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ABSTRACT

This article introduces the Markov-Switching Multifractal Duration (MSMD)
model by adapting the MSM stochastic volatility model of Calvet and Fisher
(2004) to the duration setting. Although the MSMD process is exponential
β-mixing as we show in the article, it is capable of generating highly persistent
autocorrelation. We study, analytically and by simulation, how this feature
of durations generated by the MSMD process propagates to counts and
realized volatility. We employ a quasi-maximum likelihood estimator of the
MSMD parameters based on the Whittle approximation and establish its
strong consistency and asymptotic normality for generalMSMD speci�cations.
We show that the Whittle estimation is a computationally simple and fast
alternative to maximum likelihood. Finally, we compare the performance of
the MSMD model with competing short- and long-memory duration models
in an out-of-sample forecasting exercise based on price durations of three
major foreign exchange futures contracts. The results of the comparison show
that the MSMD and the Long Memory Stochastic Duration model perform
similarly and are superior to the short-memory Autoregressive Conditional
Duration models.
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1. Introduction

Financial durations measure the time elapsed between various �nancial market events related to
transactions arrivals, price �uctuations, or trading volumes. Modeling durations may be useful for
measuring and predicting instantaneous volatility and integrated variance and so may aid high-
frequency volatility trading and risk management. Exploiting the intimate relationship between
durations and volatility, Tse and Yang (2010) employ parametric duration models to measure daily
volatility using high-frequency data. Andersen et al. (2008) propose a nonparametric duration-based
approach to measuring volatility by relying on the properties of Brownian motion. More generally
though, durations are useful for gaining more insight into any information events or variables which
change values at each tick, as implied by the theory of market microstructure, and thus may be useful
for examining a number of interesting economic hypotheses related to trading and price discovery; see
Engle (2000) for an excellent discussion.

A key stylited fact noted in the empirical irregularly-spaced event literature is persistence in �nancial
durations. Ever since the seminal contribution of Engle and Russell (1998), who introduced the �rst
time-series model for �nancial durations, a number of studies have documented the slowly decaying
autocorrelation function of transaction, price and volume durations; see Pacurar (2008) for a detailed
literature review. Deo et al. (2010) recently test for long memory in durations and the associated counts
and �nd signi�cant evidence to support the presence of longmemory in durations. Despite this empirical
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1082 F. ŽIKEŠ ET AL.

regularity, there is currently no article that explores the alternative approaches to capturing the persistent
autocorrelations of durations and its implications for forecasting. We aim to �ll this gap.

Inspired by the success of the Markov-Switching Multifractal (MSM) stochastic volatility model of
Calvet and Fisher (2004) in forecasting persistent volatility of �nancial returns, we start by adapting the
MSMmodel to the duration setting, calling the newmodel theMarkov-SwitchingMultifractal Duration
(MSMD) model. This model adds to the class of stochastic durations models of Bauwens and Veredas
(2004) and Deo et al. (2010), which also evolved from the stochastic volatility literature, though the
latent process driving the dynamics of durations in an MSMD is a hidden Markov chain rather than a
linear Gaussian process. The properties of the model are therefore quite distinct from its competitors
and exhibit a number of attractive features.

First, the process possesses a very �exible autocovariance structure, which is capable of generating
a wide range of persistence behaviors, including a slowly decaying autocorrelation. This long-memory
feature of the MSMD process is induced by regime switching of heterogenous persistence: the hidden
Markov chain is driven by k independentMarkov-switching processes with di�erent transition probabil-
ities. Second, despite begin able to exhibit high persistence, we show formally that the MSMD process is
exponential β-mixing and short-memory. This property of themodel is unique: all the existing duration
models, whether observation-driven or stochastic, exhibit either genuine exponential or hyperbolic
autocovariance functions (ACF). TheMSMD can produce an ACF that is nearly hyperbolic over a range
of lags before smoothly transitioning to exponential decay. Finally, the �exibility of MSMD model is
not traded o� against parsimony. Although the hidden chain consists of k independent components
with distinct transitional probabilities, these probabilities are tightly parametrized, and the number of
parameters of themodel does not dependon k. Standardmethods and tools forMarkov switchingmodels
therefore readily apply.

Since durations and volatility are directly linked, we next explore the properties of volatility in a pure
jump model of Oomen (2006), where the inter-jump durations follow MSMD. Relying on the recent
results ofDeo et al. (2009) on the propagation ofmemory fromdurations to counts and realized volatility,
we establish formally that the short memory ofMSMDdurations translates into short memory in counts
and realized volatility. However, simulation reveal, that the shape of the ACF of MSMD durations—
hyperbolic over a range of lags but eventually exponential—is inherited by realized volatility. Again this
feature cannot be generated by the existing durations models.

Having studied the properties of the MSMD process, we next propose quasi-maximum likelihood
estimation of the MSMD parameters based on the Whittle approximation. The main motivation for
exploring this estimation method as an alternative to exact maximum likelihood is computational
burden associated with the latter in large samples, and its limitation to the case of an MSM speci�cation
with a �nite number of states. Contrary to this, the Whittle estimator works in either case and is
computationally simple and fast. Relying on results from the statistics literature, we formally establish
strong consistency and asymptotic normality of theWhittle estimator under fairly mild assumptions for
a wide range of MSMD speci�cations.

Note that computational speed is not a mere convenience in our context: given the increasing
importance of algorithmic and high-frequency traders, who are capable of generating tens of thousands
of limit andmarket orders in a single day, the amount of data usable for estimation has grown enormously
in many markets (Hasbrouck and Saar, 2010). For such environments, fast estimation methods simply
become a necessity, even with ever-faster modern computers. Last but not least, the Whittle estimator
can be easily adapted to the original MSM stochastic volatility model of Calvet and Fisher (2004), and
thus represents a contribution to theMSM literature that goes beyond the context of �nancial durations.

Finally, we compare our estimation and forecasting results with those possible from established
duration models. As noted by Pacurar (2008), there is a scarcity of comparisons of duration models, and
ideally one would like to undertake a comparison of all the models she has detailed. However, as noted
above, only long memory models are able to account for the key stylised fact of long-range dependence
in durations. We therefore restrict attention to the LongMemory Stochastic Duration (LMSD) model of
Deo et al. (2010). To investigate the bene�ts of the relatively complicatedMSMD and LMSDmodels over
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ECONOMETRIC REVIEWS 1083

their simple and easy to estimate short-memory counterparts, we also compare our results with those
from the widely used Autoregressive Conditional Duration (ACD) model introduced in the seminal
paper by Engle and Russell (1998).

We implement themodels on price durations of threemajor foreign exchange futures contracts traded
on the Chicago Mercantile Exchange (CME) in the period between November 9, 2009 and January 29,
2010: Euro, Japanese Yen, and Swiss Franc.We �nd that the LMSD andMSMDmodels generally perform
on par, although MSMD sometimes produces better results. The forecast combinations of the LMSD
and MSMD models almost always signi�cantly outperform those of the short-memory ACD model.
Given that we provide a simple and computationally cheap method for estimating the MSMD model
parameters from large samples of data, this results is potentially important for practitioners. Needless to
say, our results are limited to three FX futures contracts and a more comprehensive empirical exercise
is needed to con�rm a general validity of our results. Chen et al. (2012) (henceforth CDS) con�rm the
superiority of MSMD over ACD for a sample of U.S. equity transactions durations, thought they do not
include the LMSD model in the comparison.

The Markov switching multifractal duration model has been proposed independently and in parallel
to our work in a recent paper by CDS articles. The main di�erences between the two articles can be
summarized as follows.We are not restricting attention to the binomialMSMDmodelwith exponentially
distributed innovations, but consider more general versions of the model. Allowing for a wider class
of distributions is made possible in practice by employing the Whittle estimator, and it turns out to be
empirically bene�cial. In terms of empirical application, we di�er fromCDSbymodeling and forecasting
price durations as opposed to transactions durations, and focus on foreign exchange futures prices in
2009/2010 rather than individual equities in 1993. Finally, given the high persistence of the durations
in our sample, the natural competitor of the MSMD model is the LMSD model rather than the short-
memory ACD, and hence, unlike CDS, we include the LMSD model in our forecasting exercise as well.

The rest of the article is organized as follows. Section 2 introduces the MSMD model and discusses
its properties. Section 3 discusses estimation and forecasting for the MSMD model. Section 4 reviews
the competing duration models and Section 5 looks at the link between durations, counts, and realized
volatility. In Section 6, we describe the data, and in Section 7, we present estimation and forecasting
results. Section 8 concludes. Mathematical proofs are provided in the Appendix. Some auxiliary results
and derivations are collected in the Supplemental Appendix.

2. TheMSMDmodel

Let Xi = ti − ti−1 denote the duration between two event arrival times. The three most common
events studied in the literature relate to transaction arrivals, price changes, and transaction volumes.
The MSMDmodel is de�ned by.

Xi = ψiǫi, i ∈ Z, (2.1)

where ψi is the Markov-switching multifractal process of Calvet and Fisher (2004);

ψi = ψ̄

k∏

j=1

Mj,i, (2.2)

and ǫi is a sequence of independent unit-mean innovations identically distributed according to some
parametric distribution. The latent process in (2.2) is determined by k independent unit-mean multi-
pliers, Mj,i, j = 1, . . . , k, and a scaling constant, ψ̄ . At every point in time i, each multiplier Mj,i takes,
with probability γj, a new valueM drawn from a common distribution FM , and remains unchanged with
probability 1 − γj:

Mj,i =
{
M whereM is drawn from FM with probability γj

Mj,i−1 with probability 1 − γj
.
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1084 F. ŽIKEŠ ET AL.

The transition probabilities are parsimoniously parametrized by

γj = 1 − (1 − γk)
(bj−k), j = 1, . . . , k, (2.3)

where γk ∈ (0, 1) and b ∈ (1,∞). Two speci�cations for the distribution of the multipliers FM have
been proposed byCalvet and Fisher (2004): binomial and log-normal. In the binomial speci�cation, each
multiplier, if at all, is renewed by drawing the valuesm0 and 2−m0;m0 ∈ (1, 2), with equal probability,
ensuring that the mean is equal to one. The transition matrix associated with each multiplier is thus
given by

Pj =
(
1 − 1

2γj
1
2γj

1
2γj 1 − 1

2γj

)
.

Since the multipliers are independent, the transition matrix of the state vector Mi = (M1,i, . . . ,Mk,i)

is simply P = P1 ⊗ P2 ⊗ · · · ⊗ Pk, where “⊗” denotes the Kronecker product. The dimension of the
transitionmatrix is 2k×2k and the state vector takes values in the �nite state space�M = {m0, 2−m0}k.

In general, any distribution with positive support can be used to model the multipliers. For example,
the log-normal speci�cation of Calvet and Fisher (2004) replaces the Bernoulli distribution by a log-
normal one, i.e., upon switching, the new value of the log multiplier is drawn from N(−λ, 2λ), where
the parameter restriction again imposes unit means for the multipliers. When drawn from a continuous
distribution (with respect to Lebesgue measure on R+), each multiplier assumes a new value with
probability one, and the transition kernel of the multiplier is given by

P(Mj,i+h ∈ Bj|Mj,i = xj) = (1 − (1 − γj)
h)P(M ∈ Bj)+ (1 − γj)

h
1{xj∈Bj}, j = 1, . . . , k, (2.4)

for any Bj ∈ B(R+) and xj ∈ R+, where B(R+) is the Borel σ -algebra on R+. Since the multipliers are

independent, the transition kernel of the chain Mi reads P(Mi+h ∈ B|Mj,i = x) =
∏k

j=1 P(Mj,i+h ∈
Bj|Mj,i = xj) for any x = (x1, x2, . . . , xk)

′ and any B ∈ B(Rk
+), a Borel σ -algebra on Rk

+, where B =
B1 × B2 × · · · × Bk, Bj ∈ B(R+), j = 1, . . . , k. The chain takes values in a state space�M ⊆ Rk

+.
Having speci�ed the law governing the multipliers, it remains to choose a distribution for the inno-

vations, ǫi. As is common in the literature, we consider here the exponential and Weibull distributions
(Supplemental Appendix A2). With these speci�cations of ǫi, the law governing the durations, xi, is
a mixture of exponentials and a mixture of Weibull distributions, respectively. Other, more �exible
multiparameter alternatives have been proposed in the context of modeling �nancial durations: the Burr
distribution (Grammig andMaurer, 2000) and the generalized gamma distribution (Lunde, 1999), both
of which encompass the exponential andWeibull cases. As we are primarily interested in point forecasts
in this article, for the sake of parsimony we con�ne our attention to the latter two distributions.

To illustrate the behavior of the multipliers and durations in the MSMD model, we plot in Fig. 1
simulated samples from the binomial and log-normal MSMD processes with k = 6 multipliers and
parameters b = 3, γk = 0.5, m0 = 1.4, and λ = 0.15. In this MSMD speci�cation, γ1 = 0.0028
implies that the most persistent multiplier, (M1,i), switches, on average, around 3 times in a sample of
1,000 observations if it is drawn from the log-normal distribution, and 1.5 times if it is drawn from the
Bernoulli distribution. The least persistentmultiplier, (M6,i), switches with probability 0.5 and 0.25 in the
log-normal and binomial MSMD speci�cations, respectively. Clearly, both speci�cations can produce
rich dynamics: the duration process is highly persistent but can exhibit sudden erratic movements as
observed in empirical data.

2.1. Stationarity, ergodicity and strongmixing

It is relatively easy to establish that the Markov chain Mi driving the MSMD process is geometrically
ergodic as long as the conditions b > 1 and 0 < γk < 1 are satis�ed. Starting with the binomial MSMD
speci�cation, we see that under these conditions all elements of the transition matrix of the chain P
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ECONOMETRIC REVIEWS 1085

Figure 1. Simulated binomial and log-normal MSMD processes with six multipliers and exponentially distributed innovations. The
parameters of the processes are b = 3, γk = 0.5,m0 = 1.4, and λ = 0.15.
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1086 F. ŽIKEŠ ET AL.

are strictly positive since 0 < γj < 1 for all j, and it follows directly from the proof of Theorem 1 in
(Shiryaev, 1995, Chapter 1, Section 12) that the chain is geometrically ergodic. The ergodic distribution
is given by πl = 1/2k, l = 1, . . . , 2k.

If upon switching the multipliers, Mj,i, j = 1, . . . , k, are drawn randomly from a continuous
distribution, FM , with support R+, the transition kernel associated with the jth multiplier is given in
Eq. (2.4) and the ergodic distribution of the multiplier reads π(Bj) := limh→∞ P(Mj,i+h ∈ Bj|Mj,i =
Xj) = P(M ∈ Bj),Bj ∈ B(R+). Then for any Xj ∈ R+, j = 1, . . . , k and h ∈ N, supBj∈B(R+) |P(Mj,i+h ∈
Bj|Mj,i = Xj) − π(Bj)| ≤ (1 − γ )h, where 0 < γ := min{γ1, . . . , γk} < 1. Since the multipliers Mj,i,
j = 1, . . . , k, are independent it follows that the chainMi is geometrically ergodic.

Geometric ergodicity of theMarkov chainMi in turn implies that the duration process {Xi} is strictly
stationary β-mixing with an exponential rate of decay, provided that the chain is initialized from the
ergodic distribution. To see this, observe that the duration process belongs to the class of generalized
hidden Markov models in the sense of De�nition 3 in Carrasco and Chen (2002): the hidden Markov
chainMi is strictly stationary and, conditionally onMi, the durations Xi are independently distributed
where the conditional distribution only depends on Mi and not on i. Given geometric ergodicity of
the hidden chain, Proposition 4 of Carrasco and Chen (2002) then implies that the duration process is
exponential β-mixing.

2.2. Moments, autocovariance function, and spectral density

In the Supplemental Appendix A.1, we show that the �rst two moments of the MSMD process are given
by

E(Xi) = ψ̄ , (2.5)

Var(Xi) = ψ̄2[E(M2)kE(ǫ21)− 1]. (2.6)

The model can exhibit both under- and overdispersion depending on the distributional assumptions
aboutM and ǫi, since the ratio of the variance to the squared mean, E(M2)k E(ǫ21)− 1, can in general be
smaller or larger than one. An MSMD process with exponential innovations, however, always exhibits
over-dispersion since for an exponentially distributed ǫi, we have E(ǫ21) = 2, and by construction
E(M2) > 1.

An attractive property of the MSMD model is that it possesses a very �exible ACF that can exhibit
behavior similar to long-memory. In the Supplemental Appendix A.1, we show that for a general MSMD
process with �nite E(M2) and E(ǫ21), we have

Cov(Xi,Xi−h) = ψ̄2

( k∏

j=1

[1 + Var(M)(1 − γj)
h] − 1

)
. (2.7)

Although (2.7) implies that theMSMDprocess is short-memory as the autocovariance function declines
exponentially fast and the spectral density is bounded at origin, it is capable of mimicking hyperbolic
decay over a wide range lags. More speci�cally, it follows directly from Proposition 1 in Calvet and
Fisher (2004) that the autocorrelation function of the MSMD durations decays hyperbolically over a
large range of lags before transitioning smoothly into exponential decay as the number of multipliers,
k, grows without bound. So despite being a short-memory process, the MSMD model can mimic the
persistence of a genuine long-memory process with a hyperbolically decaying autocorrelation function.

For illustration purposes, Fig. 2 plots the autocorrelation function of a binomial MSMD process with
exponential innovations and various sets of parameter values. We take the case of k = 8 multipliers and
parameters b = 2, γk = 0.5, andm0 = 1.4, as a benchmark and vary each parameter separately to study
how it a�ects the shape of the autocorrelation function. Increasing b or decreasing γk both increase the
persistence of the process since the switching probabilities of the multipliers decrease (panels (a) and
(b)). In the former case, the increase is more pronounced at the long end of the ACF, while in the latter
case it a�ects the short lags of the ACFmore. This is due to the di�erent impact of a change in b and γk on
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ECONOMETRIC REVIEWS 1087

Figure 2. Transition probabilities and the autocorrelation function of a binomial MSMD process with exponentially distributed
innovations.

the various switching probabilities as illustrated in panel (a). Increasing the volatility of the multipliers
by reducingm0 lowers the multipliers’ persistence and thus the persistence of the MSMD process (panel
(c)). Finally, increasing the number of multipliers (k) while keeping the parameters of the model �xed
increases persistence (panel (d)).

2.3. Exogenous and predetermined variables

Exogenous or predetermined variables can be easily incorporated into the model by setting ψ̄ = ψ̄i =
exp(β0 + β ′zi), for some vector of variables zi. This is useful for several reasons. First, to incorporate
the deterministic intraday duration pattern observed in most durations data (Engle and Russell, 1998;
Bauwens and Veredas, 2004; Fernandes and Grammig, 2006; Deo et al., 2010, amongmany others). Due
to the deterministically varying trading activity during the day, the durations tend to be shorter during
the early and late trading hours, and relatively longer over lunchtime. Second, one may wish to include
additional predictive variables to enhance the forecasting power of the model. A natural candidate when
forecasting price durations may be option-implied volatility for which high-frequency data is either
available readily (e.g., VIX) or can be constructed from high-frequency options data. Finally, it may
be interesting to include some predetermined variables related to market microstructure as in Engle and
Russell (1998), Bauwens and Veredas (2004), and others.

3. Estimation, inference and forecasting

3.1. Maximum likelihood and optimal forecasting

The binomial MSM with �nite k implies a �nite number of states of the hidden Markov process and
hence can be estimated by exact maximum likelihood (MLE) via Bayesian updating. This approach has
been advocated by Calvet and Fisher (2004) for the binomialMSMmodel of stochastic volatility, and has
been shown to work well for sample sizes typically used for estimating models of time-varying volatility.
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1088 F. ŽIKEŠ ET AL.

Moreover, the Bayesian �lter allows for estimation of the unobserved state probabilities, which in turn
permits optimal forecasting. To save space, we omit the details here and refer the reader to Calvet and
Fisher (2004).

A disadvantage of the exact maximum likelihood estimator is that it becomes computationally
demanding for k ≥ 10, since the dimension of the transition matrix grows at a rate of 2k. Also, it
is not applicable to the log-normal MSM process, where the state space of the hidden Markov chain
is in�nite. These issues have motivated Lux (2008) to develop a generalized method of moments
(GMM) approach, which works for a wide range of MSM speci�cations and requires only moderate
computational resources.1 The drawback of the GMM estimator of Lux (2008) is that it is applied to the
�rst di�erences rather than levels of the process and thismakes the identi�cation of the parameters b and
γk di�cult even when the sample size is very large. Lux (2008) circumvents this problem by setting these
parameters to some prespeci�ed values that seem to work well for a number of data sets, and estimates
by GMM the remaining two parameters only. This may be quite restrictive, however, especially in our
context where no previous evidence exists to suggest reasonable values of b and γk for modeling and
forecasting �nancial durations.

3.2. Whittle estimation

We propose an alternative autocovariance-based estimator of the MSMD parameters. In contrast to Lux
(2008) and Bacry et al. (2008, 2012), we work in the frequency domain and employ the Whittle quasi-
likelihood. An advantage of the Whittle estimation compared to GMM is that it takes into account the
entire autocovariance function rather than just a �nite subset of lags, and thus avoiding the problem of
which autocovariances to match. To obtain better �nite-sample properties, we implement the Whittle
estimator on logarithmic durations, as the logarithmic durations aremuch closer to being Gaussian than
the durations themselves (see Section 6 for some empirical evidence). De�ning xi := logXi, i ∈ Z, and
taking logs of both sides of Eq. (2.1), we have

xi = log ψ̄ +
k∑

j=1

mj,i + ei, i ∈ Z,

wheremj,i := logMj,i and ei := log ǫi. We further de�ne σ 2
m := Var(m) and σ 2

e := Var(e1).
It is well-known that for a stationary Gaussian process maximizing the frequency domain represen-

tation of the log-likelihood turns out to be asymptotically equivalent to the usual maximum likelihood
estimator (Whittle, 1962). The so-called negative Whittle log-likelihood is given by

Qn(θ) = 1

n

n−1∑

i=1

(
log f (ωi; θ)+ In(ωi)

f (ωi; θ)

)
, (3.1)

where f (ωi; θ) is the spectral density of the logarithmicMSMDprocesswith parameter θ , i.e., the spectral

density associated to {xj} and In(ωi) = 1
2πn

∣∣∣
∑n

j=1 xje
−ιωij

∣∣∣
2
is the periodogram of the observations

x1, x2, . . . , xn, both evaluated at the ith Fourier frequency, ωi = 2π i/n. The Whittle estimator of θ is
obtained by minimizing Qn(θ):

θ̂n = argmin
θ∈2

Qn(θ),

Now if the process is not Gaussian, which is our case, minimizing the negative Whittle log-likelihood
still works but the resulting estimator is no longer asymptotically equivalent to MLE. The intuition for

θ̂n in the non-Gaussian case is straightforward: under a mixing assumption, the periodogram In(ωi)

is asymptotically distributed as an exponential random variable with parameter f (ωi), and for any two

1Similarly, Bacry et al. (2008, 2012) use a GMM approach to estimate parameters of the Multifractal RandomWalk (MRW).
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ECONOMETRIC REVIEWS 1089

Fourier frequencies, ωi and ωj, i 6= j, In(ωi) and In(ωj) are asymptotically independent (Rice, 1973).

Hence (3.1) has a quasi-likelihood interpretation and θ̂n has been shown to be consistent for θ and
asymptotically normally distributed under appropriate regularity conditions.

Implementing theWhittle estimator for theMSMDmodel is easy since the spectral density is available
in closed form. In the Supplemental Appendix A.1, we show that provided the logarithmic MSMD
durations possess �nite second moments, the spectral density reads

f (ω) = σ 2
m

2π




k∑

j=1

1 − (1 − γj)
2

1 + (1 − γj)2 − 2(1 − γj) cosω


+ σ 2

e

2π
, (3.2)

for ω ∈ [−π ,π ]. In the rest of the article, we will always assume that E(m2) < ∞ and E(e21) < ∞ so
that (3.2) are well de�ned.

We see from Eq. (3.2) that the logarithmic MSMD process {xi} is a signal-plus-noise process, where
the signal is given by a sum of k independent Markov chains and the noise is an independently and
identically distributed (iid) process independent of the signal. Whittle estimation of signal-plus-noise
models has been studied by Hosoya and Taniguchi (1982) and Za�aroni (2009). Compared to Whittle
estimation of linear processes, a complication arises here from the fact that the spectral density of a
signal-plus-noise model cannot be easily factored in the sense that the Whittle log-likelihood cannot be
expressed as a sum of two components that depend on disjoint parameter sets. In general, this gives rise
to a more complicated limiting distribution of the Whittle estimator.

The asymptotic results obtained byHosoya and Taniguchi (1982) and Za�aroni (2009) can be applied
in our context despite the fact the both the signal and the noise processes have di�erent speci�cations in
these papers. In case ofHosoya andTaniguchi (1982), the signal is anAR(1) process with iid innovations,
uncorrelated with, thought not necessarily independent of, the iid noise process. Za�aroni (2009)
considers a class of models where the signal is an MA(∞) process with iid innovations and potentially
hyporbolically declining MA coe�cients (long memory) and allows for correlation between the signal
and the iid noise. In case of the logarithmic MSMD, while the signal is independent of the noise, it is
not a linear process. Given strict stationarity and ergodicity, which was established in Section 2.1, we

can, however, invoke the results of Hannan (1973) and establish stong consistency of θ̂n for an MSMD
model.

Proposition 1. Let {Xi} be an MSMD process with parameter θ0 ∈ 2, where 2 is a compact subset of
the parameter space such that for all θ1, θ2 ∈ 2, θ1 6= θ2 implies f (ω; θ1) 6= f (ω; θ2) on a set of positive

Lebesgue measure. Then θ̂n
a.s.−→ θ0 as n → ∞.

The proof is given in section A.1 of the Appendix. The only assumption in Proposition 1 is an
identi�cation assumption. Clearly, the Whittle estimator cannot in general work with multiparameter
distributions for themultipliersM and innovations ǫ; it is easy to see from (3.2) that theWhittle estimator
can only identify σ 2

m and σ 2
e . The functions mapping the parameters of the distribution ofM and ǫ into

σ 2
m and σ 2

e have to be continuous, di�erentiable, one-to-one and onto. This is clearly satis�ed for the
Bernoulli, log-normal, andWeibull distributions. In addition, the Whittle estimator cannot identify the
mean of the duration process, ψ̄ , but this is of lesser concern in our application since durations are
typically seasonally pre-adjusted and the model is estimated using the seasonally adjusted durations
that have unit mean by construction. Nonetheless, the sample mean can be always used to consistently
estimate ψ̄ if needed.

Turning to the central limit of θ̂n, we exploit the fact that despite nonlinearity, {xi} has a simple vector
MA(∞) representation (see Eq. (A.1) in the Appendix), which allows us to utilize the general results
of Hosoya and Taniguchi (1982) provided we verify the relevant regularity conditions. This is done in
Section A.2 of the Appendix and proves the following preposition.
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1090 F. ŽIKEŠ ET AL.

Proposition 2. Let the assumption of Proposition 1 hold with E(m4+r) < ∞, r > 0 and E(e41) < ∞.
Then as n → ∞,

√
n(θ̂n − θ0)

d−→ N(0,M(θ0)
−1V(θ0)M(θ0)

−1), (3.3)

where

M(θ0) = 1

2π

∫ π

−π

[
g(ω; θ)g(ω; θ)′

]
θ=θ0 dω, (3.4)

V(θ0) = 1

π

∫ π

−π

[
g(ω; θ)g(ω; θ)′

]
θ=θ0 dω (3.5)

+ 1

2π

∫ π

−π

∫ π

−π

[
g(ω1; θ)

f (ω1; θ)

g(ω2; θ)
′

f (ω2; θ)
S(−ω1,ω2,−ω2; θ)

]

θ=θ0
dω1dω2,

g(ω; θ) = ∂ log f (ω;θ)
∂θ

, and S(ω1,ω2,ω3; θ) denotes the model trispectrum.

The trispectrum entering the limiting variance through (3.5) is de�ned as the Fourier transform of
the fourth-order cumulants of xi (see, e.g., Mendel, 1991,for details). It is very di�cult to obtain the
trispectrum in closed form, except for some special cases. The most simple case arises when both Mi

and ǫi are log-normally distributed, since then mi and ei, and thus xi, are Gaussian implying that the
fourth-order cumulants of xi are identically zero and S(ω1,ω2,ω3; θ) ≡ 0. The limiting variance of the
Whittle estimator in (3.3) then reduces to 4πM(θ0)

−1.
Relaxing the Gaussianity of ei while maintaining Gaussianity ofmi leads to a limiting variance matrix

that is no longer robust to fourth-order cumulants, but is still available in closed form. Due to the
independence of themultipliers and ei, the cumulants andhence the trispectrumare additive, and since ei
is iidwith �nite fourthmoment, the fourth-order cumulants satisfy cum(ei, ei+h1 , ei+h2 , ei+h3) = E(e41) if
h1 = h2 = h3 = 0, and equal zero otherwise. Thus, S(ω1,ω2,ω3; θ) = E(e41)/(2π)

3 (e.g., Mendel, 1991).
From this point of view, the log-normal speci�cation of the MSMmultipliers appears to be particularly
attractive in practice, as the limiting variance of the Whittle estimator takes a manageable form and can
be easily estimated by the plug-in estimators provided below.

Before we turn to the estimation of the asymptotic variance, we remark that the requirement in
Proposition 2 that 4 + r moment of mi exist for some r > 0, rather than for r = 0, is dictated precisely
by the fact that we are unable to derive the trispectrum in closed form and verify directly that it is well-
de�ned for a general MSMD process. Instead, we have to rely on a mixing inequality to establish that the
fourth-order cumulants are absolutely summable, and this requires r > 0. Given strict stationarity and
exponential strong mixing of xi we nonetheless conjecture that Proposition 2 holds with r = 0 as well.

To estimate the asymptotic variance, we can use the plug-in estimatorsM(θ̂) andV(θ̂) forM(θ0) and

V(θ0), respectively, provided in the Supplemental Appendix A3. Consistency ofM(θ̂) follows from the

consistency of θ̂n and stochastic equicontinuity of M(θ̂) where the latter is implied by the smoothness

of the third-derivatives of the model spectral density on2, see Za�aroni (2009) for details. ForV(θ̂) the
consistency cannot be in general established unless one knows the trispectrum in closed form. When

this is not the case, we propose a Newey–West estimator V̂(θ0), see the Supplemental Appedix A3 for
details. Alternatively, one can use a similar estimator proposed by Taniguchi (1982). A rigorous proof of

consistency of V̂(θ0) is beyond the scope of this article and is le� for future work.

3.3. Linear forecasting

When optimal forecasting discussed in the previous subsection is not feasible due to the dimensionality
of the state space, Lux (2008) suggests using best linear forecasts (e.g., Brockwell and Davis, 1991). This
forecasting rule only requires the knowledge of the autocovariance function of themodel and thus works
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ECONOMETRIC REVIEWS 1091

as long as one has a set of consistent parameter estimates at hand, regardless of the estimation method
used to obtain them. Formally, an h-step ahead forecast based on themost recent n observations, denoted

by X̂n+h|n, is obtained from X̂n+h|n =
∑n

j=1 φ
(h)
nj Xn+1−j = φ

(h)
n Xn, where the vector of weights φ

(h)
n is

a solution to Ŵnφ
(h)
n = c

(h)
n , in which c

(h)
n = (c(h), c(h + 1), . . . , c(n + h − 1))′ denotes the vector of

autocovariances of the true process from lag h to lag n+h−1, andŴn = {c(i− j)}i,j=1,...,n is the variance-
covariance matrix of Xn = (X1,X2, . . . ,Xn)

′. The autocovariance function of the MSMD process is

provided in (2.7) and the weights φ
(h)
n can be e�ciently calculated using the generalized Levinson–

Durbin algorithm developed by Brockwell and Dahlhaus (2004).

3.4. Speci�cation testing

To test the goodness of �t of theMSMDmodel, we employ the speci�cation test of Chen andDeo (2004).
The idea of the test is to compare the estimatedmodel’s spectral density with the smoothed periodogram
of the data. Under the null hypothesis of correct model speci�cation, the two should be close. The main
advantage of this approach is that the test statistic does not require residuals, whichmakes it particularly
suitable for speci�cation testing of stochastic durations models.

The test statistic is given by

Tn =
(
2π

n

n−1∑

i=0

f̃ (ωi)

)−2 (
2π

n

n−1∑

l=0

f̃ 2(ωi)

)
,

where

f̃ (ω) = 2π

n

n−1∑

i=0

W(ω − ωi)In(ωi)

f (ωi; θ̂)
, W(ω) = 1

2π

∑

|h|<n
k(h/pn)e

−ιhω,

k is a symmetric kernel function with k(0) = 1, and pn is a bandwidth parameter. Provided that (i) θ̂
is

√
n-consistent, (ii) the underlying process {xi} can be written as xi =

∑∞
l=0 ψlǫi−l, where ǫi is iid

with zero mean, constant variance, and �nite eighth moment, and
∑∞

l=0 |ψl|l1/2 < ∞, (iii) the model

spectral density is bounded away from zero on [−π ,π ], (iv) the bandwidth satis�es log6 n/pn → 0 and

p
3/2
n /n → 0, and (v) the kernel satis�es certain regularity conditions, Chen and Deo (2004) show that

n(Tn −Cn(k))/Dn(k)
d→ N(0, 1), where the centering and scaling terms, Cn(k) andDn(k), are provided

in the Supplemental Appendix A4.
The assumptions underlying this result are clearly not satis�ed for the logarithmic MSMD as the

process is not linear and cannot be written in the form required by (ii) above. The process nonetheless
possess a vector MA(∞) representation (A.1) with geometrically declining coe�cients and martingale-
di�erence innovations, which leads us to conjecture that the asymptotic normality of the test statistics
still holds, thought it remains unclear whether the limiting variance involves fourth-order cumulants. To
shed some light on this issue, we examine the distribution of the test statistic Tn for a variety of MSMD
speci�cations by Monte Carlo simulation, leaving the development of a rigorous limit theory for future
work. The results are reported at the end of the next section.

3.5. Simulations

Before taking the model to the data, it is worthwhile exploring the �nite-sample properties of the
maximum likelihood and Whittle estimators. To do that, we run a simple Monte Carlo experiment for
the binomial and log-normal MSMD models with k = 8 multipliers and either exponential or Weibull
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1092 F. ŽIKEŠ ET AL.

innovations.2 Following Lux (2008), we set the parameters of the MSM process as b = 2, γk = 0.5,
m0 = 1.4 (binomial), and λ = 0.15 (log-normal), and the parameter in the Weibull distribution of
innovations as κ = 1.45.

Due to the computational burden associated with the exact maximum likelihood estimator, the
number of Monte Carlo replications for MLE is limited to 500, 250, and 100 replications for n = 1, 000,
2,500, and 5,000, respectively. All simulation results for the Whittle estimator are based on 1,000
replications, and we also consider very large samples of 10,000 observations, as the application of the
Whittle estimator to theMSMDmodel is new and the large-sample properties have not been investigated
by simulation before.

Table 1 summarizes the simulation results. Starting with the maximum likelihood estimator in the
binomial MSMD model, we �nd that MLE delivers accurate and almost unbiased estimates for both
exponential and Weibull speci�cations; the simulated standard errors scale with

√
n as dictated by

asymptotic theory. As expected, the Whittle estimator is less precise than MLE, and it also entails
a signi�cant bias in samples smaller than 5,000 observations, particularly for the parameter b. The
bias, however, disappears in large samples, and the standard errors also scale with

√
n as claimed in

Proposition 2.
Table 2 reports the simulated size of the goodness-of-�t test discussed in the previous section. The

test is implemented using the Bartlett kernel and setting the bandwidth according to pn = 3n0.4 as in

Table 1. Monte carlo simulation of the maximum likelihood (MLE) and whittle estimators of the parameters of the MSMD model with
k = 8 binomial or log-normal multipliers and exponential or weibull innovations. We report average parameter estimates obtained in
the simulation togetherwith standard errors in parentheses. The true parameters used in the simulations are b = 2,γk = 0.5,m0 = 1.4,
λ = 0.15, and κ = 1.45. The results for mle are based on 500, 200, and 100 replications for the samples of n = 1, 000, 2, 000, and 5, 000
observations, respectively. All simulations of the whittle estimator are based on 1,000 replications.

Exp W(κ)

1,000 2,500 5,000 10,000 1,000 2,500 5,000 10,000

A. Binomial multipliers: MLE
m0 1.382 1.393 1.395 − 1.393 1.3993 1.400 −

(0.035) (0.021) (0.016) (− ) (0.036) (0.022) (0.015) (− )
b 1.832 1.936 1.949 − 1.982 1.998 2.022 −

(0.346) (0.250) (0.162) (− ) (0.438) (0.258) (0.180) (− )
γk 0.501 0.499 0.494 − 0.506 0.502 0.509 −

(0.164) (0.107) (0.069) (− ) (0.160) (0.101) (0.064) (− )
κ − − − − 1.465 1.458 1.453 −

(− ) (− ) (− ) (− ) (0.098) (0.064) (0.037) (− )
B. Binomial multipliers: Whittle
m0 1.425 1.409 1.400 1.400 1.437 1.411 1.403 1.401

(0.080) (0.047) (0.018) (0.007) (0.088) (0.045) (0.019) (0.013)
b 2.608 2.231 1.996 1.999 2.883 2.222 2.022 2.012

(1.871) (1.190) (0.214) (0.131) (2.263) (1.145) (0.247) (0.152)
γk 0.467 0.497 0.499 0.502 0.514 0.524 0.523 0.514

(0.221) (0.146) (0.101) (0.075) (0.273) (0.208) (0.158) (0.104)
κ − − − − 1.617 1.523 1.491 1.466

(− ) (− ) (− ) (− ) (0.415) (0.244) (0.161) (0.098)

C. Log-normal multipliers: Whittle
λ 0.206 0.167 0.153 0.150 0.214 0.168 0.155 0.151

(0.143) (0.076) (0.031) (0.015) (0.137) (0.068) (0.030) (0.015)
b 2.803 2.279 2.034 1.994 2.924 2.257 2.046 2.008

(2.089) (1.282) (0.483) (0.182) (2.267) (1.216) (0.455) (0.195)
γk 0.474 0.498 0.501 0.499 0.525 0.531 0.528 0.516

(0.247) (0.173) (0.124) (0.086) (0.296) (0.225) (0.176) (0.128)
κ − − − − 1.583 1.515 1.487 1.465

(− ) (− ) (− ) (− ) (0.315) (0.192) (0.137) (0.075)

2In an earlier version of the article we also reported MLE simulation results for the MSMD model with Burr and generalized
gamma distributions of the innovations. The results are qualitatively similar to the exponential andWeibull cases and show
that the ML estimator works well even when the innovations are drawn frommultiparameter distributions.
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ECONOMETRIC REVIEWS 1093

Table 2. Monte carlo simulation of the goodness-of-�t test for the MSMD model with k = 8 binomial or log-normal multipliers and
exponential, weibull, or log-normal innovations. We report the simulated size for 5 and 10% nominal level. The true parameters used
in the simulations are b = 2, γk = 0.5, m0 = 1.4, λ = 0.15, and κ = 1.45. The sample size used in the simulations is n = 10, 000
observations and the simulations are based on 1,000 replications.

Distribution of ǫ

exp W(κ) LN(λ)

A. 10% nominal
Binomial multipliers 11.3 9.2 9.9
Lognormal multipliers 11.0 11.7 13.6

B. 5% nominal
Binomial multipliers 6.2 6.0 5.6
Lognormal multipliers 6.2 6.4 7.0

Chen and Deo (2004). We use the same MSMD speci�cations as in the previous simulations and report
results for samples of size n = 10, 000. We �nd that the simulated size is relatively close to the nominal
levels across the di�erent MSMD speci�cations.

4. Competing durationmodels

Models in the duration literaturemimic those in the stochastic volatility literature, andmight be similarly
divided into observable or GARCH-type models and latent factor or Stochastic Volatility (SV)-type
models. The ACDmodel of Engle and Russell (1998) is a member of the former class, and was extended
by Jasiak (1998) to the Fractionally Integrated ACD (FIACD) model to incorporate long memory.
Bauwens and Veredas’ 2004 Stochastic Conditional Duration (SCD) model is a latent factor model, and
was modi�ed by Deo et al. (2006) to create the Long-memory Stochastic Duration model (LMSD) by
letting the latent factor follow a long-memory process.

It is beyond the scope of this article to review and compare all existing durations models; we refer
the reader to a survey by Pacurar (2008). Since we are interested in modeling and forecasting persistent
durations, we focus here on those models that can capture slowly decaying autocorrelations. As noted
by Deo et al. (2010), the FIACD model in a not a long-memory model in the usual sense, as it has
in�nitemean and hence the autocorrelation function does not exist.We are therefore le� with the LMSD
model as the only genuine long-memory duration model with well-behaved moments. To assess the
bene�ts of using the relativelymore complicatedMSMD and LMSDmodels in practice, we also compare
their performance with the short-memory ACD model of Engle and Russell (1998). The Supplemental
Appendix A5 provides a brief description of these models.

5. Relation to counts and realized volatility

Deo et al. (2009) and Deo et al. (2010) recently investigate the propagation of memory of durations to
counts and thereby realized volatility.3 They show that if durations have long (short)memory, then under
certain conditions the counts have long (short) memory as well. They also note that, alternatively, long
memory in realized volatility can be generated by iid in�nite-variance durations, as originallymodeled by
Liu (2000), where the memory parameter associated to realized volatility is inversely proportional to the
tail index of the distribution of durations. These are, of course, two fundamentally di�erent approaches
to generating long memory in volatility, and we naturally focus on the former here, not only because
the MSMD durations are not iid, but also because we �nd no empirical evidence supporting the in�nite
variance assumption required by Liu (2000).

To �x notation, recall that ti denotes the time of the ith event, Xi = ti − ti−1 is the duration between
two consecutive events, and let N(t) denote the counting process that counts the number of events that

3See McAleer and Medeiros (2008) for a review of the literature on realized volatility.
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1094 F. ŽIKEŠ ET AL.

have occurred up to time t. Inmore detail, counts and durations are stationary under di�erent measures,
since they de�ne the irregularly-spaced event process (a point process) in terms of di�erent sets of events.
We refer to these measures as PN and P, respectively. As illuminated by Deo et al. (2009), the relevant
measure depends on howN(t) is calculated: if it is calculated from the opening of the market on a given
day, the relevant measure is PN , while if from the �rst event on that day, the relevant measure is P. Since
most assets tend to be heavily traded a�er market opening, the di�erence may be empirically small.

By making use of equivalence theorems (e.g., Nieuwenhuis, 1989), Deo et al. (2009) establish
conditions under which memory propagates from durations to counts, then to squared returns and
realized volatility. In particular, they show that under certain conditions, the short memory of durations
generated by a stationary ACD model implies short memory in the associated counts and realized
volatility, while the long memory of durations in the LMSD model implies long memory in counts
and realized volatility. With respect to the MSMD process now, the following proposition establishes
the conditions under which the short-memory feature of the MSMD (for �nite k) translates into short
memory in the induced counts.

Proposition 3. Let {Xi} be an MSMD process with �nite k, E(M3+r) < ∞ and E(ǫ3+r
1 ) < ∞ for some

r > 0. Then the induced counting process N(t) satis�es VarN(N(t)) ∼ ct for some c < ∞, where VarN
denotes the variance under PN .

The proof is provided in Section A.3 of the Appendix. To link the counts and realized volatility, we
follow Deo et al. (2009) and employ the simple continuous-time pure-jump model of Oomen (2006).
The logarithmic price process, p(t), is assumed to have the following dynamics:

p(t) = p(0)+
N(t)∑

j=1

ξj, ξj
iid∼ N(0, σ 2

ξ ), (5.1)

where N(t) is the counting process de�ned above and ξj is the size of the jth jump, which is assumed to
be independent from the counting process. This assumption signi�cantly simpli�es the analysis, but it
may not be appropriate for all asset classes: a recent study by Renault andWerker (2011) shows that it is
indeed violated in the case of selected individual stocks traded on the New York Stock Exchange.

A natural measure of variation in the model in Eq. (5.1) is the quadratic variation given by.

〈p〉t =
N(t)∑

j=1

ξ 2j .

The quadratic variation can be estimated consistently by realized variance. Dividing the time interval
[0, t] into n non-overlapping intervals of length1t = t/n, the realized variance is de�ned as

RVt,n =
n∑

i=1

(p(i1t)− p((i − 1)1t))2. (5.2)

It follows from Deo et al. (2009) that for the MSMD process satisfying the assumptions of Proposition
1, the realized volatility is a short-memory process.

It is di�cult to derive analytically the autocorrelation functions of counts and realized volatility
induced by the MSMD process and its competitors. We therefore proceed by simulation. For each
durationmodel, we simulate a trajectory of the induced counting processN(t) and via (5.1) a trajectory of
the associated logarithmic price process p(t). From the simulated price process we then calculate a time
series of daily realized variance according to (5.2), where we de�ne one day to have 6.5 hours, or 23,400
seconds. For all durationmodels, we set the unconditional mean of durations equal to 2 minutes, so that
there are around 195 price changes on a typical day in the simulation. The price innovations, ξj, are drawn
randomly from the normal distribution with zero mean and variance σ 2

ξ = 1/195, implying that the
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ECONOMETRIC REVIEWS 1095

Figure 3. (a) Theoretical autocorrelation functions of durations from i) the ACD model with parameters α = 0.24, β = 0.69, ii) the
binomial MSMD(4) model with parameters m0 = 1.84, b = 3.30, γk = 0.047, iii) the binomial MSMD(8) model with parameters
m0 = 1.55, b = 3.00, γk = 0.076, and iv) the LMSD model with ω = 1.028, β = 0.73, d = 0.47, σ 2u = 0.029. (b) Simulated
autocorrelation functions of daily realized volatility generated by the corresponding duration models i)–iv).

average daily realized variance is around 1%. Finally, to facilitate comparison, we calibrate the parameters
of the duration models so that they share the same �rst-order autocorrelation coe�cient, which we set
equal to 0.45; see the caption of Fig. 3 for the exact parameters values used in the simulations.

Figure 3 plots the theoretical autocorrelation functions of the ACD, MSMD and LMSD durations
and their corresponding simulated autocorrelation functions for realized variance as implied by model
(5.1). The �gure clearly illustrates how memory propagates from durations to realized volatility. The
short-memory ACD model generates realized variance with little persistence, while the long-memory
LMSD generates a highly persistent realized variance. The MSMDmodel is capable of generating both:
when the number ofmultipliers is small (k = 4), the autocorrelation function of realized variance decays
very quickly despite the ACF of durations being quite persistent. Increasing the number of multipliers
to 8, the persistence of realized volatility increases dramatically and its ACF now clearly exhibits long-
memory features. Thus, despite being short-memory, the MSMD model is capable of generating both
highly persistent durations as well as highly persistent realized volatility in the pure jump model (5.1).

6. Data description

We now apply the MSMDmodel and its competitors to price durations of three major foreign exchange
(FX) futures contracts traded on the Chicago Mercantile Exchange (CME). Our dataset includes all
transactions for the Swiss Franc (CHF), Euro (EUR) and Japanese Yen (JPY) futures contracts between
November 9, 2009 and January 29, 2010. The data is supplied by TickData, Inc. We focus on the most
liquid (front) contracts and restrict attention to the main CME trading hours of 7:20 - 14:00 Chicago
time. U.S. and U.K. Bank holidays are discarded.

Price durations are de�ned as the minimum time it takes for the price to move by a certain amount.
We construct them from the transactions durations, which are simply the durations between successive
trades, by a process called thinning. Due to microstructure frictions, such as bid-ask bounce, the price
durations may be more informative about the underlying prices process and its volatility as thinning
reduces the distortions due to microstructure noise and eliminates duplicate prices, that is transactions
with zero price changes. Also, Engle and Russell (1998) show that price durations are closely related to
the instantaneous volatility: low price durations imply high instantaneous volatility of the underlying
price process, and vice versa.

Correspondingly, we construct the price durations by successively measuring the minimum time
required for the futures price to move by at least c, starting from the �rst transaction on each day
and discarding overnight durations. The FX futures contracts are highly liquid and usually trade with a
tight bid-ask spread of 1-2 ticks, where the tick size equals 0.0001 for CHF and EUR, and 0.01 for JPY.
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1096 F. ŽIKEŠ ET AL.

To eliminate spurious price changes due to the bid-ask bounce, we set c = 0.0003 for CHF and EUR,
and c = 0.03 for JPY. To facilitate comparison across the di�erent currencies, we work with the �rst
12,000 prices durations for each FX futures contract available in our sample period. The sample size is,
therefore, kept �xed at 12,000 but the sample period varies across the three data sets, though they all
start on the November 9, 2009.

Table 3 reports the descriptive statistics for the FX futures price durations data. Themean of the price
durations is 118s, 106s and 90s for CHF, EUR, and JPY, respectively, while the median is around half the
mean at 66s, 59s, and 43s, respectively, indicating that the distributions of the price durations are heavily
positively skewed. The minimum price duration equals 1s for all currencies, while the maximum price
duration reaches 42 minutes, 1 hour, and 53 minutes, respectively. Consistent with previous empirical
evidence, we �nd that the distribution of price durations exhibits overdispersion, i.e., the standard
deviation of the price durations signi�cantly exceeds the mean by a factor of 1.351, 1.337, and 1.512
for CHF, EUR, and JPY, respectively.

It is well-known that the trading activity inmost �nancial markets varies considerably over the course
of the day, see, e.g., Engle and Russell (1998) who note a hump-shaped pattern for transaction and price
durations of individual stocks traded on the New York Stock Exchange (NYSE), with relatively shorter
durations at the start and end of the trading day, and longer durations during lunchtime. Consequently,
the duration process contains a signi�cant seasonal component that has to be accounted for when
estimating a duration model.

There are in principle twoways to do that. First, by incorporating seasonality into the durationmodels
directly and estimating the seasonal parameters jointly with the dynamic parameters of the duration
process (Rodríguez-Poo et al., 2007). Alternatively, one can �rst estimate the seasonal component semi-
or nonparametrically and �t the duration model to the seasonally-adjusted durations (e.g., Engle and
Russell, 1998, and Fernandes andGrammig, 2006, amongmany others). Engle (2000) notes that the large
sample sizes typically available in empirical work make the loss of e�ciency of the two-step procedure
relatively small. Given the complexity of the duration models we are considering in this article, we opt
for the two-stage approach and employ nonparametric regression (the Nadaraya–Watson estimator) to
estimate the seasonal component of the price durations, separately for each day of theweek as in Bauwens
and Veredas (2004).

The estimated intraday seasonal patterns are reported in the top panel of Fig. 4. The diurnal pattern
is relatively stable across the days of the week and currencies up to around 11:00 Chicago time. During

Table 3. Descriptive statistics for Swiss franc (CHF), Euro (EUR), and Japanese Yen (JPY) futures price durations. The sample period runs
between November 9, 2009 and January 29, 2010, and the sample size is n = 12, 000 for all datasets. The columns labeled “raw”report
descriptive statistics for the raw price durations, the columns “adj” give descriptive statistics for the seasonally adjusted durations and
the columns “log-adj”report descriptive statistics for the logarithmic seasonally adjusted durations. The rows labeled “left tail”and “right
tail” report the estimated tail indexes (with standard error in parentheses) for the left and right tail, respectively.

CHF EUR JPY

raw adj log-adj raw adj log-adj raw adj log-adj

Mean 117.8 1.000 −0.602 105.5 1.002 −0.580 89.50 1.002 −0.720
Median 66.00 0.618 −0.481 59.00 0.619 −0.479 43.00 0.536 −0.623
Minimum 1.000 0.004 −5.613 1.000 0.004 −5.482 1.000 0.007 −5.028
Maximum 2498 15.78 2.759 3574 20.55 3.023 3160 20.31 3.011
Std.dev. 159.1 1.194 1.204 141.1 1.205 1.167 135.3 1.386 1.296
Dispersion 1.351 1.194 − 1.337 1.204 − 1.512 1.383 −
Skewness 3.775 3.307 −0.497 4.410 3.731 −0.439 4.586 4.053 −0.322
Kurtosis 26.43 22.10 3.187 49.99 29.71 3.140 46.06 30.60 2.817
Left tail − − 10.16 − − 9.409 − − 12.88

− − (0.002) − − (0.002) − − (0.002)
Right tail − 3.976 9.703 − 3.501 7.949 − 3.206 7.955

− (0.003) (0.002) − (0.003) (0.003) − (0.003) (0.003)
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ECONOMETRIC REVIEWS 1097

Figure 4. Foreign exchange price durations data. The top row shows the diurnal pattern estimated by kernel regression separately for
each day of the week. The second row shows the time series of standardized durations and the third row reports the autocorrelation
functions of raw and standardized durations. The bottom row plots the empirical density of standardized durations obtained by a
boundary-corrected kernel estimator.

this period the U.S. and European trading hours overlap and trading activity in the market is at its peak.
A�er 11:00, trading in London, where a large proportion of global FX trading takes place (King et al.,
2011), gradually ceases and the average price durations become progressively longer. The exception is
Wednesdays, for which we observe a signi�cant dip in the average price durations around 13:30, most
likely due to elevated volatility surrounding macroeconomic announcements.

Figure 4 plots the autocorrelation function of the adjusted durations obtained by dividing the raw
durations by the estimated intraday component. Clearly, the persistence in the price durations is not
induced by the seasonal component. The descriptive statistics for the adjusted durations are reported in
Table 3. Themean is, by construction, close to one, themedian remains signi�cantly lower than themean,
and over-dispersion is slightly attenuated by the adjustment. The empirical densities of the standardized
durations, estimated in Fig. 4 by a boundary-corrected kernel estimator, are non-monotonic and
heavily positively skewed. Finally, we examine the descriptive statistics for the logarithmic standardized
durations. We �nd that the logarithmic durations exhibit negative skewness but almost no excess
kurtosis. The tail index estimates obtained by the method of Huisman et al. (2001) indicate that the
�rst 8-9 moments exist, which is in stark contrast to the non-logarithmic durations that only seems
to possess the �rst three moments. The asymptotics for the Whittle estimator discussed in Section 3.2
therefore applies to our logarithmic durations data.
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1098 F. ŽIKEŠ ET AL.

Table 4. MSMD parameter estimates for de-seasonalised CHF price durations. (A) maximum likelihood estimates (MLE) of the binomial
MSMD models with exponential and weibull innovations. (B) whittle estimates of the binomial MSMD models with exponential and
weibull innovations. (C) Whittle estimates of the log-normal MSMD models with exponential and weibull innovations. Standard errors
are reported in parentheses. The speci�cation test Tn is reported with p-values in parentheses.

Exp W(κ)

k = 4 k = 6 k = 8 k = 4 k = 6 k = 8

A. Binomial multipliers: MLE
m0 1.356 1.328 1.316 1.439 1.394 1.355

(0.009) (0.008) (0.010) (0.008) (0.009) (0.007)
b 2.339 1.962 2.045 7.059 6.075 4.188

(0.551) (0.311) (0.308) (0.779) (0.621) (0.336)
γk 0.067 0.059 0.064 0.533 0.973 0.999

(0.014) (0.013) (0.014) (0.062) (0.031) (0.002)
κ − − − 1.346 1.485 1.566

(− ) (− ) (− ) (0.024) (0.041) (0.045)
Tn 20.078 22.644 24.322 −1.150 −1.252 −1.295

(0.000) (0.000) (0.000) (0.875) (0.895) (0.902)
log L −8881.967 −8859.848 −8863.670 −8661.562 −8614.860 −8594.576

B. Binomial multipliers: Whittle
m0 1.293 1.243 1.212 1.369 1.308 1.269

(0.014) (0.012) (0.010) (0.017) (0.017) (0.015)
b 1.876 1.477 1.326 4.150 2.600 2.045

(0.222) (0.121) (0.083) (0.836) (0.449) (0.250)
γk 0.058 0.058 0.058 0.476 0.568 0.608

(0.015) (0.016) (0.016) (0.213) (0.299) (0.287)
κ − − − 1.376 1.380 1.379

(− ) (− ) (− ) (0.047) (0.059) (0.054)
Tn 35.836 36.270 36.480 −1.084 −1.079 −1.077

(0.000) (0.000) (0.000) (0.861) (0.860) (0.859)
q-log L −2923.704 −2924.308 −2924.557 −3381.884 −3381.712 −3381.651

C. Log-normal multipliers: Whittle
λ 0.096 0.064 0.048 0.162 0.107 0.079

(0.010) (0.007) (0.005) (0.017) (0.014) (0.009)
b 1.876 1.477 1.326 4.150 2.600 2.045

(0.222) (0.121) (0.083) (0.836) (0.449) (0.250)
γk 0.058 0.058 0.058 0.476 0.568 0.608

(0.015) (0.016) (0.016) (0.213) (0.299) (0.287)
κ − − − 1.376 1.380 1.379

(− ) (− ) (− ) (0.047) (0.059) (0.054)
Tn 35.835 36.270 36.479 −1.084 −1.078 −1.077

(0.000) (0.000) (0.000) (0.861) (0.860) (0.859)
q-log L −2923.704 −2924.308 −2924.557 −3381.884 −3381.712 −3381.651

7. Empirical results

The following section compares the estimation and forecasting performance of ourMSMDmodel to the
competing ACD and LMSD models. We use the �rst 10,000 observations for estimation and in-sample
speci�cation tests and reserve the remaining 2,000 observations for evaluating out-of-sample forecasting
performance. As is common in the durations literature, in the rest of the article we work exclusively with
the seasonally-adjusted durations. Since themean of the standardized durations is, by construction, close
to one, we impose this restriction in all models and do not report the (restricted) estimates of the various
constant terms (ψ̄ in the MSMDmodel and ω in the ACD and LMSD models).

7.1. Estimation results

We start by describing the in-sample estimates of MSMD for the three currencies in our sample. We
estimate theMSMDmodel with k = 4, 6, and 8multipliers; increasing the number ofmultipliers beyond
8 does not improve the in-sample and out-of-sample performance of themodel.We use exact maximum
likelihood to estimate the MSMD model with binomial multipliers and the Whittle estimator for both
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ECONOMETRIC REVIEWS 1099

the binomial and log-normal multipliers. All models are estimated with either the exponential or the
Weibull distribution of innovations. Since the MSMD parameter space is not compact (0 < m0 < 1,
λ > 0, b > 1, and 0 < γk < 1), some constraints are generally required to achieve numerical stability
of the optimization routines. For both MLE and Whittle estimation, we use the MaxSQP function in
the Ox language of Doornik (2006) to maximize the respective objective functions and search over the
following parameter space:m0 ∈ [1.001, 1.999], λ ∈ [0.001, 10], b ∈ [1.001, 10], and γk ∈ [0.001, 0.999].

Tables 4, 5, and 6 show the estimation results for the CHF, EUR, and JPY, respectively. All estimated
parameters have reasonable standard errors. The goodness-of-�t test of Chen and Deo (2004) strongly
rejects the null hypothesis of correct model speci�cation for all MSMD models with exponentially
distributed innovations. This is generally true for all k’s, and across currencies. On the contrary, both the
binomial and the log-normal MSMDmodels withWeibull innovations seem to be correctly speci�ed as
we can not reject the null hypothesis at the 5% level for any of the estimated models. In addition, the
log-likelihood is uniformly higher for the binomial MSMDmodels with Weibull innovations. Thus, the
additional �exibility of theWeibull distribution seems to improve the in-sample �t of theMSMDmodels
signi�cantly.

Table 5. MSMD parameter estimates for de-seasonalised Euro futures price durations. (A) maximum likelihood estimates (MLE) of the
binomialMSMDmodelswith exponential andweibull innovations. (B)whittle estimates of the binomialMSMDmodelswith exponential
and weibull innovations. (C) whittle estimates of the log-normal MSMD models with exponential and weibull innovations. Standard
errors are reported in parentheses. The speci�cation test Tn is reported with p-values in parentheses.

Exp W(κ)

k = 4 k = 6 k = 8 k = 4 k = 6 k = 8

A. Binomial multipliers - MLE
m0 1.349 1.281 1.331 1.452 1.397 1.342

(0.011) (0.011) (0.020) (0.007) (0.008) (0.008)
b 3.001 1.932 3.000 7.241 5.491 3.289

(0.636) (0.299) (0.525) (0.737) (1.032) (0.563)
γk 0.086 0.088 0.089 0.881 0.999 0.999

(0.015) (0.022) (0.017) (0.032) (0.004) (0.004)
κ − − − 1.554 1.675 1.670

(− ) (− ) (− ) (0.029) (0.068) (0.067)
Tn 33.655 36.987 36.923 −0.935 −0.975 −1.041

(0.000) (0.000) (0.000) (0.825) (0.835) (0.851)
log L −9007.010 −8998.909 −9001.426 −8706.568 −8652.807 −8649.950

B. Binomial multipliers - Whittle
m0 1.272 1.224 1.195 1.402 1.354 1.308

(0.013) (0.011) (0.010) (0.062) (0.023) (0.017)
b 1.643 1.353 1.242 5.060 3.391 2.459

(0.343) (0.197) (0.139) (2.837) (0.585) (0.260)
γk 0.058 0.058 0.058 0.901 0.999 0.999

(0.017) (0.019) (0.021) (0.438) (0.008) (0.005)
κ − − − 1.588 1.719 1.701

(− ) (− ) (− ) (0.302) (0.173) (0.136)
Tn 53.333 53.720 53.887 −1.614 −1.619 −1.619

(0.000) (0.000) (0.000) (0.947) (0.947) (0.947)
q-log L −3071.748 −3071.930 −3072.001 −3648.922 −3648.827 −3648.782

C. Log-normal multipliers - Whittle
λ 0.081 0.053 0.040 0.199 0.147 0.106

(0.008) (0.005) (0.004) (0.076) (0.023) (0.014)
b 1.643 1.352 1.242 5.060 3.391 2.459

(0.343) (0.197) (0.139) (2.835) (0.585) (0.263)
γk 0.058 0.058 0.058 0.901 0.999 0.999

(0.017) (0.019) (0.021) (0.438) (0.008) (0.005)
κ − − − 1.588 1.719 1.701

(− ) (− ) (− ) (0.301) (0.173) (0.139)
Tn 53.333 53.720 53.888 −1.614 −1.619 −1.619

(0.000) (0.000) (0.000) (0.947) (0.947) (0.947)
q-log L −3071.748 −3071.930 −3072.001 −3648.922 −3648.827 −3648.782
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1100 F. ŽIKEŠ ET AL.

Table 6. MSMDparameter estimates for de-seasonalised Japanese Yen futures price durations. (A)maximum likelihood estimates (MLE)
of the binomial MSMD models with exponential and weibull innovations. (B) whittle estimates of the binomial MSMD models with
exponential and weibull innovations. (C) whittle estimates of the log-normal MSMDmodels with exponential and weibull innovations.
standard errors are reported in parentheses. The speci�cation test Tn is reported with p-values in parentheses.

Exp W(κ)

k = 4 k = 6 k = 8 k = 4 k = 6 k = 8

A. Binomial multipliers - MLE
m0 1.415 1.343 1.343 1.481 1.424 1.376

(0.010) (0.014) (0.013) (0.007) (0.007) (0.008)
b 3.348 2.188 2.454 4.848 4.006 2.933

(0.552) (0.285) (0.263) (0.366) (0.340) (0.253)
γk 0.152 0.164 0.180 0.826 0.985 0.999

(0.018) (0.025) (0.025) (0.047) (0.012) (0.002)
κ − − − 1.481 1.590 1.672

(− ) (− ) (− ) (0.035) (0.040) (0.063)
Tn 26.401 28.896 30.695 1.006 1.508 1.459

(0.000) (0.000) (0.000) (0.157) (0.066) (0.072)
log L −8255.173 −8252.226 −8256.733 −8053.231 −8008.807 −8000.278

B. Binomial multipliers - Whittle
m0 1.342 1.283 1.247 1.434 1.367 1.323

(0.013) (0.011) (0.010) (0.012) (0.015) (0.015)
b 1.991 1.560 1.391 3.954 2.574 2.046

(0.315) (0.157) (0.103) (0.422) (0.285) (0.185)
γk 0.084 0.091 0.095 0.569 0.723 0.784

(0.014) (0.016) (0.018) (0.079) (0.170) (0.183)
κ − − − 1.396 1.422 1.430

(− ) (− ) (− ) (0.031) (0.063) (0.073)
Tn 49.062 49.129 49.138 0.757 0.748 0.745

(0.000) (0.000) (0.000) (0.225) (0.227) (0.228)
q-log L −2501.523 −2501.468 −2501.450 −2883.415 −2883.466 −2883.507

C. Log-normal multipliers - Whittle
λ 0.136 0.088 0.065 0.241 0.160 0.119

(0.012) (0.008) (0.007) (0.017) (0.016) (0.012)
b 1.991 1.560 1.391 3.954 2.574 2.046

(0.315) (0.157) (0.125) (0.422) (0.284) (0.185)
γk 0.084 0.091 0.095 0.569 0.723 0.784

(0.014) (0.016) (0.011) (0.079) (0.170) (0.183)
κ − − − 1.396 1.422 1.430

(− ) (− ) (− ) (0.031) (0.063) (0.073)
Tn 49.061 49.128 49.514 0.757 0.748 0.745

(0.000) (0.000) (0.000) (0.225) (0.227) (0.228)
q-log L −2501.523 −2501.468 −2501.347 −2883.415 −2883.466 −2883.507

Turning to the number of multipliers, we �nd that the log-likelihood increases with increasing k in
all MSMDmodels withWeibull innovations. In the case of exponential innovations, the models with six
multipliers yield the highest log-likelihood. We have initially experimented with a wider range of values
of k and found that going beyond 8 multipliers o�ers little improvement in terms of both in-sample as
well as out-of-sample performance, while reducing k below 4 diminishes performance considerably. The
results are available upon request.

Comparing theMLE andWhittle parameter estimates for the binomialMSMD speci�cations, we �nd
that the latter are typically smaller than the former, but generally exhibit a similar pattern. Speci�cally,
both the MLE and Whittle estimates of b tend to decrease with increasing k, while the estimates of γk
tend to increase. Intuitively, holding all parameters �xed, increasing the number of multipliers increases
the persistence of the MSMD process (see Fig. 2(d)), and hence to �t a given persistence in the data the
parameters b and γk must fall and/or rise, respectively, to compensate (see (b)). Additionally, we observe
that the estimates ofm0 fall with increasing k, in order to compensate for the increase in unconditional
variance of the MSMD process associated with rising k (see Eq. (2.6)). A similar pattern is found for
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ECONOMETRIC REVIEWS 1101

the parameter λ in the speci�cation with log-normal multipliers. Note that it is not surprising to �nd
that the Whittle estimates of b, γk, and κ (when applicable) are the same across the binomial and log-
normal speci�cations; the two model spectral densities only di�er in the parametrization of Var(logM),
see Eq. (3.2). This does not, however, imply that the linear forecasts of durations obtained from these
models will be the same. The linear forecasts of durations depend on E(M2) and Var(M) (see Eqs. (2.6)
and (2.7)), and the fact that Var(logM) is the same across the binomial and log-normal speci�cations
does not imply that E(M2) andVar(M) are aswell. This will generally be the casewhenever the parameter
estimates are obtained by implementing the Whittle estimator on nonlinearly transformed durations
(logs in the present application), rather than the durations themselves.

Having estimated the MSMDmodel, we now turn to the competing duration models. Table 7 shows
the results from estimating the exponential and Weibull ACD and LMSD models for the three FX
futures price durations. All estimated parameters have reasonable standard errors. The ACDmodel with
Weibull innovations achieves higher log-likelihood than the ACDmodel with exponentially distributed
innovations, but none of these models generate higher log-likelihoods than the corresponding binomial
MSMD models estimated by maximum likelihood. The ACD parameter estimates are qualitatively

Table 7. Maximum likelihood estimates of exponential and weibull ACD models and whittle estimates of exponential and weibull
LMSDmodels for de-seasonalized (A) Swiss franc, (B) Euro, and (C) Japanese Yen futures price durations. Standard errors are reported in
parentheses.

ACD LMSD

Exp W(κ) Exp W(κ)

A. Swiss Franc
α 0.152 0.151 − −

(0.005) (0.000) (− ) (− )
β 0.830 0.858 0.879 −0.043

(0.007) (0.000) (0.043) (0.099)
d − − 0.500 0.477

(− ) (− ) (0.074) (0.033)
σ 2u − − 0.005 0.382

(− ) (− ) (0.001) (0.143)
κ − 0.996 − 1.519

(− ) (0.002) (− ) (0.125)
log L −8953.300 −8930.917 q-log L −2928.500 −3376.700

B. Euro
α 0.157 0.155 − −

(0.006) (0.006) (− ) (− )
β 0.811 0.812 0.850 −0.054

(0.008) (0.007) (0.054) (0.046)
d − − 0.500 0.387

(− ) (− ) (0.073) (0.037)
σ 2u − − 0.006 0.640

(− ) (− ) (0.002) (0.186)
κ − 1.034 − 1.951

(− ) (0.007) (− ) (0.369)
log L −9068.800 −9058.900 q-log L −3074.600 −3643.700

C. Japanese Yen
α 0.188 0.193 − −

(0.005) (0.006) (− ) (− )
β 0.780 0.775 0.848 −0.081

(0.007) (0.008) (0.043) (0.025)
d − − 0.367 0.373

(− ) (− ) (0.076) (0.034)
σ 2u − − 0.020 1.022

(− ) (− ) (0.004) (0.231)
κ − 0.949 − 2.570

(− ) (0.007) (− ) (1.067)
log L −8500.100 −8473.900 q-log L −2515.400 −2888.600
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similar (relatively high β and small α) and imply very high persistence as (α + β) is close to
one. High persistence is also implied by the LMSD parameter estimates, where the long memory
parameter estimates (d) lie between 0.37 and 0.50. It is di�cult to assess the relative in-sample �t of
the Weibull and exponential LMSD speci�cations, since the Whittle quasi-likelihoods are not directly
comparable.

7.2. Out-of-sample forecasting performance

Our main interest lies in relative forecasting performance rather than in the in-sample �t of the
various duration models. As we experiment with alternative estimation methods (MLE vs. Whittle) and
forecasting schemes (optimal vs. linear), we are really going to be comparing alternative forecasting
methods rather than models (Giacomini and White, 2006). The goal is to shed light not only on the
relative ability of the alternative models to capture persistence in the data, but also on the impact of
parameter uncertainty and the choice of forecasting rule on relative predictive performance. Speci�cally,
we compare the followingmethods: (a) optimal forecasts from binomialMSMD(6) orMSMD(8)models
estimated by maximum likelihood; (b) linear forecasts from binomial and log-normal MSMD(6) or
MSMD(8) models estimated by theWhittle estimator; (c) Kalman �lter-based forecasts from the LMSD
model estimated by theWhittle estimator; and (d) ARMA representation-based forecasts from the ACD
model estimated by maximum likelihood. We also experiment with equally-weighted combinations of
(a) and (c), and (b) and (c), as model averaging may help reduce model uncertainty.

We compute and evaluate one step ahead and cumulative 5, 10, and 20 step ahead forecasts of
price durations. The cumulative h-step ahead forecast, which we denote by xn,h, are obtained from the

usual multistep ahead forecast by xn,h =
∑h

j=1 xn+j|n. Thus, xn,h forecasts the time it takes for h price
changes to occur, as opposed to xn+h|n, which forecasts the time elapsed between the (h − 1)th and
hth price changes. We focus on the cumulative forecasts as they are more interesting in applications, for
example in predicting realized variance. We evaluate the accuracy of the forecasts using two common
loss functions, the mean square error (MSE) and the mean absolute deviation (MAD), and assess the
di�erences between models statistically by the Diebold and Mariano (1995) test for equality of forecast
accuracy; the Newey–West estimator is used in the denominator of the Diebold–Mariano test statistic
to account for autocorrelation in the multistep forecasts. Our benchmark against which we assess the
MSMD and LMSD models is the short-memory ACD, and we compare models with exponential and
Weibull innovations separately.

Tables 8 and 9 report the results of the forecasting performance of the di�erent methodologies.
Although there is no uniform ranking across the currencies, forecast horizons, and loss functions, a few
clear patterns emerge from the exercise. Both the LMSD andMSMD forecasts generally outperform the
ACD forecasts in terms of both the MSE and MAD. The gains in forecasting performance increase with
the forecast horizon and are generally statistically signi�cant at the 5% level. TheMSMDmodel performs
better when the parameters are estimated by maximum likelihood and the optimal forecasting rule is
used, but the linear forecasting scheme coupledwith parameter estimates obtained byWhittle estimation
also deliver better performance than the ACD, although the di�erence is not always statistically
signi�cant. The superior in-sample �t of the models with Weibull innovations that we documented in
the previous section does not necessarily translate into better our-of-sample performance. Similarly,
while theMSMD(8) has a higher log-likelihood in-sample, it does not always outperform theMSMD(6)
speci�cation.

The LMSD and MSMD models generally perform on par if optimal forecasting and MLE estimates
are used for the latter model, with the MSMD sometimes producing slightly better results. The forecast
combinations of the LMSD andMSMDmodels almost always signi�cantly outperform the ACDmodel,
and this is generally true regardless of the estimation method and forecasting rule used for the MSMD
model. This is a potentially important result for practitioners, for theWhittle estimators of both MSMD
and LMSD parameters are very easy to implement regardless of the size of the sample or the various
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ECONOMETRIC REVIEWS 1105

distributional assumptions made. Thus, we conclude that the long-memory durationmodels do provide
better forecasts than the simple short-memory ACD model.

8. Conclusion

This article introduces a new model for �nancial durations, featuring persistence that translates from
durations to realized volatility. We establish the main properties of the model and propose the Whittle
estimator of its parameters as an alternative to maximum likelihood. The asymptotics we obtain for the
estimator is by nomeans con�ned to theMSMD speci�cations explored in this article, and can be readily
adapted to other MSM applications, such as stochastic volatility modeling. In an empirical application,
we show that the MSMDmodel performs well in multistep forecasting.

There are several avenues for future research. It would be worthwhile to experiment with the
“enhanced” Whittle estimator proposed by Deo et al. (2006) in order to improve the �nite-sample
properties. The idea of this approach is to apply the Whittle estimator to durations transformed as
1
vX

v, v > 0, rather than to logarithmic durations as we did in this article, as the distribution of 1
vX

v

may be closer to Gaussian for some v than the distribution of logX. Abadir and Tailman (2005) show
that this transformation is smooth in the sense that the autocovariance function of 1

vX
v approaches the

autocovariance function of logX as v → 0. The moments and spectral density of 1
vX

v can be obtained
in closed form, which facilitates implementation.

On the empirical side, it would be interesting to use the MSMD model in various risk-management
applications. Given the success of the model in multistep forecasting, one may for example explore its
ability to forecast realized volatility over short time-horizons, such as 1 hour, and compare the resulting
forecasts with those obtained frompopular time-seriesmodels for realized volatility. Similarly, themodel
may be �t to volume durations, and used to predict market trading activity with the aim to optimally
time trade execution. We will explore these applications in future work.

Appendix: Proofs

A.1. Proof of Proposition 1

We follow (Za�aroni, 2009, Theorem 1) and rely on the proof of (Hannan, 1973, Lemma 1). In particular,

we show that supθ∈2 |Qn(θ) − Q(θ)| a.s.−→ 0 as n → ∞, where Q(θ) = 1
2π

∫ π
−π log(f (ω; θ))dω +

1
2π

∫ π
−π f (ω; θ0)f

−1(ω; θ)dω, and thatQ(θ) ≥ Q(θ0) for any θ ∈ 2with equality holding only if θ = θ0.
The statement in the proposition then follows.

Starting with 1
n

∑n−1
i=1 In(ωi)/f (ωi; θ), observe that the continuity and boundedness away from zero

of f (ω; θ) on [−π ,π ] implies that the Cesaro sum of the Fourier series of f−1(ω; θ) taken to M terms
converges to f−1(ω; θ) uniformly on [−π ,π ] × 2 as M → ∞ (e.g., Brockwell and Davis, 1991,
Theorem 2.11.1). Thus the uniform convergence a.s. of 1

n

∑n−1
i=1 In(ωi)/f (ωi; θ) follows by the same

argument as in Hannan (1993, Lemma 1), provided that (a) 1
n

∑n−1
i=h+1 xixi−h

a.s.−→ E(xixi−h) as n → ∞
for all h, 0 ≤ h ≤ M, and (b) xjxn−m+j/n

a.s.−→ 0 as n → ∞ for any �xed j > 0 and m > 0.
Since {xt} is strictly stationary, ergodic and has �nite and constant second moments, the almost sure
convergence in (a) and (b) follows from the Ergodic Theorem (e.g. Davidson, 1994, Theorem 13.12).
Uniform convergence of the non-random term 1

n

∑n−1
i=1 log f (ωi; θ) follows by the same argument as

in Za�aroni (2009, Lemma 6). Finally, for all θ ∈ 2 such that θ 6= θ0, the �rst assumption in the
proposition implies that f (ω; θ0)/f (ω; θ)− 1 > log f (ω; θ0)− log f (ω; θ) on a set of positive Lebesgue
measure, and hence Q(θ) > Q(θ0) unless θ = θ0.

D
ow

nl
oa

de
d 

by
 [

B
oa

rd
 o

f 
G

ov
er

no
rs

 o
f 

th
e 

Fe
de

ra
l R

es
er

ve
 S

ys
te

m
] 

at
 1

0:
14

 1
4 

Se
pt

em
be

r 
20

17
 



1106 F. ŽIKEŠ ET AL.

A.2. Proof of Proposition 2

De�ne δj = 1 − γj, ηj,i = (mj,i − E(m)) − δj(mj,i−1 − E(m)), j = 1, . . . , k, η0,i = log ǫi − E(log ǫ1),

ψh = (1{h=0}, δh1 , δ
h
2 , . . . , δ

h
k ), ηi = (η0,i, η1,i, . . . , ηk,i)

′, and µ = ψ̄ + E(log ǫ1) + kE(m), and observe
that xi can be written as

xi = µ+
∞∑

l=0

ψ lηi−l, i ∈ Z. (A.1)

Now de�ne Fj,i = σ(ηj,i, ηj,i−1, . . . , ), j = 0, . . . , k and observe that E|ηj,i| < ∞, E(ηj,i|Fj,i−1) = 0 and
E(η2j,i) = c < ∞, so {ηj,i,Fj,i} is a homoskedastic martingale di�erence sequence, j = 1, . . . , k. Now

ǫi − E(ǫ1) is iid and the components of ηi are independent, and hence {ηi,F
η
i }, where Fη

i = ⊗k
j=0Fj,i,

is also homoskedastic martigale di�erence. Thus the statement in the proposition follows from (Hosoya
and Taniguchi, 1982, Theorem 3.1) provided we verify that (a) the model spectral density satis�es the
regularity conditions required by the theorem, and (b) the conditions (i)–(v) of the theorem are satis�ed.
Note that the nonzero constant termµ in (A.1) is inconsequential since the periodogram is evaluated at
Fourier frequencies, and hence the constant can be ignored in the sequel. If need be, it can be consistently
estimated by the sample mean of xi.
(a) Regularity conditions for spectral density. We need to show that the model spectral density is

bounded away from zero on [−π ,π ], twice continuously di�erentiable function in θ on 2, and
that the second derivatives are continuous in ω ∈ [−π ,π ]. This follows directly from (3.2) and
the fact that2 is a compact subset of the parameter space (i.e., γk is bounded away from zero and
one and b is bounded away from one).

(b.i) Conditional second moments.We need to show that for each j1, j2, and q,

Var[E(ηj1,iηj2,i+h|Fη
i−q)− 1{j1=j2}σ

2
ηj1

] = O(q−2−r), r > 0, (A.2)

uniformly in i. Since the elements of ηi are independent and second-order stationary, this follows
immediately whenever j1 6= j2. For j1 = j2, we simplify notation by writing j = j1 = j2 and
further by writing m̄j,i = mj,i − E(m), m̄j,i = m̄i, ηj,i = ηi, and δ = δj, j = 1, . . . , k. The case of
j = 0 follows trivially since η0,i is iid. Now for all h ≥ 0 and p = 1, . . . , 4,

E(m̄
p
i+h|m̄i) = δhm̄

p
i + (1 − δh)E(m̄p), (A.3)

and for all 0 ≤ h1 < h2 and q ≥ 1, by law of iterated expectations (LIE),

E(m̄i+h1m̄i+h2 |m̄i−q) = E(m̄i+h1E(m̄i+h2 |m̄i+h1)|m̄i−q)

= δh2+qm̄2
i−q + δh2−h1(1 − δh1+q)E(m2).

For h ≥ 1 and q ≥ 2, we therefore have

E(ηiηi+h|Fη
i−q) = E(m̄im̄i+h|m̄i−q)− δE(m̄i−1m̄i+h|m̄i−q)

− δE(m̄im̄i+h−1|m̄i−q)+ δ2E(m̄i−1m̄i+h−1|m̄i−q)

= 0.

For h = 0 and any q ≥ 2, we have

E(η2i |F
η
i−q) = E(m̄2

i |m̄i−q)− 2δE(m̄im̄i−1|m̄i−q)+ δ2E(m̄2
i−1|m̄i−q)

= (δq − δq+1)m̄2
i−q + [(1 − δq)− δ2(1 − δq−1)]E(m̄2),
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ECONOMETRIC REVIEWS 1107

and by fourth-order stationarity,

Var[E(η2i |F
η
i−q)− E(η2i )] = Var[(δq − δq+1)m̄2

i−q + {(1 − δq)− δ2(1 − δq−1)}E(m̄2)

− (1 − δ2)E(m̄2)],

= (δq − δq+1)2Var(m̄2
i−q − E(m̄2)),

= O(δ2q),

which veri�es (A.2) since O(δ2q) decays faster than O(q−2−r) for any r < ∞.
(b.ii) Conditional fourth-moments.We need to show that for each j1, j2, j3, j4 and h1, h2, h3,

E|E(ηj1,iηj2,i+h1ηj3,i+h2ηj4,i+h3 |Fi−q)− E(ηj1,iηj2,i+h1ηj3,i+h2ηj4,i+h3)| = O(q−1−r), r > 0,
(A.4)

uniformly in i, where 0 ≤ h1 ≤ h2 ≤ h3. To save space, we establish this for j1 = j2 = j3 = j4,
noting that the other cases can be shown analogously, and are easier since the elements of ηi are
independent. We again simplify notation by writing j = j1 = j2 = j3 = j4 , m̄j = m̄j,i, and δ = δj.
Now

ηiηi+h1ηi+h2ηi+h3 = (m̄i − δm̄i−1)(m̄i+h1 − δm̄i+h1−1)(m̄i+h2 − δm̄i+h2−1)

(m̄i+h3 − δm̄i+h3−1), (A.5)

where for any 0 ≤ h1 ≤ h2 ≤ h3 the sum on the right-hand side contains sixteen terms, each
being a product of four terms with either zero, one, two, three, or four lags in common depending
on the particular choice of h1, h2, and h3. Starting with the case when all the lags are distinct, we
obtain by iterated conditioning and repeated use of (A.3)

E(m̄im̄i+l1m̄i+l2m̄i+l3 |m̄i−q) = δl3 [δqm̄4
i−q+(1 − δq)E(m̄4)]+δl3−l1(1 − δl1)E(m̄3)δqm̄i−q

+δl3−l2+l1(1 − δl2−l1)E(m̄2)[δqm̄2
i−q + (1 − δq)E(m̄2)]

E(m̄im̄i+l1m̄i+l2m̄i+l3) = δl3E(m̄4)+ δl3−l2+l1(1 − δl2−l1)E(m̄2)2,

0 < l1 < l2 < l3, q ≥ 2.

Thus by fourth-order stationarity,

E|E(m̄im̄i+l1m̄i+l2m̄i+l3 |m̄i−q)− E(m̄im̄i+l1m̄i+l2m̄i+l3)|

≤ δq{δl3E|m̄4
i−q − E(m̄4)| + δl3−l1(1 − δl1)|E(m̄3)|E|m̄i−q|}

+ δl3−l2+l1(1 − δl2−l1)E(m2)E|m̄2
i−q − E(m̄2)|

= O(δq).

Turning to the case when all the lags are equal, i.e., 0 = l1 = l2 = l3, we have

E|E(m̄m4
i |m̄i−q)− E(m̄4

i )| ≤ δqE|m̄4
i−q − E(m̄4)|,

= O(δq).

The terms with one, two, and three common lags in (A.5) can be established analogously. (A.4)
then follows from the triangle inequality and the fact that O(δq) decays faster than O(q−1−r) for
any r < ∞.

(b.iii) Square-integrability of model spectral density. We need to show that the MSMD spectral density
is square-integrable. This follows directly from the continuity and boundedness of the spectral
density on [−π ,π ], uniformly on2.
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1108 F. ŽIKEŠ ET AL.

(b.iv) Absolute summability of fourth-order cumulants.We need to show that

∞∑

h1=−∞

∞∑

h2=−∞

∞∑

h3=−∞
|cum(ηj1,i, ηj2,i+h1 , ηj3,i+h2 , ηj4,i+h3)| < ∞ (A.6)

for any j1, j2, j3, j4, jl = 0, . . . , k and l = 1, 2, 3, 4. Since the elements of ηi are independent
and fourth-order stationary all cross-cumulants are zero, so we only need to focus on the case
j1 = j2 = j3 = j4. Now since η0,i is iid with �nite fourth moment, the absolute summability
of its fourth-order cumulants follows directly. For an ηj,i, j = 1, . . . , k, we use the fact that
ηj,i is fourth-order stationary exponential strong mixing with 4 + r moment �nite and hence∑∞

s=0(s + 1)p−2α(s)r/(p+r) < ∞, p = 1, . . . , 4, where α(s) is the strong mixing coe�cient
associated to ηj,i satisfying α(s) = O(ρs) for some ρ ∈ (0, 1). Thus by (Doukhan and Leon,
1989, Proposition 2.2), the inequality (A.6) holds.

(b.v) Lipschitz continuity of f (ω; θ0). This follows directly for the smoothness of the �rst derivatives of
f (ω; θ) uniformly on2.
The statement of the proposition now follows by simplifying the formulae for Mf and Ṽ in
(Hosoya and Taniguchi, 1982, Theorem 3.1) in view of the fact that the true spectral density of xi
is given by f (ω; θ0), together with the fact that the matrixM(θ0) is full rank by the identi�cation
assumption stated in Proposition 1.

A.3. Proof of Proposition 3

We need to show that the assumptions of Theorem 1 in Deo et al. (2009) are satis�ed. Assumption
(ii) requires the duration process to be exponential strong mixing, and this was established in Section
2.1; it is well-known that exponential β-mixing implies exponential strong mixing since the β-mixing
coe�cients dominate the strong mixing coe�cients, e.g., Davidson, 1994, Chapter 14.

Turning to Assumption (i) of Theorem 1 in Deo et al. (2009), we �rst note that the long-run variance
of Xi is strictly positive, i.e., limn→∞ 1

nVar(
∑n

i=1 Xi) = σ 2 > 0 for some constant σ 2. Since {Xi} is
stationary with exponentially declining autocovariances, this is equivalent to showing that the spectral
density of Xi is strictly positive at the zero frequency. This follows directly from expression (0.2) in
the Supplemental Appendix A1 since when ω = 0 each summand in (0.2) is strictly positive implying

2π fX(ω) > 0. Write σ 2 = 2π fX(ω) and de�ne Yn(s) = n−1/2
∑⌊ns⌋

i=1 (Xi − ψ̄). Since by assumption ǫi is
iidwith 3+rmoments �nite for some r > 0 and independent ofψi, which also has 3+rmoments �nite,
it follows that Xi has 3 + r moments �nite. Then by Deo et al. (2009), Yn ⇒ σW, as n → ∞, whereW
is a standard Brownian motion. This veri�es Assumption (i) of Theorem 1 in Deo et al. (2009).

Finally, by the same argument as in the proof of Theorem 3 inDeo et al. (2009), the exponential strong
mixing property and the existence of 3 + r (where r > 0) moments of xi imply for yn = n−1/2

∑n
i=1 xi,

and some constant c that E(|yn − E(yn)|3+r) ≤ c < ∞ as required by Assumption (iii) of Theorem 1 in
Deo et al. (2009).
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