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ABSTRACT
Recent multivariate extensions of the popular heterogeneous autoregressive model (HAR) for realized volatility leave
substantial information unmodelled in residuals. We propose to employ a system of seemingly unrelated regressions
to model and forecast a realized covariance matrix to capture this information. We find that the newly proposed gener-
alized heterogeneous autoregressive (GHAR) model outperforms competing approaches in terms of economic gains,
providing better mean–variance trade-off, while, in terms of statistical precision, GHAR is not substantially dominated
by any other model. Our results provide a comprehensive comparison of the performance when realized covariance,
subsampled realized covariance and multivariate realized kernel estimators are used. We study the contribution of the
estimators across different sampling frequencies, and show that the multivariate realized kernel and subsampled real-
ized covariance estimators deliver further gains compared to realized covariance estimated on a 5-minute frequency.
In order to show economic and statistical gains, a portfolio of various sizes is used. Copyright © 2016 John Wiley &
Sons, Ltd.
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INTRODUCTION

The risk of individual financial instruments is crucial for asset pricing, portfolio and risk management. Besides volatil-
ity of individual assets, knowledge of covariance structure between assets in portfolio is of great importance. Accurate
forecasts of variance–covariance matrices are particularly important in asset allocation and portfolio management.

The traditional approach of obtaining covariance matrix estimates relies on multivariate generalized autoregressive
conditional heteroscedasticity (MGARCH) models such as the constant conditional correlation GARCH of Bollerslev
(1990), the dynamic conditional correlation GARCH of Engle (2002) or the BEKK of Engle and Kroner (1995) (for a
survey of MGARCH models see Bauwens et al., 2006). These models are popular in the literature although they suf-
fer from the curse of dimensionality problem. Increased availability of high-frequency data in the last decade resulted
in development of the new non-parametric approach for treating multivariate volatility. A milestone for covariance
matrix modelling is the work of Barndorff-Nielsen and Shephard (2004), where the theory of ‘realized covariation’ is
introduced. Realized covariance matrices are ex post measures of daily covariation and they need to be further mod-
elled. The research dedicated to modelling the entire covariance matrices is still lively. From the already established
methods, let us mention Wishart autoregression (WAR) of Gouriéroux et al. (2009), with numerous extensions pre-
sented in Bonato (2009) and Bonato et al. (2013). A different approach of realized volatility modelling can be found in
Bauer and Vorkink (2011), who model realized stock market volatility using matrix-logarithm transformation and pri-
marily concentrate on forecasting performance of the factor model. A more common approach for obtaining positive
definite forecasts of covariance matrices is the use of Cholesky decomposition. The use of Cholesky factors, further
estimated by vector autoregressive fractionally integrated moving average (VARFIMA), heterogeneous autoregres-
sion (HAR) or WAR-HAR can be found in the work of Chiriac and Voev (2011). More recently, Amendola and Storti
(2015) consider combining predictions from multivariate GARCH models and realized covariance matrices.

In this paper, we contribute to the literature by proposing a new model for dynamic covariance matrix modelling
and forecasting. We model Cholesky factors of the realized covariance matrix as a system of seemingly unrelated
heterogeneous autoregressions. The main motivation is that we may expect the residuals from simple HAR model to
be contemporaneously correlated and, moreover, heteroscedastic due to well-known volatility in the volatility effect
(Corsi et al., 2008). Estimating the system of HAR equations using generalized least squares allows us to capture these
dependencies. Hence the generalized HAR (GHAR) may provide more precise and more efficient forecasts, which
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will translate to economic gains directly. On the portfolios of various sizes, we show that the GHAR model delivers
significant economic gains and, statistically, is not substantially outperformed when compared to natural benchmark
models based on high-frequency data (HAR, VARFIMA), as well as daily data (DCC-GARCH, RiskMetrics). In
addition, we study the economic benefits of estimating the realized covariance with more efficient subsampled realized
covariance and multivariate realized kernel estimators.

The rest of the paper is structured as follows. We provide the background for estimation of realized covariation
from high-frequency data in the next section. The third section describes frameworks for modelling multivariate
volatility and presents our GHAR model. The fourth section provides a description of dataset and research design,
including economic as well as statistical evaluation criteria. In the fifth section we discuss out-of-sample forecast
evaluation, and the sixth section concludes.

ESTIMATION OF COVARIATION FROM HIGH FREQUENCY DATA

We assume that the q-dimensional efficient price process pt evolves over time 0 ! t ! T according to the
following dynamics

dpt D !t dt C†t dWt C dJt (1)

where !t is predictable component, †t is a real-value q " q volatility process, W1; : : : ; Wq is a q-dimensional
Brownian motion and dJt is a jump process. A central object of interest is the integrated covariation, which
measures the covariance of asset returns over a particular period. Andersen et al. (2003) and Barndorff-Nielsen and
Shephard (2004) suggest estimating the quadratic covariation matrix analogously to the realized variance, by taking
the outer product of the observed high-frequency return over the period. This estimation, however, assumes
synchronized equidistant data.

In practice, trading is non-synchronous, delivering fresh prices at irregularly spaced times that differ across stocks.
In order to estimate the covariance, the data need to be synchronized, meaning that the prices of the q assets need
to be collected at the same time stamp. Research of non-synchronous trading has been an active field of financial
econometrics in past years: see, for example, Hayashi and Yoshida (2005) and Voev and Lunde (2007). This practical
issue induces bias in the estimators and may be partly responsible for the Epps effect (Epps, 1979), a phenomenon
of decreasing empirical correlation between the returns of two different stocks with increasing data sampling fre-
quency. Ait-Sahalia et al. (2010) compare various synchronization schemes and find that the estimates do not differ
significantly from estimates using the so-called refresh time scheme when dealing with highly liquid assets. The data
used further in our study consist of the most liquid US stocks; hence we can restrict ourselves to the refresh time
synchronization scheme in our work.

Let N.q/t be the counting process governing the number of observations in the qth asset up to time t , with times
of trades t.q/1; t.q/2; : : : . Following Barndorff-Nielsen et al. (2011), we define the first refresh time as

"1 D max.t.1/1; : : : ; t.d/1/ (2)

for d D 1; : : : ; q assets, and all subsequent refresh times as

"jC1 D max
!
t.1/N.1/!jC1; : : : ; t.d/N.d/!jC1

"
(3)

with the resulting refresh time sample being of length N . "1 is thus the first time that all assets record prices, while
"2 is the first time that all asset prices are refreshed. In the following analysis, we will always set our clock time to "j
when using the estimators.

Having synchronized the data, let us denote by #kpt D pt"1C!k=N # pt"1C!k"1=N a discretely sampled vector
of kth intraday log-returns in Œt # 1; t $, with N intraday observations available for each asset q. A simple estimator
of realized covariance is then constructed as

b†.RC/
t D

NX
kD1

.#kpt / .#kpt /
0 (4)

As shown by Barndorff-Nielsen and Shephard (2004), realized covariance is a consistent estimator of integrated
covariance and is asymptotically mixed normal. However, the estimator is biased and becomes inconsistent in the
case that micro-structure noise is present in the data. Sparse sampling is used to mitigate the trade-off between the
bias due to noise and variance of the estimator.
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To effectively use all available high-frequency data, Zhang et al. (2005) propose using subsampling and averaging
for realized variance calculation. In their setup the whole sample is divided intoM non-overlapping subsamples, and
in each subsample realized variance is calculated and averaged across the subsampled estimates to form the final
estimate:

b†.RC SS/
t D 1

M

MX
iD1

b†.RC/
t;i (5)

In addition, the covariance matrix estimated by realized covariance might not necessarily be positive semi-definite.
To overcome these problems, Barndorff-Nielsen et al. (2011) introduced the multivariate realized kernels (MRK)
estimator, which guaranties the covariance matrix to be positive semi-definite. Moreover, MRK is more efficient, and
it is able to deal with noise. Following Barndorff-Nielsen et al. (2011), the MRK estimator is defined as

b†.MRK/
t D

nX
hD"n

k

#
h

H

$
%h (6)

where %h stands for the hth realized autocovariance and k.x/ is a non-stochastic weight function. In the empirical
implementation, we need to choose the kernel function and bandwidth parameter. Following Barndorff-Nielsen et al.
(2011), we use a Parzen kernel,1 which satisfies the smoothness conditions, K 0.0/ D K 0.1/ D 0, and guarantees
b†.MRK/
t to be positive semi-definite. We use the optimal bandwidth derived in Barndorff-Nielsen et al. (2011).
Recently, many new approaches to covariance matrix estimation using high-frequency data have emerged in the

literature. In addition to estimators used in this study, realized co-range (Bannouh et al., 2009) or two-scale realized
covariance (Zhang, 2011) are also becoming increasingly popular. Today, the literature also pays attention to disen-
tangling jumps, common jumps and true covariation (see Boudt et al., 2012, or Elst and Veredas, 2015). When the
dimension of the problem is high, the estimator of Hautsch et al. (2012), which estimates covariance using block-wise
multivariate realized kernels, might be of interest.

While the number of recently proposed estimators is growing, we restrict our study to a comparison of the main
estimators used in the literature,2 and focus on the actual estimator of the proposed model.

MODELLING AND FORECASTING MULTIVARIATE VOLATILITY

Modelling and forecasting a conditional covariance matrix of asset returns †t is pivotal to asset allocation, risk
management and option pricing. In order to have a valid multivariate forecasting model, one needs to specify a model
that produces symmetric and positive semi-definite covariance matrix predictions. Whereas it is still relatively scarce
to use high-frequency data in multivariate modelling, the literature dealing with challenging issues is growing quickly.
There are three types of approach proposed recently: modelling the Cholesky factorization of the covariance matrix
(Chiriac and Voev, 2011), its matrix-log transformation with the use of latent factors (Bauer and Vorkink, 2011), and
direct modelling of the covariance dynamics as a Wishart autoregressive model (Bonato, 2009; Jin and Maheu, 2013).

To ensure positive semi-definiteness of covariance matrix forecasts, we adopt the approach from Chiriac and Voev
(2011): we apply the Cholesky decomposition to the covariance matrix. This approach is attractive as it also helps
to reduce the curse of dimensionality, especially in the model structures we are going to use in this study. Following
Chiriac and Voev (2011), we model the lower triangular elements of the Cholesky factorization:

Xt D vech .Pt / (7)

where Pt are Cholesky factors P 0tPt D †t and Xt is m " 1 vector, with m D q.qC1/
2 . Forecasts of the covariance

matrix are then obtained by reverse transformation.

Generalized heterogeneous autoregressive (GHAR) model
A simple approximate long-memory model for realized volatility—heterogeneous autoregression (HAR)—has been
introduced by Corsi (2009). Whereas the approach has been introduced for the univariate volatility modelling, its
extension to multivariate volatility has been recently used in the literature (see, for example, Chiriac and Voev, 2011;

1 The Parzen kernel function is given by k.x/ D
8<
:
1" 6x2 C 6x3 0 # x # 1=2
2.1" x/3 1=2 # x # 1
0 x > 1

:

2 Realized covariance sampled at a 5-minute frequency is the industry standard; subsampled realized covariance enables us to use all data points,
resulting in a more efficient estimator, and MRK is able to handle noise and non-synchronous trading
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Bauer and Vorkink, 2011). The original HAR model has an autoregressive structure, and combines volatilities mea-
sured at different frequencies (daily, weekly, monthly). Chiriac and Voev (2011) propose a multivariate extension of
HAR to model a vector of Cholesky factors Xt , as

X
.1/
tC1 D c C ˇ.1/X

.1/
t C ˇ.5/X .5/t C ˇ.22/X .22/t C &t ; &t $ i.i.d. (8)

where 1,5 and 22 stand for day, week (5 days) and month (22 days) respectively, c is anm"1 vector of constants, ˇ.:/

are scalar parameters and X .:/t are averages of lagged daily volatility, e.g. X .5/t D 1
5

4P
iD0

Xt"i . To obtain parameter

estimates, ordinary least squares (OLS) is used.
One of the disadvantages of this modelling strategy is that we are assuming the same structure for all elements of

the Cholesky factors in Xt . Much more importantly, we are leaving a significant amount of information in the error
term. One can expect the error term to be heteroscedastic due to volatility of volatility (Corsi et al., 2008) present in
the realized measures. More importantly, a common structure of Xt elements may be left unmodelled in residuals.
Hence it may be more natural to estimate the model in Eq. 8 as a system of equations with some covariance structure
of the error terms.

To deal with this problem, we propose to build a system of seemingly unrelated HAR regressions (Zellner, 1962)
for all elements of Xt . The advantage of this approach is that we estimate a multivariate HAR model, which will
capture the separate dynamics of the variances and covariances, but also possible common structure. Moreover, it will
also yield more efficient estimates. As we know, error terms from HAR are heteroscedastic (Corsi et al., 2008), which
makes the coefficient estimates less efficient. Moreover, where there is no information about dependence between
equations left in the residuals from regression Eq. 8, the estimator will converge to a simple OLS estimate, as the
diagonal weighting matrix in generalized regression will reduce the estimates to OLS. On the other hand, the possible
disadvantage is in a larger number of parameters to be estimated, which may render the model unreliable with highly
dimensional portfolios.

Let us consider the system of i D 1; : : : ; m equations, where m D q.qC1/
2 :

X
.1/
i;tC1 D ˇ

.c/
i C ˇ

.1/
i X

.1/
i;t C ˇ

.5/
i X

.5/
i;t C ˇ

.22/
i X

.22/
i;t C &i;t ; &i;t $ i.i.d. (9)

There are m equations representing elements of the Cholesky factors, with T observations. Define the mT " 1
vector of disturbances & D

%
&01; : : : ; &

0
m

&0, and rewrite the model as

0
BB@
X
.1/
1;tC1
:::

X
.1/
m;tC1

1
CCA D

0
B@
X1;t % % % 0
:::

: : :
:::

0 % % % Xm;t

1
CA
0
B@
ˇ1
:::
ˇm

1
CAC

0
B@
&1;t
:::
&m;t

1
CA (10)

where Xi;t D
!
e X

.1/
i;t X

.5/
i;t X

.22/
i;t

"
is the i th element of Xt and e a vector of ones, ˇi D

!
ˇ
.c/
i ˇ

.1/
i ˇ

.5/
i ˇ

.22/
i

"0

and ˇ.c/i estimates of the intercept. It is more convenient to work with this system in the following form:

y D Zˇ C & (11)

where y D
!
X
.1/
1;tC1; : : : ; X

.1/
m;tC1

"0
and & are of dimension mT " 1, Z D diag¹X1;t ; : : : ; Xm;tº is a block diagonal

matrix of dimension mT " 4m, and the matrix of parameters ˇ D .ˇ1; : : : ; ˇm/0 is of dimension 4m " 1.
The disturbances will satisfy strict exogeneity EŒ&jZ$ D 0, but will be correlated across equations, EŒ&0i&j jZ$ D

'ij IT or

( D

0
B@
'11IT % % % '1mIT
:::

: : :
:::

'm1IT % % % 'mmIT

1
CA D †˝ IT (12)

where † D 'ij for i; j D 1; : : : ; m, ˝ is a Kronecker product and IT is an identity matrix of dimension T " T .
The model parameters are estimated in two-step feasible generalized least squares. We run OLS regression in the first
step to obtain estimates O'ij from residuals. In the second step, we run generalized least squares regression using the
variance matrix b( D b†˝ IT as

b̌D
!
Z0b("1Z

""1
Z0b("1y (13)
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The estimator b̌ is unbiased, and a consistent estimator of ˇ with asymptotically normal limiting distribution:

p
T
!b̌# ˇ

"
d! N

 
0;

#
1

T
Z0b("1Z

$"1!
(14)

While this is a standard estimation technique, we will refrain from discussing any further details about the
properties of the generalized least squares estimator.

Competing models
To show the contribution of the GHAR model, we compare the forecasts to several competing alternatives. The first
natural choice of benchmark model is a multivariate extension of the original HAR. By comparing these two models,
we will see the portion of the contribution brought by allowing for correlated residuals in the estimation. Another
natural candidate is vector ARFIMA, as Chiriac and Voev (2011) find it outperforms the HAR model slightly, but
conclude that HAR performs reasonably well in comparison to VARFIMA. Hence we may have reason to believe that
our approach will provide better results than the VARFIMA model.

These three main models share the same framework of modelling elements of Cholesky factors from the realized
covariance matrix. Hence we also contrast them to two benchmark models, namely the popular DCC-GARCH3 of
Engle (2002) and the risk metrics standard widely used in the business industry. These benchmark models operate on
daily data, so we will have a direct comparison of gains from high-frequency data.

HAR
A first, natural competing model to our generalized HAR strategy is the multivariate extension of an original HAR,
which models a vector of Cholesky factors Xt as

X
.1/
tC1 D c C ˇ.1/X

.1/
t C ˇ.5/X .5/t C ˇ.22/X .22/t C &t ; &t $ i.i.d. (15)

where 1, 5 and 22 stand for day, week (5 days) and month (22 days) respectively, c is an m " 1 vector of constants,

ˇ./ is anm"1 vector of parameters and X ./t are averages of lagged daily volatility, e.g. X .5/t D 1
5

4P
iD0

Xt"i . To obtain

parameter estimates, OLS is used.

Vector ARFIMA model
A second competing model to the HAR family is the vector autoregressive fractionally integrated moving average
(VARFIMA) model of Chiriac and Voev (2011), who use a restricted VARFIMA.1; d; 1/ specification to model
and forecast dynamics of Xt directly. The authors find that ARFIMA provides a slightly better forecast in com-
parison to the HAR model, which makes it a natural candidate for our modelling strategy. We consider the vector
ARFIMA model

.1 # )L/D.L/ ŒXt # c$ D .1 # *L/ &t ; &t $ N.0;†/ (16)

where ) and * are scalars, c is an m " 1 vector of constants and D.L/ D .1 # L/dIm with a common parameter of
fractional integration d for all constituents of Xt . In our case we reject the hypothesis about equality of d ; thus we
estimated each element of Xt using a unique dt W D.L/ D diag

®
.1 # L/d1 ; : : : ; .1 # L/dm

¯
. Hence we use model

1 in Chiriac and Voev (2011). In addition, we have experimented with a general VARFIMA.p; d; q/, not restricting
p D q D 1.4 Comparing the models through information criteria decisively yields VARFIMA.1; d; 1/ as the best
model; hence we use it as a benchmark for our modelling strategy in the empirical section of the paper.

RiskMetrics
RiskMetrics of JP Morgan Chase, based on an exponentially weighted moving average (EWMA), is a financial indus-
try standard and common benchmark for any volatility model (univariate or multivariate). In our work we use the
specification of Longerstaey and Spencer (1996) with decay factor + set to 0.94. We assume a q " 1 vector of daily
returns rt D

Pn
kD1 .#kpt / for t D 1; : : : ; T such that rt $ N

%
!t ; '

2
t

&
, where !t is the conditional mean and '2t the

conditional variance of daily returns. Moreover, if we assume !t D 0, the conditional covariance has the form

3 DCC-GARCH is an industry standard and we decided to implement it in its original form, despite the known problem with consistency of the
estimator. For more information about the inconsistency of DCC see Aielli (2013) and Caporin and McAleer (2013).
4 These results are available upon request from the authors.
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'i;j D .1 # +/
TX
tD1

+t"1rirj (17)

The previous equation can be rewritten in recursive form:

'i;j;t D +'i;j;t"1 C .1 # +/ri;t"1rj;t"1 (18)

where the expression 'i;j;t stands for covariance between assets i and j in time t .

DCC-GARCH
The dynamic conditional correlation generalized autoregressive conditional heteroscedasticity (DCC-GARCH) of
Engle (2002) is a widely used multivariate GARCH model in practice. It is a generalization of Bollerslev (1990)
constant conditional correlation GARCH, with time-varying correlation matrix R. The model is defined as

Ht D DtRtDt (19)

where Dt is a diagonal matrix of conditional time-varying standard deviations, Dt D diag
!p

hi;t

"
and hi;t are

univariate GARCH processes, hi;t D !i C
PiP
pD1

˛i;pr
2
i;t"p C

QiP
qD1

ˇi;qhi;t"q . The dynamics of the correlation matrix

are given by transformation:

Rt D Q!"1t QtQ
!"1
t (20)

where Qt D
 
1 #

MP
mD1

˛m #
NP
nD1

ˇn

!
NQ C

MP
mD1

Am
%
&t"m&Tt"m

&
C

NP
nD1

BnQt"n, NQ is the unconditional covariance

matrix of the standardized residuals from the univariate GARCH processes and Q!t D diag
%p
qi i;t

&
. In our work we

use the two-stage estimator presented in Engle (2002) and Engle and Sheppard (2001).

DATA AND RESEARCH DESIGN

The dataset consists of tick prices of 15 S&P 500 index constituents with highest liquidity and market capitalization.
The final portfolio thus consists5 of Apple Inc. (AAPL), Exxon Mobile Corp. (XOM), Google Inc. (GOOG), Wal-
Mart Stores (WMT), Microsoft Corp. (MSFT), General Electric Co. (GE), International Business Machines Corp.
(IBM), Johnson & Johnson (JNJ), Chevron Corp. (CVX), Procter & Gamble (PG), Pfizer Inc. (PFE), AT&T Inc. (T),
Wells Fargo & Co. (WFC), JP Morgan Chase & Co. (JPM) and Coca-Cola Co. (KO). We obtain 390, 78, 39, 26 and
19 time-synchronized intraday observations using refresh-time, resulting in 1-, 5-, 10-, 15- and 20-minute intraday
returns. Besides 1- to 20-minute returns we also construct open-to-close returns that are used for RiskMetrics and
DCC-GARCH models. Moreover, we create sub-portfolios consisting of 5, 10 and 15 assets (assets chosen according
to market capitalization). Hence, in total, we study 18 different datasets.

The sample covers the period from 1 July 2005 to 3 January 2012 (1623 trading days), and we consider trades
between 9:30 and 16:00 EST time. To ensure sufficient liquidity on the market we explicitly exclude weekends
and holidays (New Year’s Day, Independence Day, Thanksgiving Day, Christmas). For estimation and forecasting
purposes we divide our sample into in-sample, spanning from 1 July 2005 to 9 July 2008, and out-of-sample from 10
July 2008 to 3 January 2012. For the forecasting, we use rolling window estimation with a fixed length of 750 days.
Summary statistics of all returns are presented in Appendix D.

Accuracy of the forecasts is evaluated primarily according to economic criteria. The rationale behind this is the
importance of well-conditioned and invertible forecasts rather than focusing on unbiasedness, as an unbiased forecast
does not necessarily translate into an unbiased inverse (Bauwens et al., 2012). As a robustness check we also provide
ranking of the models based on statistical loss functions.

Economic forecast evaluation
For economic evaluation of volatility forecasts, we use the approach of Markowitz (1952). There are two possibilities
for constructing an optimal portfolio. In the first one we specify the expected portfolio return and try to find asset
weights minimizing the risk. In the second one the expected return of the portfolio is maximized according to a certain
risk. Asset weights, w D .w1; : : : ; wq/0, maximizing the utility of a risk-averse investor, can be found by solving the
following problem:

5 Assets are ordered according to market capitalization.
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min
wtC1

w0tC1b†tC1jtwtC1
s.t. l 0wtC1 D 1
w0tC1b!tC1jt D !P

(21)

wherewtC1 is a q"1 vector of asset weights,b†tC1jt represents a covariance matrix forecast, l denotes a q"1 vector of
ones,b!tC1jt is a vector of mean forecasts and !P stands for portfolio return. Once the optimization problem is solved
for different risk levels, we are able to construct an efficient frontier. The Markowitz-type portfolio relies heavily on
mean forecasts. As these forecasts might be noisy, portfolio weights and variance can become notably sensitive to
changes in assets mean. To overcome these difficulties we also consider the problem of finding the global minimum
variance portfolio (GMVP). The specification of the optimization problem is similar to the Markowitz setup:

min
wtC1

w0tC1b†tC1jtwtC1
s.t. l 0wtC1 D 1

(22)

which can be solved analytically:6

wGMV
tC1 D

b†"1tC1jt l
l 0b†"1tC1jt l

(23)

with expected return variance being

'2
GMV
tC1 D wGMV

tC1
0b†tC1jtwGMV

tC1 D
1

l 0b†"1tC1jt l
(24)

Statistical forecast evaluation
For statistical evaluation of covariance forecasts, we employ root mean squared error (RMSE) loss functions based on
the Frobenius norm.7 As a volatility proxy we use realized covariance, subsampled realized covariance (RCOV SS)
and MRK estimates at given frequencies; i.e. to calculate loss function for forecasts based on 5-minute realized covari-
ance we use realized covariance estimates based on 5-minute data as a benchmark. In the case of DCC-GARCH and
RiskMetrics forecasts we calculate loss functions using all RCOV, RCOV SS and MRK estimates at all frequencies.
The measures are calculated for the t D 1; : : : ; T forecasts as

et;tCh D †tCh # b†tChjt (25)

LRMSE D

vuut 1

T # 1

TX
tD1

X
i;j

ˇ̌
eti;j

ˇ̌2 (26)

where b†tChjt is a covariance matrix forecast and †tCh is the volatility proxy.
To test the significant differences of competing models, we use the model confidence set (MCS) methodology of

Hansen et al. (2011). Given a set of forecasting models, M0, we identify the model confidence set cM!
1"˛ ' M0,

which is the set of models that contain the ‘best’ forecasting model given a level of confidence ˛. For a given model
i 2M0, the p-value is the threshold confidence level. Model i belongs to the MCS only ifbpi ( ˛. MCS methodology
repeatedly tests the null hypothesis of equal forecasting accuracy

H0;M W EŒLi;t # Lj;t $ D 0; for all i; j 2M

with Li;t being an appropriate loss function of the i th model. Starting with the full set of models, M D M0, this
procedure sequentially eliminates the worst-performing model from M when the null is rejected. The surviving set
of models then belong to the model confidence set cM!

1"˛ . Following Hansen et al. (2011), we implement the MCS
using a stationary bootstrap with an average block length of 10 days.8

6 Kempf and Memmel (2006).
7 The Frobenius norm of them$ n matrix A is defined as kAkF 2 D

P
i;j

ˇ̌
ai;j

ˇ̌2
.

8 We have used different block lengths, including those dependent on the forecasting horizons, to assess the robustness of the results, without any
change in the final results. These results are available from the authors upon request.
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Table I. Cumulative version of GMVP: portfolio of five stocks.

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 30.50 30.50 30.50 30.50 30.50 30.50 30.50
RiskMetrics 40.64 40.64 40.64 40.64 40.64 40.64 40.64
VARFIMA 30.76 34.47 32.44 32.84 31.04 29.86 29.31
GHAR 30.60 34.14 32.22 32.53 30.83 29.65 29.08
HAR 31.42 34.84 33.05 33.35 31.61 30.50 29.99

Note: The model with the overall best performance is highlighted; for the given frequency
the model with the lowest risk is presented in bold; values represent percentage level of risk.

Table II. Annualized version of GMVP: portfolio of five stocks.

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 17.38 17.38 17.38 17.38 17.38 17.38 17.38
RiskMetrics 23.13 23.13 23.13 23.13 23.13 23.13 23.13
VARFIMA 17.62 19.39 18.44 18.61 17.68 17.04 16.77
GHAR 17.32 19.08 18.08 18.27 17.36 16.69 16.38
HAR 18.01 19.61 18.79 18.91 18.01 17.40 17.14

Note: The model with the overall best performance is highlighted; for the given frequency
the model with the lowest risk is presented in bold; values represent percentage level of risk.

RESULTS

For clarity of presentation, we begin with a discussion of the results of one-step-ahead forecasts for the portfolio of
five stocks (AAPL, XOM, GOOG, WMT, MSFT), whereas we leave portfolios of 10 and 15 stocks and also five- and
10-step-ahead forecasts as a robustness check showing that the methodology also works well at larger dimensions
and different forecasting horizons. Focusing on the economic evaluation, we first discuss the results from GMVP,9

followed by the Markowitz approach and statistical evaluation.
We present GMVP comparison through cumulative and annualized risk. In the cumulative approach we use covari-

ance forecasts for daily rebalancing of our portfolio: at each step we calculate optimal asset weights and using these
weights we calculate corresponding daily portfolio risk. The results presented in Table I are sums of portfolio risk
'cum. for the whole out-of sample period. Table I is divided into seven parts according to realized measures and fre-
quencies used for the calculation. For RiskMetrics and DCC-GARCH the corresponding 'cum. are constant for all
frequencies because they are calculated using open–close returns. We present the results of DCC-GARCH and Risk-
Metrics in all columns of Table I so that we can compare the performance of covariance-based models estimated on
different frequencies with daily data-based models.

From Table I we can see that the model with the best performance and thus lowest level of risk is GHAR.
We can also observe that for various frequencies on which realized measures are calculated DCC-GARCH outper-
formed covariance-based models. However, these results do not indicate superiority of DCC-GARCH compared to
covariance-based models, but highlight the importance of selecting realized measures properly.

A disadvantage of model comparison according to cumulative risk is daily rebalancing, implying high transaction
costs. A more comprehensive method of model comparison is to use annualized portfolio risks. In Table II we present
the results for the annualized version of GMVP.

Similar to cumulative GMVP, the model with the overall lowest achievable risk is GHAR. Remaining results
from Tables I and II partly match the results presented in Chiriac and Voev (2011). The model that scored second is
VARFIMA, followed by HAR for subsampled RCOV estimated at 15- and 20-minute frequencies. For the remaining
frequencies and realized measures, DCC-GARCH outperforms covariance-based models. Overall, we can say that
covariance-based models with appropriate choice of realized measure outperform return-based models.

To assess the performance of models not only from the risk-minimizing point of view but also return maximization,
we present efficient frontiers. In contrast to GMVP, we do not allow short selling here.10 For the calculation of efficient
frontiers we use annualized forecasts of covariance matrices and annualized returns.

9 With short selling allowed.
10 In the case that short selling is allowed, the ranking of the models is unchanged, and only the magnitude differs.
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Figure 1. Efficient frontiers: portfolio of five stocks: (a) RCOV 5-minute vs. MRK; (b) RCOV 5-minute vs. RCOV 1-minute;
(c) RCOV 5-minute vs. RCOV SS 5-minute; (d) RCOV 5-minute vs. RCOV SS 10-minute; (e) RCOV 5-minute vs. RCOV SS
15-minute; (f) RCOV 5-minute vs. RCOV SS 20-minute

Similar to the results from the GMVP evaluation model with the best risk–return trade-off is the model proposed
in this paper: GHAR. The second-best-performing model is VARFIMA, followed by HAR. From Figure 1 we can see
that for estimates at 1 minute RCOV and 5 minutes RCOV the score of DCC-GARCH is better than all covariance-
based models, which is not in line with results presented in Chiriac and Voev (2011), where DCC-GARCH ended
in the penultimate position. We can attribute this difference to a different dataset and period that includes a financial
crisis during which periods of high intraday volatility are observable.

As a robustness check to the economic evaluation, we also provide results from a statistical comparison of
forecasting performance of the competing models. In Table III a comparison based on the RMSE loss function
is presented.
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Table III. RMSE: portfolio of five stocks.

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 1.593 1.730 1.914 1.707 1.547 1.481 1.474
RiskMetrics 1.668 1.728 1.866 1.709 1.646 1.636 1.633
VARFIMA 1.406 1.537 1.682 1.473 1.363 1.331 1.328
GHAR 1.490 1.401 1.740 1.509 1.438 1.430 1.445
HAR 1.190 1.100 1.380 1.162 1.125 1.144 1.158

Note: Values are scaled by 10"3; highlighted cells belong to 5% MCS.

From the RMSE perspective the lowest error is shown by the HAR model, followed by VARFIMA and GHAR.
These models always belong to 5% MCS irrespective of the realized measure used for comparison. The worst perfor-
mance was shown by RiskMetrics, which does not belong to 5% MCS in two cases and has the highest RMSE in five
out of seven cases.

Robustness check
Having discussed the results of one-step-ahead forecasts for a portfolio consisting of five stocks, we now turn to
evaluation of one-step-ahead forecasts for a portfolio consisting of 10 (AAPL, XOM, GOOG, WMT, MSFT, GE,
IBM, JNJ, CVX, PG), and 15 (AAPL, XOM, GOOG, WMT, MSFT, GE, IBM, JNJ, CVX, PG, PFE, T, WFC,
JPM, KO) stocks and five- and 10-step-ahead forecasts for portfolios consisting of five, 10 and 15 stocks. We will
concentrate on the main differences compared to the smaller portfolio, as we use these results as a robustness check.
We also relegate the tables and figures to Appendices A, B and C.

Portfolio of 10 and 15 stocks
According to GMVP criteria for a portfolio consisting of 10 stocks, results do not differ from results obtained using a
portfolio of five stocks. The model with the lowest cumulative and annualized risk is GHAR, estimated on 20-minute
subsampled RCOV. In the case of the portfolio consisting of 15 stocks, the only difference is that GHAR estimated
on MRK covariance matrices outperformed DCC-GARCH.

From the risk–return trade-off point of view there is a notable difference for portfolio consisting of 10 stocks when
the data for higher frequencies (1, 5 and 10 minutes) are used. For these frequencies, the model with the best risk–
return trade-off is DCC-GARCH. The order of the remaining models is identical to the portfolio of five stocks: GHAR
followed by VARFIMA and HAR. If the 15-minute data are used for optimization, GHAR shares first place with
DCC-GARCH. These two models are closely followed by VARFIMA and HAR. For the 20-minute data ordering of
the models is similar to the portfolio consisting of five stocks.

Concentrating on statistical evaluation, results of RMSE model comparison for the portfolio consisting of 10
stocks are almost identical to results for the portfolio of five stocks, the only difference being that RiskMetrics does
not belong to 5% MCS in any of the cases. On the other hand, a notable difference occurs in a comparison of the
portfolio consisting of 15 stocks, where GHAR belongs to 5% MCS only in one case (estimated at 5-minute RCOV),
and DCC-GARCH and RiskMetrics do not belong to 5% MCS at all. We address unambiguous results of statistical
evaluation to the problem of selecting the ‘correct’ proxy. These results are also consistent with findings in Kyj et al.
(2010), who show that for large portfolios, the pure high frequency based covariance forecasts need to be conditioned
in order to achieve the benefits of the high frequency data.

This points us to the result that unmodelled dependence from HAR and VARFIMA models is increasing with
increasing dimension of the portfolio. Hence the GHAR model delivers significant economic gains with increasing
dimension of portfolio.

Five- and 10-step-ahead forecasts
Extension of forecasting horizon from 1 to 5 to 10 days does not substantially change the results of our analysis.
The only notable difference is absence of GHAR in 5% MCS in the case of 10-step-ahead forecasts of a portfo-
lio consisting of 15 stocks. Remaining results support our previous findings that application of seemingly unrelated
regression for HAR estimation delivers significant economic gains regardless of the size of the portfolio and/or
forecasting horizon.11

CONCLUSION

In this paper we propose to employ the seemingly unrelated regression of Zellner (1962) to estimate multivariate
extension of the heterogeneous autoregression model in order to improve the variance matrix forecasts. The resulting
11 To make the results comparable, we scale them according to the forecasting horizon.
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model—generalized HAR (GHAR)—inherits all the favourable properties of HAR, and provides us with a more
efficient estimator that accounts for otherwise hidden dependencies among variables.

In our setup we closely follow Chiriac and Voev (2011) and model elements of Cholesky decomposed covariance
matrices to test the economic and statistical value of the proposed modelling strategy. Moreover, we perform our
analysis on portfolios consisting of five, 10 and 15 assets, we include three covariance matrix estimators (realized
covariation, subsampled realized covariation and multivariate realized kernels), and we obtain covariance matrix
estimates using high-frequency data of five different frequencies (1, 5, 10, 15 and 20 minutes). Overall, we test the
performance of the GHAR estimator on 15 different high-frequency datasets. The resulting forecasts of GHAR prove
to perform significantly better than benchmark models according to global minimum variance portfolio and mean–
variance evaluation criteria irrespective of frequency or size of the portfolio. Whereas our study focuses on more
important economic evaluation of the forecasts, statistical evaluation is used as a robustness check of the results.
According to statistical criteria for comparison of models, we find that GHAR is not systematically dominated by any
benchmark model, which is a supportive result for economic evaluation.
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APPENDIX A: ONE-STEP-AHEAD FORECASTS

Figure A.1. Efficient frontiers: portfolio of 10 stocks: (a) RCOV 5-minute vs. MRK; (b) RCOV 5-minute vs. RCOV 1-minute;
(c) RCOV 5-minute vs. RCOV SS 5-minute; (d) RCOV 5-minute vs. RCOV SS 10-minute; (e) RCOV 5-minute vs. RCOV SS
15-minute (f) RCOV 5-minute vs. RCOV SS 20-minute
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Figure A2. Efficient frontiers: portfolio of 15 stocks: (a) RCOV 5-minute vs. MRK; (b) RCOV 5-minute vs. RCOV 1-minute;
(c) RCOV 5-minute vs. RCOV SS 5-minute; (d) RCOV 5-minute vs. RCOV SS 10-minute; (e) RCOV 5-minute vs. RCOV SS
15-minute; (f) RCOV 5-minute vs. RCOV SS 20-minute
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Table A.1. GMVP: portfolio of 10 stocks

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

Cumulative
DCC 22.14 22.14 22.14 22.14 22.14 22.14 22.14
RiskMetrics 42.15 42.15 42.15 42.15 42.15 42.15 42.15
VARFIMA 23.34 27.70 24.75 25.64 23.82 22.52 21.85
GHAR 22.50 26.71 23.90 24.79 22.98 21.66 20.98
HAR 24.28 28.30 25.66 26.40 24.63 23.39 22.79

Annualized
DCC 13.12 13.12 13.12 13.12 13.12 13.12 13.12
RiskMetrics 24.32 24.32 24.32 24.32 24.32 24.32 24.32
VARFIMA 13.74 15.76 14.40 14.84 13.90 13.21 12.88
GHAR 12.82 15.00 13.53 14.04 13.03 12.30 11.91
HAR 14.31 16.14 14.96 15.31 14.40 13.74 13.43

Note: The model with the overall best performance is highlighted; for the given frequency
the model with the lowest risk is presented in bold; values represent percentage level of risk.

Table A.2. RMSE: portfolio of 10 stocks

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 3.242 3.624 3.896 3.600 3.162 3.044 3.085
RiskMetrics 3.808 4.006 4.167 3.949 3.803 3.822 3.846
VARFIMA 2.592 3.028 3.228 2.903 2.551 2.494 2.539
GHAR 3.101 3.109 3.639 3.237 2.988 2.965 3.057
HAR 2.295 2.271 2.837 2.405 2.181 2.213 2.307

Note: Values are scaled by 10"3; highlighted cells belong to 5% MCS.

Table A.3. GMVP: portfolio of 15 stocks

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

Cumulative
DCC 20.72 20.72 20.72 20.72 20.72 20.72 20.72
RiskMetrics 56.67 56.67 56.67 56.67 56.67 56.67 56.67
VARFIMA 21.34 25.63 22.71 23.71 21.91 20.62 19.93
GHAR 20.37 24.46 21.75 22.59 20.90 19.66 18.97
HAR 22.25 26.21 23.52 24.42 22.69 21.47 20.83

Annualized
DCC 12.64 12.64 12.64 12.64 12.64 12.64 12.64
RiskMetrics 32.19 32.19 32.19 32.19 32.19 32.19 32.19
VARFIMA 12.88 14.80 13.52 13.99 13.06 12.40 12.07
GHAR 11.64 13.82 12.39 12.86 11.91 11.22 10.83
HAR 13.43 15.21 14.06 14.45 13.56 12.92 12.62

Note: The model with the overall best performance is highlighted; for the given frequency the
model with the lowest risk is presented in bold; values represent percentage level of risk.

Table A.4. RMSE: portfolio of 15 stocks

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 5.323 5.601 6.064 5.793 5.158 5.023 5.058
RiskMetrics 11.905 11.881 12.030 11.902 11.952 12.044 12.030
VARFIMA 4.555 4.809 5.207 4.900 4.374 4.276 4.323
GHAR 5.881 5.352 6.342 5.918 5.565 5.521 5.677
HAR 4.285 3.599 4.832 4.226 3.948 4.005 4.150

Note: Values are scaled by 10"3; highlighted cells belong to 5% MCS.
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APPENDIX B: FIVE-STEP-AHEAD FORECASTS

Figure B.1. Efficient frontiers: portfolio of five stocks: (a) RCOV 5-minute vs. MRK; (b) RCOV 5-minute vs. RCOV 1-minute;
(c) RCOV 5-minute vs. RCOV SS 5-minute; (d) RCOV 5-minute vs. RCOV SS 10-minute; (e) RCOV 5-minute vs. RCOV SS
15-minute; (f) RCOV 5-minute vs. RCOV SS 20-minute
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Figure B.2. Efficient frontiers: portfolio of 10 stocks: (a) RCOV 5-minute vs. MRK; (b) RCOV 5-minute vs. RCOV 1-minute;
(c) RCOV 5-minute vs. RCOV SS 5-minute; (d) RCOV 5-minute vs. RCOV SS 10-minute; (e) RCOV 5-minute vs. RCOV SS
15-minute; (f) RCOV 5-minute vs. RCOV SS 20-minute
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Figure B.3. Efficient frontiers: portfolio of 15 stocks: (a) RCOV 5-minute vs. MRK; (b) RCOV 5-minute vs. RCOV 1-minute;
(c) RCOV 5-minute vs. RCOV SS 5-minute; (d) RCOV 5-minute vs. RCOV SS 10-minute; (e) RCOV 5-minute vs. RCOV SS
15-minute; (f) RCOV 5-minute vs. RCOV SS 20-minute
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Table B.1. GMVP: portfolio of five stocks

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

Cumulative
DCC 30.50 30.50 30.50 30.50 30.50 30.50 30.50
RiskMetrics 40.61 40.61 40.61 40.61 40.61 40.61 40.61
VARFIMA 30.53 34.06 32.09 32.49 30.78 29.64 29.10
GHAR 30.49 33.88 32.07 32.36 30.72 29.54 28.96
HAR 31.30 34.62 32.86 33.19 31.47 30.38 29.87

Annualized
DCC 17.38 17.38 17.38 17.38 17.38 17.38 17.38
RiskMetrics 23.17 23.17 23.17 23.17 23.17 23.17 23.17
VARFIMA 17.28 19.02 18.06 18.24 17.35 16.73 16.73
GHAR 17.18 18.87 17.93 18.12 17.23 16.57 16.57
HAR 17.85 19.45 18.63 18.75 17.86 17.25 17.25

Note: The model with the overall best performance is highlighted; for the given frequency
the model with the lowest risk is presented in bold; values represent percentage level of risk;
values are scaled by forecasting horizon.

Table B.2. RMSE: portfolio of five stocks

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 1.193 1.293 1.376 1.288 1.152 1.081 1.079
RiskMetrics 1.296 1.317 1.330 1.314 1.290 1.288 1.285
VARFIMA 1.043 1.023 1.153 1.055 0.993 0.968 0.978
GHAR 1.261 1.195 1.382 1.273 1.206 1.174 1.189
HAR 1.024 0.980 1.100 1.028 0.968 0.951 0.966

Note: Values are scaled by 10"3 and by forecasting horizon; highlighted cells belong to 5%
MCS.

Table B.3. GMVP: portfolio of 10 stocks

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

Cumulative
DCC 22.10 22.10 22.10 22.10 22.10 22.10 22.10
RiskMetrics 42.12 42.12 42.12 42.12 42.12 42.12 42.12
VARFIMA 23.11 27.25 24.44 25.27 23.55 22.30 21.65
GHAR 22.33 26.45 23.72 24.59 22.80 21.50 20.82
HAR 24.25 28.14 25.56 26.30 24.57 23.35 22.75

Annualized
DCC 13.07 13.07 13.07 13.07 13.07 13.07 13.07
RiskMetrics 24.36 24.36 24.36 24.36 24.36 24.36 24.36
VARFIMA 13.38 15.36 14.03 14.44 13.54 12.88 12.54
GHAR 12.67 14.80 13.38 13.87 12.88 12.16 11.78
HAR 14.15 15.99 14.81 15.15 14.24 13.59 13.28

Note: The model with the overall best performance is highlighted; for the given frequency
the model with the lowest risk is presented in bold; values represent percentage level of risk;
values are scaled by forecasting horizon.
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Table B.4. RMSE: portfolio of 10 stocks

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 2.487 2.683 2.773 2.690 2.402 2.290 2.309
RiskMetrics 3.232 3.250 3.217 3.222 3.242 3.278 3.267
VARFIMA 1.952 1.966 2.166 2.024 1.867 1.833 1.872
GHAR 2.598 2.480 2.759 2.611 2.481 2.445 2.501
HAR 1.950 1.881 2.103 1.984 1.845 1.826 1.877

Note: Values are scaled by 10"3 and by forecasting horizon; highlighted cells belong to 5%
MCS.

Table B.5. GMVP: portfolio of 15 stocks

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

Cumulative
DCC 20.70 20.70 20.70 20.70 20.70 20.70 20.70
RiskMetrics 56.64 56.64 56.64 56.64 56.64 56.64 56.64
VARFIMA 21.23 25.28 22.52 23.44 21.75 20.52 19.86
GHAR 20.31 24.30 21.65 22.45 20.83 19.62 18.92
HAR 22.31 26.13 23.51 24.40 22.72 21.51 20.89

Annualized
DCC 12.60 12.60 12.60 12.60 12.60 12.60 12.60
RiskMetrics 32.25 32.25 32.25 32.25 32.25 32.25 32.25
VARFIMA 12.53 14.43 13.17 13.60 12.72 12.07 11.74
GHAR 11.53 13.66 12.26 12.70 11.79 11.12 10.73
HAR 13.29 15.07 13.94 14.31 13.42 12.78 12.48

Note: The model with the overall best performance is highlighted; for the given frequency
the model with the lowest risk is presented in bold; values represent percentage level of risk;
values are scaled by forecasting horizon.

Table B.6. RMSE: portfolio of 15 stocks

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 4.110 4.251 4.384 4.329 3.992 3.919 3.949
RiskMetrics 11.404 11.318 11.262 11.260 11.487 11.599 11.573
VARFIMA 3.453 3.223 3.596 3.422 3.239 3.201 3.283
GHAR 4.913 4.490 4.961 4.821 4.644 4.590 4.706
HAR 3.575 3.216 3.644 3.489 3.331 3.314 3.421

Note: Values are scaled by 10"3 and by forecasting horizon; highlighted cells belong to 5% MCS.
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APPENDIX C: TEN-STEP-AHEAD FORECASTS

Figure C.1. Efficient frontiers: portfolio of five stocks: (a) RCOV 5-minute vs. MRK; (b) RCOV 5-minute vs. RCOV 1-minute;
(c) RCOV 5-minute vs. RCOV SS 5-minute; (d) RCOV 5-minute vs. RCOV SS 10-minute; (e) RCOV 5-minute vs. RCOV SS
15-minute; (f) RCOV 5-minute vs. RCOV SS 20-minute

Copyright © 2016 John Wiley & Sons, Ltd J. Forecast. 36, 181–206 (2017)
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Figure C.2. Efficient frontiers: portfolio of 10 stocks: (a) RCOV 5-minute vs. MRK; (b) RCOV 5-minute vs. RCOV 1-minute;
(c) RCOV 5-minute vs. RCOV SS 5-minute; (d) RCOV 5-minute vs. RCOV SS 10-minute; (e) RCOV 5-minute vs. RCOV SS
15-minute; (f) RCOV 5-minute vs. RCOV SS 20-minute
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Figure C.3. Efficient frontiers: portfolio of 15 stocks: (a) RCOV 5-minute vs. MRK; (b) RCOV 5-minute vs. RCOV 1-minute; (c)
RCOV 5-min vs. RCOV SS 5-minute; (d) RCOV 5-minute vs. RCOV SS 10-minute; (e) RCOV 5-minute vs. RCOV SS 15-minute;
(f) RCOV 5-minute vs. RCOV SS 20-minute
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Table C.1. GMVP: portfolio of five stocks

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

Cumulative
DCC 30.50 30.50 30.50 30.50 30.50 30.50 30.50
RiskMetrics 40.58 40.58 40.58 40.58 40.58 40.58 40.58
VARFIMA 30.30 33.75 31.80 32.20 30.53 29.41 28.88
GHAR 30.35 33.66 31.94 32.21 30.58 29.40 28.81
HAR 31.16 34.40 32.68 33.01 31.30 30.24 29.74

Annualized
DCC 17.39 17.39 17.39 17.39 17.39 17.39 17.39
RiskMetrics 23.22 23.22 23.22 23.22 23.22 23.22 23.22
VARFIMA 17.07 18.82 17.84 18.02 17.15 16.54 16.26
GHAR 17.11 18.74 17.86 18.04 17.15 16.49 16.16
HAR 17.72 19.32 18.49 18.62 17.73 17.13 16.86

Note: The model with the overall best performance is highlighted; for the given frequency
the model with the lowest risk is presented in bold; values represent percentage level of risk;
values are scaled by forecasting horizon.

Table C.2. RMSE: portfolio of five stocks

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 1.208 1.294 1.375 1.291 1.173 1.107 1.101
RiskMetrics 1.389 1.401 1.431 1.404 1.388 1.384 1.380
VARFIMA 1.153 1.147 1.266 1.173 1.106 1.072 1.078
GHAR 1.287 1.256 1.409 1.307 1.237 1.197 1.205
HAR 1.138 1.133 1.242 1.163 1.091 1.058 1.067

Note: Values are scaled by 10"3 and by forecasting horizon; highlighted cells belong to
5% MCS.

Table C.3. GMVP: portfolio of 10 stocks

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

Cumulative
DCC 22.05 22.05 22.05 22.05 22.05 22.05 22.05
RiskMetrics 42.08 42.08 42.08 42.08 42.08 42.08 42.08
VARFIMA 22.89 26.91 24.17 24.97 23.31 22.09 21.45
GHAR 22.16 26.23 23.55 24.40 22.61 21.33 20.66
HAR 24.15 27.94 25.42 26.14 24.45 23.25 22.66

Annualized
DCC 13.03 13.03 13.03 13.03 13.03 13.03 13.03
RiskMetrics 24.40 24.40 24.40 24.40 24.40 24.40 24.40
VARFIMA 13.16 15.13 13.80 14.20 13.32 12.67 12.33
GHAR 12.56 14.67 13.28 13.75 12.76 12.06 11.69
HAR 14.01 15.85 14.67 15.01 14.10 13.45 13.14

Note: The model with the overall best performance is highlighted; for the given frequency
the model with the lowest risk is presented in bold; values represent percentage level of risk;
values are scaled by forecasting horizon.

Copyright © 2016 John Wiley & Sons, Ltd J. Forecast. 36, 181–206 (2017)



204 F. Cech and J. Barunik

Table C.4. RMSE: portfolio of 10 stocks

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 2.437 2.609 2.687 2.610 2.362 2.260 2.271
RiskMetrics 3.445 3.461 3.455 3.448 3.458 3.487 3.481
VARFIMA 2.139 2.165 2.327 2.208 2.057 2.011 2.041
GHAR 2.605 2.514 2.729 2.607 2.494 2.449 2.491
HAR 2.114 2.110 2.276 2.174 2.026 1.986 2.024

Note: Values are scaled by 10"3 and by forecasting horizon; highlighted cells belong to
5% MCS.

Table C.5. GMVP: portfolio of 15 stocks

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

Cumulative
DCC 20.67 20.67 20.67 20.67 20.67 20.67 20.67
RiskMetrics 56.60 56.60 56.60 56.60 56.60 56.60 56.60
VARFIMA 21.08 25.00 22.33 23.21 21.56 20.36 19.72
GHAR 20.21 24.13 21.54 22.30 20.72 19.53 18.83
HAR 22.31 26.00 23.46 24.32 22.68 21.49 20.88

Annualized
DCC 12.56 12.56 12.56 12.56 12.56 12.56 12.56
RiskMetrics 32.32 32.32 32.32 32.32 32.32 32.32 32.32
VARFIMA 12.32 14.21 12.95 13.38 12.50 11.86 11.53
GHAR 11.44 13.55 12.16 12.59 11.70 11.04 10.66
HAR 13.19 14.95 13.82 14.19 13.31 12.68 12.37

Note: The model with the overall best performance is highlighted; for the given frequency
the model with the lowest risk is presented in bold; values represent percentage level of risk;
values are scaled by forecasting horizon.

Table C.6. RMSE: portfolio of 15 stocks

MRK RCOV Subsampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 4.141 4.258 4.385 4.323 4.054 3.989 4.010
RiskMetrics 11.806 11.735 11.720 11.719 11.884 11.981 11.961
VARFIMA 3.690 3.542 3.821 3.680 3.496 3.439 3.509
GHAR 4.807 4.514 4.859 4.746 4.571 4.508 4.613
HAR 3.666 3.471 3.767 3.635 3.468 3.424 3.512

Note: Values are scaled by 10"3 and by forecasting horizon; highlighted cells belong to 5% MCS.
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Table D.1. Descriptive statistics of returns over the period 1 July 2005 to 3 January 2012 APPENDIX D

AAPL CVX GE GOOG IBM JNJ JPM KO MSFT PFE PG T WFC WMT XOM

1 min
Mean #0.105 0.086 #0.218 #0.204 0.215 #0.035 #0.036 0.011 #0.040 #0.150 0.133 #0.079 #0.049 #0.018 0.099
Max. 0.046 0.043 0.050 0.022 0.030 0.044 0.032 0.020 0.019 0.032 0.032 0.039 0.042 0.030 0.040
Min. #0.037 #0.027 #0.032 #0.041 #0.020 #0.033 #0.060 #0.038 #0.025 #0.028 #0.028 #0.038 #0.049 #0.021 #0.034
SD 1.046 0.891 1.088 0.936 0.749 0.559 1.336 0.619 0.833 0.825 0.616 0.834 1.464 0.685 0.827
Skewness 0.037 0.262 0.181 #0.369 0.077 0.394 #0.144 #0.482 #0.063 0.103 #0.066 #0.122 0.068 0.365 #0.188
Kurtosis 37.100 44.353 43.467 34.940 40.526 126.707 41.663 70.490 18.848 30.256 71.747 52.025 40.587 39.587 50.690

5 min
Mean #0.629 0.423 #0.994 #1.037 1.177 #0.132 #0.165 0.113 #0.138 #0.745 0.741 #0.353 #0.252 #0.057 0.526
Max. 0.065 0.061 0.052 0.046 0.053 0.032 0.069 0.028 0.030 0.030 0.050 0.034 0.066 0.048 0.053
Min. #0.048 #0.068 #0.046 #0.069 #0.036 #0.040 #0.068 #0.037 #0.028 #0.038 #0.062 #0.073 #0.077 #0.042 #0.059
SD 2.258 1.916 2.280 2.023 1.580 1.174 2.871 1.297 1.756 1.694 1.316 1.779 3.151 1.478 1.779
Skewness #0.008 #0.062 0.268 #0.509 0.121 #0.127 0.059 #0.300 #0.091 0.109 #0.460 #0.518 0.095 0.432 #0.098
Kurtosis 28.079 37.935 31.858 39.555 37.413 44.133 35.720 33.284 17.395 18.627 86.196 46.840 34.793 42.507 40.512

10 min
Mean #0.960 1.129 #1.740 #1.820 2.856 0.118 #0.611 0.387 0.350 #1.416 1.832 #0.444 #0.827 0.289 1.410
Max. 0.050 0.039 0.052 0.043 0.029 0.030 0.067 0.031 0.029 0.029 0.024 0.038 0.069 0.053 0.051
Min. #0.079 #0.034 #0.058 #0.073 #0.036 #0.025 #0.102 #0.040 #0.038 #0.027 #0.031 #0.043 #0.092 #0.035 #0.067
SD 3.150 2.630 3.168 2.776 2.169 1.592 3.937 1.793 2.399 2.297 1.765 2.412 4.372 1.999 2.423
Skewness #0.301 0.229 0.256 #0.373 #0.161 0.310 0.035 #0.321 #0.018 0.244 #0.042 #0.114 0.082 0.435 #0.098
Kurtosis 24.897 15.055 29.864 25.773 20.025 21.991 31.039 27.228 15.157 12.988 20.916 21.321 30.512 23.805 27.665

15 min
Mean #1.415 2.229 #2.493 #2.598 4.830 0.250 #0.769 0.643 0.765 #1.986 2.917 #0.370 #1.003 0.712 3.193
Max. 0.058 0.046 0.071 0.049 0.038 0.025 0.113 0.030 0.032 0.039 0.028 0.046 0.099 0.051 0.047
Min. #0.053 #0.037 #0.070 #0.068 #0.053 #0.024 #0.086 #0.041 #0.042 #0.029 #0.034 #0.053 #0.075 #0.035 #0.037
SD 3.801 3.186 3.877 3.350 2.630 1.946 4.896 2.175 2.921 2.794 2.138 2.951 5.335 2.445 2.925
Skewness #0.012 0.237 0.161 #0.242 #0.159 0.332 0.314 #0.319 #0.050 0.264 0.086 #0.052 0.421 0.562 0.263
Kurtosis 16.529 15.547 31.899 22.586 21.422 19.781 35.685 22.721 14.785 13.138 21.422 21.883 30.411 20.882 19.090

20 min
Mean #1.950 2.227 #4.353 #3.743 5.912 #0.276 #1.903 0.412 0.445 #2.604 3.494 #0.812 #2.259 0.542 3.371
Max. 0.050 0.059 0.062 0.043 0.036 0.034 0.074 0.035 0.034 0.041 0.026 0.053 0.086 0.053 0.069
Min. #0.048 #0.037 #0.068 #0.118 #0.040 #0.021 #0.102 #0.040 #0.038 #0.029 #0.029 #0.049 #0.080 #0.024 #0.067
SD 4.245 3.608 4.350 3.775 2.939 2.159 5.381 2.446 3.259 3.131 2.380 3.300 6.064 2.741 3.325
Skewness #0.075 0.252 0.130 #0.867 #0.034 0.420 #0.051 #0.148 #0.044 0.256 0.087 #0.086 0.161 0.510 0.177
Kurtosis 13.207 14.377 26.975 42.831 17.258 17.410 23.170 19.581 12.493 11.697 15.784 19.932 25.774 17.183 25.829

Note: Means are scaled by 105; standard deviations are scaled by 103.
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