τ β τ ϑ τ β τ β τ ϑ

−

+ +∈ ∈ ∈

 − − + − − −′ ′
 
∑ ∑

β R T T
�

(2)

where T
τ
 = {t:rt+1 ≥ β0(τ)–βϑ(τ)′ϑt} and T1–τ

 is its complement.
In the special case in which τ = 0.5, the above quantile regression, delivers the least absolute devia-

tion (LAD) estimate, the LAD is a robust alternative to the classical ordinary least squares (OLS) estimator 
whenever the errors have a fat-tailed distribution. The problem defined in Equation 2 does not have a closed 
form-solution; however Portnoy and Koenker (1997) provide a computationally fast algorithm that is also 
implemented in the quantreg package for R software.

By quantile regressing the future returns on their past volatility, Žikeš and Baruník (2016) assume that 
the relationship is linear. In our work, we further extend the researchers successful approach and assume 
nonlinearities in the relation, which should be explored. To model a nonlinear relationship between future 
returns and their past volatility, we propose to use NQRs instead. Recall the original problem of explaining 
the conditional quantiles of future returns rt+1 as a function of past volatility ϑt. Under a NQR framework, the 
parameters of quantile regression can be estimated as a solution to the following problem:

	 τ

δ
τ ϑ τ τ ϑ τ

−

+ +
∈ ∈

 − + − −  
∑ ∑

1

1 1min | ( , ; )| (1 )| ( , ; )| ,
p

t t t t
t t

r rq q
T T

δ δ

�
(3)

where T
τ
 = {t:rt+1 ≥ q(ϑt, τ; δ)} and T1–τ

 is its complement. Koenker and Park (1996) developed an interior point 
algorithm to compute the quantile regression estimates for problems with nonlinear response functions. The 
researchers approach to solve the nonlinear problem is to solve a succession of linearized problems, i.e. by 
splitting the nonlinear problem into a set of linear ones.

In a recent work, Allen et al. (2013) study the inverse volatility-return relationship by examining six vola-
tility-return stock index pairs using linear and NQR models. The researchers find that the relationship is not 
uniform across the distribution of the volatility-price return pairs. In our work, we utilize a different approach 
than Allen et al. (2013), and we regress future returns rt+1 on their lagged realized volatility computed as the 
square root of the sum of squared intraday returns

	
ϑ ∆

=

= = ∑ 2

1
( ) ,

M

t t k t
k

RV r
�

(4)

where ( ) ( )∆ −− + − +
= − 11 1K K

M M
k t t t
r r r  is the k-th 5-minute intraday return from the sample of k = 1…, M.

By estimating quantile regressions using small samples, we may encounter a quantile crossing 
problem caused by estimation error or model misspecification. Recently, Dette and Volgushev (2008) 
propose a non-parametric estimate of conditional quantiles that avoids quantile crossing. The method 
uses an initial estimate of the conditional distribution function in the first step and solves the problem of 
inversion and monotonization with respect to τ∈(0, 1) simultaneously. Chernozhukov et al. (2009, 2010)) 
propose a closely related but different method to address the quantile crossing problem.2 The researchers 
method consists of sorting the original estimated non-monotone curve into a monotone rearranged curve. 
This method is a two-step procedure; first, a preliminary (parametric) estimate of the conditional quantile 
curve is isotonized and inverted. Next, the final non-crossing estimates are constructed by an inversion 
of the curves that are obtained in the first step. This method is incorporated in the quantreg package 
in R software, which is also the one we use in this paper. Here we note that, in our empirical applications 
reported later in this article, the quantile crossing problem never arises.

2 For a comparison of these approaches, refer to Dette and Volgushev (2008).
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2.1  Copulas and nonlinear quantile regression

Having defined the framework for NQR model for financial returns, which we use to model and predict condi-
tional VaR, a function q(ϑt, τ; δ) remains to be defined. Here, we employ the approach of Bouyé and Salmon 
(2009), who consider a NQR model based on copulas.

Copula quantile regression models can be viewed as a special case of the NQR models. Using the prop-
erties of conditional probability distribution, the link between copula functions and conditional quantile 
functions can be established. Consider a random sample of realized volatility (ϑ1, …, ϑT) and returns (r1, …, 
rT) from V and R, respectively. The probability distribution of future return rt+1 conditional on the realized 
volatility ϑt can be defined as
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Denoted by C1(·,·; δ), the partial derivative of the copula function with respect to the first argument, the prob-
ability distribution of rt+1, conditional on ϑt, can also be written as

	

δ
τ ϑ δ ϑ δ+ +

∂
= =

∂
1 2

1 1 1
1

( , ; )
( | ; ) ( ( ), ( ); ),t t t t

C u u
r C F F r

u V R

�
(5)

where u1 = F
V
(ϑt) and u2 = F

R
(rt+1). Refer to the 7 for the proof. In the case that Equation 5 is invertible with 

respect to rt+1, the relationship between V and the quantile of R can be expressed as

	 τ ϑ ϑ τ δ ϑ τ δ−= = 1
| ( | ) ( , ; ) ( ( ( ), ; )),t t tF Fq
RV R V
Q D � (6)

where D is the partial inverse of C1 in the second argument and −1F
R

 is the pseudo-inverse of F
R

. There is a pos-
sibility that the relationship in Equation 5 is not invertible, and if this is the case, numerical methods should 
be used.3 We can generate observations on R given V by evaluating Equation 6 and replacing τ by independ-
ent uniformly distributed draws.

2.2  Copula quantile functions

To complete the model specification, we need to employ specific copula quantile functions. In this paper, we 
use the two most popular ones, the Normal and the t copulas. The bivariate Normal copula function can be 
written as

3 The Gumbel copula is a typical example in which numerical methods are required. Its τ quantile function is given by the fol-
lowing expression

θ θθθ θ θ θτ
−− − + −− −= − − + −

1/
1 2

1 1(( log( )) ( log( )) )1 1
1 1 1 2( log( )) (( log( )) ( log( )) )u uu u e u u

As one can observe, this expression is not invertible. However, the implementation of the numerical methods is time consuming 
because finding the root of the non-invertible quantile function above needs extra time beyond solving the non-linear quantile 
regression problem.
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where Φ(·)is the standard Normal distribution, and ρ the linear correlation. The partial derivative with respect 
to u1 = F

V
(ϑt) is

	

Φ ρΦ
τ Φ

ρ

− − −
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and the quantile curve implied by the copula function can be obtained by solving Equation 7 for u2 as

	 Φ ρΦ ϑ ρ Φ τ− −= + −1 2 1
2 ( ( ( )) 1 ( )).tu F

V � (8)

Finally, the relationship between ϑt and the quantile of rt+1 is then

	 τ ϑ ϑ τ δ Φ ρΦ ϑ ρ Φ τ− − −= = + −1 1 2 1
| ( | ) ( , ; ) ( ( ( ( )) 1 ( ))),t t tF Fq
RV R V
Q � (9)

where −1F
R

 is the pseudo-inverse of F
R

. The distributions of F
V
 and F

R
 can be specified either parametrically or 

non-parametrically. We do not impose any assumption on the distribution of the margins and use the empiri-
cal distribution instead. Thus, we avoid the problem of misspecification. If we assume that F

R
 is known only 

to a location and scale parameter, the quantile curve will have the following form

	 τ ϑ ϑ τ δ µ σ Φ ρΦ ϑ ρ Φ τ− − −= = + + −1 1 2 1
| ( | ) ( , ; ) ( ( ( ( )) 1 ( ))).t t tF Fq
RV R V
Q � (10)

When the margins are estimated non-parametrically, we obtain a semiparametric copula (quantile) model. 
The properties of this estimator are established by Chen and Fan (2006). The authors also show that the sem-
iparametric conditional quantile estimators are automatically monotonic across quantiles; this is a useful 
property for conditional VaR models. In this work, for margins of the returns and for realized volatility, we 
employ the non-parametric empirical distribution Fj introduced by Genest et  al. (1995), which consists of 
modelling the marginal distributions by the (rescaled) empirical distribution as

	
, , 

1

1ˆ ˆ ˆ( ) { }, { , }
1

T

j j t j t t t
t

F z z z z r
T

ϑ
=

= ≤ ∈
+ ∑1

�
(11)

where 1{.} is an indicator function. The second copula quantile function that we use in our modelling strategy 
is based on a bivariate t copula
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where Γ(·) is the Gamma distribution, ρ is the linear correlation and η is the degrees of freedom parameter. 
As can be observed in the expression below, the partial derivative with respect to u1 is a bit more complicated

	

η η

η
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ρ
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Following the same steps as previously performed, the quantile curve implied by the t copula is obtained by 
solving Equation 12 for u2 as
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Finally, the relationship between ϑt and the quantile of rt+1 can then be expressed as

	 η η η η
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Again, if we assume that F
R

 is known only to a location and scale parameter, the quantile curve will have the 
following form
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The theoretical quantile curves of models in Equations 8–9 and 13–14 are plotted in Figure 1, which shows 
that, for the same correlation parameter and the same margins, different copulas capture different types 
of dependence (Figure 1C and D). We know that the Normal copula does not have tail dependence for ρ < 1, 

whereas the t copula has tail dependence that is symmetric and is estimated as η

η ρ
τ τ

ρ+

 + −= = − + 1
( 1)(1 )2 .

1
L U t   

 
The tail behaviour of these copulas is depicted by Figure 1A and B.
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Figure 1: Theoretical quantile curves of the Normal and the t copulas, both with correlation ρ = 0.7 and for the latter 3 degrees of 
freedom. The marginal distributions in (C) and (D) are t3(·), and the quantiles are τ∈{0.01, 0.05, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99} 
in all cases.
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3  The data description
We study conditional quantiles of the 21 most liquid US stock returns from the seven main market sectors 
defined in accordance with the global industry classification standard (GICS).4 We use three stocks with the 
highest market capitalization in a sector as representative of the analysed sector. The selected stocks rep-
resent approximately half of the total capitalization of the sector. The sectors and representative stocks are 
listed in Table 1. The data spans from August 2004 to December 2011. The period under study is informative 
because it covers the recent US recession of Dec. 2007 – June 2009 and 3 years before and after the crisis. The 
data were obtained from Price-Data.com.5

For the computation of realized measures, we restrict the analysis to 5-min returns during the 9:30 a.m. 
to 4:00 p.m. business hours of the New York Stock Exchange (NYSE). The data are time-synchronized by the 
same time-stamps. To eliminate potential estimation bias, which could originate from low activity, we elimi-
nate transactions executed on Saturdays and Sundays, US federal holidays, December 24 to 26, and December 
31 to January 2. Consequently, our data contains 1835 trading days.

In Table 4, we present descriptive statistics of the returns and realized volatility for the data that con-
stitute our sample. All daily returns series have excess kurtosis and, as usual, the stocks from the Financial 
sector, on average, have higher volatility than the stocks from the other sectors.

4  Empirical results

4.1  Full sample results

We quantile-regress the returns at time t+1 conditional on the realized volatility at time t, using the 
full sample of data. In the analysis, we focus on the 1%, 5%, 10%, 25%, 75%, 90% and 95% quantiles 
because these are most interesting from an economic perspective. We solve the copula quantile regres-
sion problem as in Equation 3, in which the quantile curve function q(·) is in accordance with either 
Equation 10 in the case of the Normal copula or Equation 15 in the case of the t copula. For comparison, 
we also estimate the LQR as in Equation 1. Given that the parameters of the linear model are not directly 
comparable to the nonlinear parameters, we do not report them here to save space; however, they are 
available on request from the authors. Instead, the performance of linear and NQR models is compared 
via VaR forecast accuracy.

We begin with the empirical estimates, which are synthesized into boxplots for clarity.6 Figures 2 and 
3 plot the parameters ρ, μ, σ for both nonlinear models and the degrees of freedom η for the t copula, 

Table 1: Sectors and representative stocks.

Sector Stocks

Financials Bank of America Corporation (BAC), Citigroup (C), Wells Fargo & Company (WFC)
Information technology Apple (AAPL), Intel Corporation (INTC), Microsoft Corporation (MSFT)
Energy Chevron Corporation (CVX), Schlumberger Limited (SLB), Exxon Mobil Corporation (XOM)
Consumer discretionary Amazon.com (AMZN), Walt Disney Company (DIS), McDonald’s Corp. (MCD)
Consumer staples Coca-Cola Company (KO), Procter & Gamble Co. (PG), Wal-Mart Stores (WMT)
Telecommunication services Comcast Corporation (CMCSA), AT&T (T), Verizon Communications (VZ)
Health care Johnson & Johnson (JNJ), Merck & Co. (MRK), Pfizer (PFE)

4 Morgan Stanley Capital International (MSCI) and Standard & Poor developed the GICS. This standard is a common global clas-
sification standard used by the global financial community.
5 http://www.price-data.com/
6 The detailed results of the copula parameters can be found in Tables 1–4 in the supplementary online Appendix.
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Figure 2: Estimated parameters from the Normal and the t copulas using the full sample data. For each quantile level, we sum-
marize the results for 21 assets.

respectively. Examining the estimates of ρ, we notice that the Normal copula, on average, estimates a lower 
correlation than the t counterpart, particularly for lower quantiles that are of the highest interest. In contrast, 
the t copula captures the expected asymmetry with lower (τ = 5%) quantiles that have coefficients with much 
higher magnitudes in comparison to upper (τ = 95%) quantiles. Another important finding is that the joint 
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K. Avdulaj and J. Barunik: A semiparametric nonlinear quantile regression model      9

distribution of returns and realized volatility is heavy tailed at all quantiles under analysis. This finding can 
be observed in Figure 3 in which the average of the degrees of freedom is approximately 5 for all quantiles. 
The degrees of freedom parameter allows the t copula to capture higher dependence, particularly in the tails 
of joint distribution. Finally, the location-scale parameters of returns (μ and σ) in general are different than 
0 and 1, respectively. Thus, the inclusion of these parameters in the copula quantile curves (Equation 10 and 
15) is essential.

Although the parameter estimates from all 21 stock returns used in the analysis are similar, we restrict 
ourselves to discussing the results for one representative, namely Pfizer. Figure 4 plots the fitted quantile 
curves for Pfizer using the Normal and the t copulas compared to the fitted curves from the benchmark LQR 
model. Note that positive (negative) slope curves correspond to a positive (negative) correlation. We notice 
that there are nonlinear dependencies, particularly for the lower quantiles. Lower quantiles appear to be 
driven by past volatility to a larger extent than the upper quantiles, which results in asymmetric joint dis-
tribution. Figure 4 can be explored in more detail by inspecting the estimated model parameters in Tables 2 
and 4 in the supplementary online Appendix. We notice that the estimated correlation coefficients for both 
nonlinear models have expected signs, i.e. which is negative for lower quantiles and positive for the upper 
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Figure 3: Degrees of freedom for the t copula using the full sample data. For each quantile level, we are summarize the results 
for 21 assets.
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10      K. Avdulaj and J. Barunik: A semiparametric nonlinear quantile regression model

quantiles. In addition, the correlation coefficients are all significantly different from zero. The degrees of 
freedom parameter for the t copula is statistically significant as well for all quantiles under analysis. Regard-
ing the location and scale parameters, with very few exceptions, we confirm the statistical significance as 
well. The findings from this illustratory stock are uniform across all stocks considered and support our non-
linear model for conditional quantiles of returns.

4.2  Out-of-sample results

The main objective of proposing the nonlinear copula quantile regression for quantiles of the returns distri-
bution is the desire to obtain precise VaR predictions. We split the data to the in-sample 1335 observations 
that are used for the model fits and the 500 observations for the OOS predictions, which we use later for the 
evaluation of forecasting models that correspond to the dates from January 2010 until December 2011. Hence, 
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Figure 5: Out-of-sample correlation from the t copula. The in-sample period includes 1335 observations, and the out-of-sample 
period includes 500. We use the one-step-ahead rolling window for a length of approximately 2 years and assume that the 
degrees-of-freedom are constant throughout the out-of-sample window.
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K. Avdulaj and J. Barunik: A semiparametric nonlinear quantile regression model      11

we estimate the models using in-sample data and then use the rolling window7 to obtain 500 one-step-ahead 
forecasts of the quantiles of returns (or the VaR). The model parameters for the OOS are represented in Figure 5  
for the t copula and in Figure 1 of the supplementary online Appendix for the Normal copula. When examin-
ing the parameters of the Normal copula, we notice that the estimates have high variance and many outli-
ers. t Conversely, the counterpart produces much more stable correlations. The reason for the instability of 
the results for the Normal copula is that it is not as flexible as t and thus cannot cope with large changes in 
dependence. In addition, for most assets, there is a slight correlation asymmetry when comparing the lower 
and upper quantiles.

An interesting finding that can be observed from Figure 5 is the large heterogeneity of parameter estimates 
across industries. The Financial industry tends to have the largest negative correlation. For this industry, the 
increase in volatility drives (the future) lower quantiles at a higher rate in comparison to other industries. 
This result is explained by the nature of the Financial industry; it is very sensitive to volatility increases. Con-
versely, the lower quantiles of the returns of Health and Cyclicals are much less sensitive to increases in vola-
tility. If we observe the volatility impact on upper quantiles close to the right tail of the return distribution, we 
find that the Financial industry and Consumer Cyclicals (at a higher extent) display the highest correlations.

In accordance with the same approach as above, we obtain the five-steps-ahead predictions for the return 
quantiles. The estimated model parameters are qualitatively the same. More importantly, we use the obtained 
forecasts from one and five steps-ahead for comparing model accuracy in the following section. We plot the 
VaR

τ
  =5% forecasts for one step-ahead and five steps-ahead predictions in Figures 2–5 in the supplementary 

online Appendix. We can observe that all models (the linear, Normal and t copulas) provide similar patterns 
and capture the conditional quantiles well. However, to distinguish which one performs better, we perform 
statistical testing in the next section.

5  Evaluation of quantile forecasts
We evaluate the absolute OOS performance of the various conditional quantile models using a test originally 
proposed by Engle and Manganelli (2004), who use the n-th order autoregression

	

τω β β− − +
= =

= + + +∑ ∑1 2 1
1 1

,
n n

t k t k k t k t
k k

I I q u
�

(16)

where It+1 is 1 if 
τ

+ <1 ,t ty q  and zero otherwise. Although the hit sequence It is a binary sequence, ut is assumed 
to follow a logistic distribution, and we can estimate it as a simple logit model and test whether 

τ= =( 1) .t tI qP  
To obtain the p-values, we rely on simulations, as suggested by Berkowitz et al. (2011), and we refer to this 
test as a DQ test in the results.

The main motivation of the DQ test is to determine whether the conditional quantiles are correctly 
dynamically specified; hence, it evaluates the absolute performance of the various models. This approach to 
evaluating the absolute performance of quantile forecasts is only suitable for one-step-ahead forecasts, and, 
to the best of our knowledge, there is currently no alternative, reliable test for the correct dynamic specifica-
tion of multi-step conditional quantiles.

To assess the relative performance of the models, we evaluate the accuracy of the VaR forecasts statisti-
cally by defining the expected loss of the VaR forecast made by a forecaster m as

	 τ τ
τ

τ + + + += − < −, ,
, , 1 , 1 , 1 , 1[( { })( )],m m
m t t t t t t t ty q y qL E 1 � (17)

which was proposed by Giacomini and Komunjer (2005). The tick loss function penalizes quantile violations 
more heavily, and the penalization increases with the magnitude of the violation. As argued by Giacomini 

7 To ease the computation burden, we estimate the degrees of freedom for the t copula only for the in-sample data and then as-
sume it remains constant throughout the OSS because it does not change significantly.
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12      K. Avdulaj and J. Barunik: A semiparametric nonlinear quantile regression model

Table 2: Energy: OOS 1-step-ahead VaR evaluation.

CVX 0.01 0.05 0.1 0.25 0.75 0.9 0.95
NQR–normal
  τ̂
C 0.008 0.048 0.086 0.218 0.742 0.920 0.942

  L̂ 0.032 0.120 0.200 0.354 0.328 0.182 0.114
 DQ 0.528 3.097 5.103 7.204 6.358 4.948 5.070
 p-values 0.991 0.685 0.403 0.206 0.273 0.422 0.407

NQR–t
 

τ̂
C 0.006 0.030 0.086 0.214 0.762 0.936 0.960

  L̂ 0.033 0.122 0.198 0.357 0.327 0.187 0.113
 DQ 0.625 8.748 3.705 8.766 9.360 13.662 6.086
 p-values 0.987 0.120 0.593 0.119 0.096 0.018 0.298

LQR
 

τ̂
C 0.006 0.034 0.080 0.210 0.752 0.930 0.966

  L̂ 0.031 0.120 0.197 0.357 0.328 0.181 0.109
 DQ 0.625 7.137 4.526 6.363 8.908 11.580 6.641
 p-values 0.987 0.211 0.476 0.272 0.113 0.041 0.249

 SLB 0.01 0.05 0.1 0.25 0.75 0.9 0.95
NQR–normal
 

τ̂
C 0.004 0.048 0.104 0.246 0.778 0.910 0.960

  L̂ 0.055 0.189 0.317 0.555 0.537 0.297 0.173
 DQ 2.165 3.090 1.714 6.479 7.796 2.743 7.098
 p-values 0.826 0.686 0.887 0.262 0.168 0.740 0.213

NQR–t
 

τ̂
C 0.006 0.050 0.104 0.246 0.774 0.918 0.968

  L̂ 0.052 0.191 0.312 0.552 0.537 0.297 0.175
 DQ 0.625 2.958 5.302 9.207 9.767 7.251 10.555
 p-values 0.987 0.707 0.380 0.101 0.082 0.203 0.061

LQR
 

τ̂
C 0.004 0.042 0.104 0.252 0.774 0.912 0.968

  L̂ 0.051 0.187 0.315 0.552 0.536 0.296 0.174
 DQ 2.165 2.551 5.436 9.337 9.156 7.249 10.555
 p-values 0.826 0.769 0.365 0.096 0.103 0.203 0.061

 XOM 0.01 0.05 0.1 0.25 0.75 0.9 0.95
NQR–normal
 

τ̂
C 0.006 0.042 0.080 0.218 0.754 0.896 0.918

  L̂ 0.030 0.112 0.185 0.316 0.304 0.171 0.109
 DQ 0.625 6.284 4.644 8.302 4.540 2.795 17.536
 p-values 0.987 0.280 0.461 0.140 0.475 0.732 0.004

NQR–t
  τ̂
C 0.004 0.034 0.066 0.202 0.772 0.926 0.970

  L̂ 0.033 0.119 0.185 0.321 0.310 0.170 0.107
 DQ 2.165 6.967 11.610 17.769 2.698 6.640 8.944
 p-values 0.826 0.223 0.041 0.003 0.746 0.249 0.111

LQR
 

τ̂
C 0.004 0.036 0.056 0.204 0.752 0.924 0.960

  L̂ 0.030 0.116 0.184 0.318 0.305 0.168 0.103
 DQ 2.165 6.486 17.044 16.395 3.983 10.348 6.086
 p-values 0.826 0.262 0.004 0.006 0.552 0.066 0.298

Empirical quantile ˆ ,
τ
C  estimated by Giacomini and Komunjer (2005) ˆ,L  logit DQ statistics and its 1000 ×  simulated p-values 

are reported. Moreover, L̂  is tested using Diebold-Mariano statistics with the Newey-West estimator for variance. All models 
are compared to the linear quantile regression (LQR), whereas models with significantly less accurate forecasts at forecasts at 
the 95% level are reported in bold, significantly more accurate as underlined. NQR is the nonlinear quantile regression.
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Table 3: Energy: 5-days-ahead VaR evaluation.

CVX 0.01 0.05 0.1 0.25 0.75 0.9 0.95
NQR–normal
 

τ̂
C 0.012 0.064 0.102 0.238 0.736 0.894 0.940

  L̂ 0.069 0.275 0.460 0.797 0.734 0.396 0.233
 DM –0.686 –0.730 –1.314 –2.525 –0.780 0.218 0.788

NQR–t
 

τ̂
C 0.014 0.062 0.102 0.224 0.774 0.922 0.952

  L̂ 0.084 0.288 0.466 0.810 0.748 0.425 0.242
 DM 2.826 1.248 –1.139 –2.035 0.454 1.815 1.923

LQR
 

τ̂
C 0.012 0.056 0.104 0.210 0.726 0.902 0.960

  L̂ 0.070 0.281 0.476 0.830 0.739 0.394 0.225

 SLB 0.01 0.05 0.1 0.25 0.75 0.9 0.95
NQR–normal
 

τ̂
C 0.022 0.068 0.128 0.288 0.780 0.920 0.972

  L̂ 0.101 0.398 0.676 1.233 1.157 0.640 0.375
 DM –1.100 –0.849 –0.850 0.170 0.861 0.716 1.577

NQR–t
 

τ̂
C 0.018 0.074 0.116 0.274 0.780 0.924 0.948

  L̂ 0.106 0.404 0.676 1.229 1.156 0.640 0.382
 DM –0.262 –0.646 –1.145 –0.034 0.387 0.772 0.775

LQR
 

τ̂
C 0.018 0.066 0.120 0.282 0.778 0.928 0.972

  L̂ 0.107 0.411 0.692 1.229 1.155 0.636 0.371

 XOM 0.01 0.05 0.1 0.25 0.75 0.9 0.95
NQR–normal
 

τ̂
C 0.014 0.046 0.090 0.238 0.724 0.890 0.932

  L̂ 0.065 0.250 0.410 0.708 0.688 0.387 0.239
 DM –3.030 –1.576 –2.020 –1.340 –0.602 1.520 2.044

NQR–t
 

τ̂
C 0.016 0.048 0.082 0.220 0.736 0.910 0.962

  L̂ 0.072 0.253 0.414 0.705 0.700 0.392 0.233
 DM 1.796 –2.325 –2.014 –2.052 1.079 1.913 1.680

LQR
 

τ̂
C 0.014 0.044 0.078 0.200 0.724 0.906 0.960

  L̂ 0.070 0.264 0.426 0.725 0.692 0.376 0.225

Empirical quantile ˆ ,
τ
C  estimated Giacomini and Komunjer (2005) ˆ,L  L̂  is further tested using Diebold-Mariano statistics with 

the Newey-West estimator for variance. All models are compared to the linear quantile regression (LQR), whereas models with 
significantly less accurate forecasts at the 95% level are reported in bold, significantly more accurate as underlined. NQR is 
nonlinear quantile regression.

and Komunjer (2005), the tick loss is a natural loss function when evaluating conditional quantile forecasts. 
To compare the forecast accuracy of the two models, we test the null hypothesis that the expected losses for 
the models are equal, H0:d = L

τ, 1–Lτ, 2 = 0, against a general alternative. The differences can be tested using 
Diebold and Mariano (2002) test statistics with Newey-West variance (in case of multi-step-ahead forecasts). 
Under the null of equal predictive accuracy, the test statistics are distributed as N(0, 1).

5.1  Quantile forecasts results

For brevity, in the body of this paper, we report the forecasting model performance for the Energy sector only 
representing the results from all other sectors under study. For the remainder, the results are available in 

 - 10.1515/snde-2016-0044
Downloaded from PubFactory at 08/06/2016 11:35:29PM by krenar.avdulaj@gmail.com

via krenar Avdulaj



14      K. Avdulaj and J. Barunik: A semiparametric nonlinear quantile regression model

Tables 5–16 in the supplementary online Appendix. Tables 2 and 3 summarize the models performance for 
the one- and five steps-ahead forecasts. We use different indicators for model comparison, the unconditional 
coverage τ̂

,C  the tick loss function ˆ,L  DQ test statistics and the simulated p-values.
Examining the unconditional coverage test τ̂

,C  we notice that all models perform similarly for the Energy 
sector, and we cannot identify a clearly “best performing model.” Nevertheless, unconditional coverage 
is uninformative regarding the dynamic features of the models. One of the main important features of the 
proposed models is that it models quantiles of the returns distribution conditionally. Under stress events 
is where most losses occur; hence, conditional coverage tests are of crucial importance. Thus, we focus on 
the results of the DQ test, which helps to identify whether the models capture the dynamics well. Because 
we cannot reject most models at the 95% significance level, we conclude that the models are well specified 
and that they capture the dynamics of quantiles well. For a relative model comparison, we examine the loss 
function ˆ.L  Particularly for the lower quantiles, the NQR models either are not significantly different than 
the LQR model or perform worse (the numbers in bold). For the one-step-ahead forecasts of the quantiles, we 
must conclude that further nonlinearities are not statistically found in the tested data, and the LQRs are not 
outperformed by nonlinear ones.

The DQ test is not suitable for the evaluation of five-steps-ahead forecasts due to the lack of statistical 
results regarding their distribution. Hence, for the five-steps-ahead forecasts, we focus on model comparison 
through the relative performance. We notice an improvement of the performance of the NQR models for the 
Energy sector e.g. for the lower quantiles of exxon mobil corporation (XOM), both copula quantile models 
perform very well (the underlined numbers).

Due to the mixed overall results, when we are not able to clearly identify a “best model,” we make 
a summary of the forecasted performance results. For the one-step-ahead forecast, the DQ test rejects 
the NQR models approximately 12.3% and 20.4% of times for the Normal and the t models, respectively, 
whereas for LQR, the rejection rate is approximately 13% of times. The Normal copula model performs the 
best in this category, although it is very close to the LQR. Next, we test the relative model performance, in 
which the NQR models are compared to the LQR model. Occasionally, the NQR models perform better (with 
the t copula being the better model); occasionally, it is the LQR copula that performs better. We should 
note that there are situations in which the NQR models perform worse than LQR; at the same time, all these 
models are rejected by the DQ test e.g. shown in Table 5 of the supplementary online Appendix for AT&T 
and quantiles τ = {0.1; 0.9}. In such situations, we cannot state which model is the best because none of 
them pass the DQ.

For the five-steps-ahead forecast, the performance of the NQR models improves significantly, particularly 
for the t copula. The NQR-t outperforms the LQR model in 13 cases or approximately 9% of the time; however, 
there are many times in which the tick loss function of the NQR models is lower than the LQR counterpart, 
although this difference is not statistically significant. In conclusion, the models are well specified, and the 
NQR models appear to outperform LQR when five-steps-ahead forecasts are considered.

6  Conclusion
This paper proposes to use the NQR with realized measures of volatility to forecast the conditional quantiles 
of financial asset returns. To make the results robust, we apply this methodology on most liquid US stocks 
in seven sectors. We argue that using the realized volatility under a copula quantile framework is useful, 
particularly in the cases in which the quantile dependence is nonlinear. The proposed models capture and 
forecast the dynamics of quantiles well.

The possible directions for further development would be to study the interdependence between asset 
returns or to use copula functions that allow for higher dependence in the tails.
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