
Journal of Computational and Applied Mathematics 315 (2017) 240–248

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Probability inequalities for decomposition integrals
Hamzeh Agahi a,∗, Radko Mesiar b,c
a Department of Mathematics, Faculty of Basic Science, Babol Noshirvani University of Technology, Babol, Iran
b Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology, SK-810 05
Bratislava, Slovakia
c Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Pod vodárenskou věži 4, 182 08 Praha 8,
Czech Republic

a r t i c l e i n f o

Article history:
Received 23 February 2016
Received in revised form 11 November
2016

Keywords:
Decomposition integral
Superdecomposition integral
Probability inequalities
Generalized probability theory

a b s t r a c t

Recently, in mathematical economics, Even and Lehrer introduced the decomposition
integral (Even and Lehrer, 2014). In this paper, general versions of some well-known
probabilistic inequalities for the decomposition integrals and the superdecomposition
integrals are discussed that are still open for research. The main results of this paper
generalize some previous results for particular integral inequalities obtained by several
researchers in generalized probability theory.
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1. Introduction and motivation

Optimization theory is a branch of applied mathematics which is used in numerous applications in engineering,
economics and statistics [1–7]. Probabilistic inequalities are very important in optimization and approximation theory
[8–11]. We recall some important inequalities in probability and measure theory: Hölder’s inequality, Minkowski’s
inequality, Chebyshev’s inequality and Jensen’s inequality.

Given a probability space (Ω, A, P), consider two A-Borel measurable functions X and Y .

Theorem 1.1. If p > 1 and 1
p +

1
q = 1, then Hölder’s inequality

Ω

|XY | dP ≤


Ω

|X |
p dP

 1
p


Ω

|Y |
q dP

 1
q

holds.

Theorem 1.2. If p ≥ 1, then Minkowski’s inequality
Ω

|X + Y |
p dP

 1
p

≤


Ω

|X |
p dP

 1
p

+


Ω

|Y |
p dP

 1
p

,

holds.
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Theorem 1.3. If X, Y are comonotonic, then Chebyshev’s inequality
Ω

XYdP ≥


Ω

XdP


Ω

YdP

holds.

Theorem 1.4. Let I be an open interval and let Ψ be a convex function on I. Let X : Ω → I be a random variable. Then the
Jensen inequality

Ω

Ψ (X) dP ≥ Ψ


Ω

XdP


holds.

Some new generalizations and refinements of Hölder’s inequality were obtained in [12–15]. In 2013, Kochanek and
Lewicki [16] characterized Lp-norms on a probabilistic space via a Hölder type inequality. Recently, a Hölder-type inequality
on a regular rooted tree was proposed by Falconer [17]. Aldaz [18] presented a stability version of Hölder’s inequality.
In information theory, a new refinement of the generalized Hölder’s inequality was obtained by Tian in [19]. Bourin
and Hiai [20] established new extensions of the Minkowski inequality for a large class of operator means. The Pexider
type generalization of the Minkowski inequality was proved in [21]. In pseudo analysis, Agahi et al. [22] proved some
generalizations of the Hölder’s and Minkowski’s inequalities for the pseudo-integral. Hölder’s and Minkowski’s inequalities
for Sugeno integral [23–25] with respect to non-additive measures were studied in [15,26,27].

During the last decades, the concept of Choquet integral attracted a great interest of the researchers in many areas of
sciences [28–31,11,32–42,23]. In the framework of Choquet integral, several integral inequalities were studied in [43,44,
5,45]. For example, Zhao and Zhang [5] proved the Hölder type inequality for Choquet integral based on comonotonicity
condition. Let (Ω, A) be a fixed measurable space. Recall that two functions X, Y : Ω → R are said to be comonotonic if
and only if

(X (ω1) − X (ω2)) (Y (ω1) − Y (ω2)) > 0

for each couple of elements ω1, ω2 ∈ Ω . Note that some of the next notions will be properly defined later in Section 2.

Theorem 1.5 ([5,45]). Let X, Y be two non-negative functions such that Eµ

C [XY ] , Eµ

C [Xp] and Eµ

C [Y q] exist for all p, q > 1. If
X, Y are comonotonic, then

(i) Hölder’s inequality

Eµ

C [XY ] 6

Eµ

C


Xp 1

p

Eµ

C


Y q 1

q

holds where 1
p +

1
q = 1, p > 1.

(ii) Minkowski’s inequality
Eµ

C


(X + Y )s

 1
s 6


Eµ

C


X s 1

s +

Eµ

C


Y s 1

s

holds where s ≥ 1.

Remark 1.6. Let µ be submodular, i.e., µ (A ∪ B) + µ (A ∩ B) ≤ µ (A) + µ (B) for all A, B ∈ A. Then Mesiar et al. [43]
and Wang [44] proposed new versions of Hölder’s and Minkowski’s type inequalities for Choquet integral based on two
non-negative functions.

Theorem 1.7 ([46, Theorem 2.2]). Let X, Y > 0 be comonotonic. Then, the Chebyshev inequality

∥µ∥ Eµ

C [XY ] ≥ Eµ

C [X]Eµ

C [Y ]

holds for any real monotone set function µ.

Theorem 1.8 ([5,43]). Let υ be a capacity. Let X be a non-negative measurable function. If Ψ : (0, ∞) → (0, ∞) is a convex
non-decreasing function, then Jensen’s inequality

Eυ
C [Ψ (X)] > Ψ


Eυ
C [X]


holds.
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In 2014, Even and Lehrer [30] introduced the concept of decomposition integral which generalizes Choquet integral
[41,42,23] and concave integral [35]. Inspired by the idea of decomposition integrals, a new class of integrals based on
superdecompositions of integrated functions was introduced by Mesiar et al. [47] in 2015. This paper deals with a review
of fundamental concepts on well-known probabilistic inequalities such as Hölder’s inequality, Minkowski’s inequality,
Chebyshev’s inequality and Jensen’s inequality for the decomposition integrals and the superdecomposition integrals that
are still open for research. The proposed inequalities include as special cases the previous probabilistic inequalities for
Choquet integral were studied in Zhao and Zhang [5], Mesiar et al. [43], Wang [44], Girotto and Holzer [46], Zhu and
Ouyang [45] and others.

The rest of the paper is organized as follows. Some basic well-known notions and definitions that are useful in this paper
are given in Section 2. In Section 3, we state the main results of this paper. Finally, some concluding remarks are added.

2. Definitions and notations

In this section, we recall some basic well-known definitions and notations that we will use in the proofs of our results.
Let (Ω, A) be a fixed measurable space.

Definition 2.1 ([25]). A set function µ : A → [0, ∞] is called a monotone measure whenever µ (∅) = 0, µ(Ω) > 0 and
µ(A) ≤ µ(B) whenever A ⊆ B, moreover, µ is called real if ∥µ∥ = µ (Ω) < ∞ and µ is said to be an additive measure
if µ (A ∪ B) = µ (A) + µ (B), whenever A ∩ B = ∅. µ is called a fuzzy measure (or monotone probability or capacity) if
∥µ∥ = 1. Notice that a capacity with σ -additivity assumption is called a probability measure. A monotone measure µ is
also submodular (2-alternating) whenever µ (A ∪ B) + µ (A ∩ B) ≤ µ (A) + µ (B) for all A, B ∈ A.

Definition 2.2. A random variable X over N is a function X : N → R. A subset of N will be called an event. For any event
A ⊆ N , 1A denotes the indicator of A, which is the random variable that takes the value 1 over A and the value 0 otherwise.

Definition 2.3 ([30]). Let X be a non-negative random variable.

1. A sub-decomposition of X is a finite sum
k

i=1 αi1Ai such that
(i)

k
i=1 αi1Ai ≤ X; and

(ii) αi ≥ 0 and Ai ⊆ N for every i = 1, 2, . . . , k.
2. Let D be a subset of 2X .

k
i=1 αi1Ai is a D-sub-decomposition of X if it is a sub-decomposition of X and Ai ∈ D for every

i = 1, 2, . . . , k.

We say that
k

i=1 αi1Ai is a decomposition of X if equality replaces inequality in (i). That is,
k

i=1 αi1Ai is a decomposition
of X if it is a sub-decomposition of X , and

k
i=1 αi1Ai = X . A similar definition applies to D-decomposition of X .

For a fixedmeasurable space (Ω, A), any finite non-empty subset D ⊆ A\{∅} is called a collection. A systemH of some
collections is called a collection system and we denote by X the set of all collection systems over (Ω, A). Considering that
(Ω, A) fixed and to shorten the notation, we denote M as the set of all monotone measures on (Ω, A) and F is the set of
all bounded measurable functions X : Ω → [0, ∞[.

Definition 2.4 ([30]). The decomposition-integral is defined as follows

IH [m, X] = sup


i∈I

aim (Ai) | (Ai)i∈I ∈ H,


ai1Ai ≤ X


where all constants ai, i ∈ I , are non-negative and it is based on a collection system H .

Remark 2.5. (i) Observe that for any collection system H , the corresponding decomposition integral IH is monotone and
positively homogeneous.

(ii) For a fixed measurable space (Ω, A), if H1 = {{A} |A ∈ A}, then IH1 is a Shilkret integral [48], whereas if H2 =

{B|B is a finite chain in A}, then IH2 is a Choquet expectation (integral) [41,42,23]. Recall that B is a finite chain in
A if and only if there is an integer k and B = {A1, A2, . . . , Ak} ⊂ A that satisfies A1 ⊂ A2 ⊂ · · · ⊂ Ak. Considering
H3 = {B|B is a finite subset of A}, IH3 is the concave integral introduced by Lehrer [35].

Definition 2.6 ([47]). Let H ∈ X be fixed. Then, the mapping IH
: M × F → [0, ∞] given by

IH [m, X] = inf


A∈C

aAm (A) |C ∈ H, aA ≥ 0 for each A ∈ C,

A∈C

aA1A ≥ X


is called a superdecomposition integral.
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Remark 2.7. (i) For a fixed measurable space (Ω, A), if H1 = {{A} |A ∈ A}, then

IH1 = inf {a · m (A) |A ∈ A, a · 1A ≥ X}

= sup {f (ω) |ω ∈ Ω} · m ({X > 0}) .

If H2 = {B|B is a finite chain in A}, then IH2 is a Choquet expectation (integral) [41,42,23] given by

IH2 [m, X] = Em
C [X] =


∞

0
m ({X ≥ t}) dt.

Considering H3 = {B|B is a finite subset of A}, IH3 is the convex integral introduced by Mesiar et al. [47].
(ii) For any H ∈ X, the corresponding superdecomposition integral IH is monotone and positively homogeneous.

3. Main results

In this section, we state the main results of this paper. Our results in this section generalize the previous results obtained
by Zhao and Zhang [5], Mesiar et al. [43], Wang [44], Girotto and Holzer [46], Zhu and Ouyang [45].

Theorem 3.1 (Chebyshev’s Inequality). Let m ∈ M be fixed. If the superdecomposition-integral IH [m, .] satisfies the following
conditions:

(i) IH [m, X + Y ] = IH [m, X] + IH [m, Y ] for any comonotonic X, Y ∈ F ,
(ii) IH [m, 1] < ∞,

then the Chebyshev inequality

IH [m, XY ] IH [m, 1] ≥ IH [m, X] IH [m, Y ] ,

holds for any comonotonic random variables X, Y ∈ F .

Proof. Without loss of generality we assume that IH [m, XY ] < ∞ and X, Y ≠ 0. Given ω0, comonotonicity implies that

(X − X (ω0)) (Y − Y (ω0)) > 0,

or, equivalently,

XY + X (ω0) Y (ω0) > Y (ω0) X + X (ω0) Y .

Then, by monotonicity of IH [m, .], we have

IH [m, XY + X (ω0) Y (ω0)] > IH [m, Y (ω0) X + X (ω0) Y ] .

Observe that any constant function c ∈ F is comonotonic with any random variable Z ∈ F . Moreover, if X, Y ∈ F , then,
for any positive constants c, d, two random variables cX and cY are also comonotonic. Hence, by condition (i), we get

IH [m, XY ] + IH [m, X (ω0) Y (ω0)] > IH [m, Y (ω0) X] + IH [m, X (ω0) Y ] .

Finally, by positive homogeneity, the inequality

IH [m, XY ] + X (ω0) Y (ω0) IH [m, 1] > Y (ω0) IH [m, X] + X (ω0) IH [m, Y ] , (3.1)

holds for any ω0, i.e.,

IH [m, XY ] + XY IH [m, 1] > Y IH [m, X] + XIH [m, Y ] .

Now, we show that IH [m, X] and IH [m, Y ] are both finite. Indeed, assume for instance IH [m, X] = +∞, then choose
ω0 such that Y (ω0) > 0 in order to get, by (3.1) and condition (ii), the contradiction IH [m, XY ] > Y (ω0) IH [m, X] +

X (ω0) IH [m, Y ] − X (ω0) Y (ω0) IH [m, 1] = +∞. Consequently, by monotonicity, we have

IH

m, IH [m, XY ] + XY IH [m, 1]


> IH


m, Y IH [m, X] + XIH [m, Y ]


. (3.2)

Then condition (i), positive homogeneity and (3.2) imply that

2IH [m, XY ] IH [m, 1] = IH [m, 1] IH [m, XY ] + IH [m, XY ] IH [m, 1]
= IH


m, IH [m, XY ]


+ IH


m, XY IH [m, 1]


= IH


m, IH [m, XY ] + XY IH [m, 1]


> IH


m, Y IH [m, X] + XIH [m, Y ]


= IH


m, Y IH [m, X]


+ IH


m, XIH [m, Y ]


= IH [m, X] IH [m, Y ] + IH [m, Y ] IH [m, X]

= 2IH [m, X]H [m, Y ] .

This completes the proof. �
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By a similar way, we can obtain Chebyshev’s inequality for decomposition-integral.

Theorem 3.2. Let m ∈ M be fixed. If the decomposition-integral IH [m, .] satisfies the following conditions:

(i) IH [m, X + Y ] = IH [m, X] + IH [m, Y ] for any comonotonic random variables X, Y ∈ F ,
(ii) IH [m, 1] < ∞,

then the Chebyshev inequality

IH [m, XY ] IH [m, 1] ≥ IH [m, X] IH [m, Y ] ,

holds for any comonotonic random variables X, Y ∈ F .

Example 3.3. (i) Since H2 = {B|B is a finite chain in A}, then IH2 = IH2 is a Choquet integral and we have Chebyshev’s
inequality for Choquet integral in Theorem 1.7 which was obtained in [46,49].

(ii) Consider X = {1, 2}, H = {{1}, {1, 2}}, m(X) = 1, m({1}) = a, m({2}) = b and a, b ∈ [0, 1]. Then, for X(i) = xi, the
superdecomposition integral IH

[m, .] is comonotone additive, and it holds

IH
[m, X] = x2 + a.max{x1 − x2, 0}.

Thus IH
[m, 1] = 1, and due to Theorem 3.1, the Chebyshev inequality for this integral holds. Similarly, due to Theorem 3.2,

the Chebyshev inequality holds for IH [m, .], which is given by

IH [m, X] = min{x1, x2} + a.max{x1 − x2, 0}.

Theorem 3.4 (Jensen’s Inequality). Let m ∈ M be fixed and I be an open interval and let Ψ be a twice differentiable function on
I satisfying the condition Ψ ′′ (x) ≥ 0 for x ∈ I . Let X : Ω → I be a random variable and IH [µ, X] ∈ I . Then inequality

IH


µ, Ψ (X) + Ψ ′ (IH [µ, X]) IH [µ, X]


> IH


µ, Ψ (IH [µ, X]) + XΨ ′ (IH [µ, X])


(3.3)

holds.

Proof. We use the inequality

Ψ (x) > Ψ (ρ) + Ψ ′ (ρ) (x − ρ) (3.4)

for any x, ρ ∈ I which follows from convexity of Ψ and Taylor’s formula. Then (3.4) implies that

Ψ (x) + ρΨ ′ (ρ) > Ψ (ρ) + Ψ ′ (ρ) x

for any x, ρ ∈ I . We set x = X (ω) and IH [µ, X] = ρ and integrate over the domain Ω . Then

IH


µ, Ψ (X) + ρΨ ′ (ρ)


> IH


µ, Ψ (ρ) + Ψ ′ (ρ) X


. �

Corollary 3.5. Let the capacity υ be fixed and I be an open interval and let Ψ be a twice differentiable function on I satisfying
the condition Ψ ′′ (x) ≥ 0 for x ∈ I . Let X : Ω → I be a random variable. If the decomposition-integral IH [υ, .] satisfies the
following conditions:

(i) translation invariant, i.e., IH [υ, X + c] = IH [υ, X] + c for any c ∈ R,
(ii) IH [υ, X] ∈ I and Ψ ′ (IH [υ, X]) ≥ 0 for capacity υ ,

then inequality

IH [υ, Ψ (X)] > Ψ (IH [υ, X])

holds.

Proof. By condition (i) and (3.3), we have

IH [υ, Ψ (X)] + Ψ ′ (IH [υ, X]) IH [υ, X] > IH


υ, XΨ ′ (IH [υ, X])


+ Ψ (IH [υ, X]) .

Now if Ψ ′ (IH [υ, X]) ≥ 0, then by positive homogeneity of decomposition integral, we have

IH [υ, Ψ (X)] + IH [υ, X]Ψ ′ (IH [υ, X]) > IH [υ, X]Ψ ′ (IH [υ, X]) + Ψ (IH [υ, X]) .

This completes the proof. �

By a similar way, we can obtain the following theorem for superdecomposition-integral.
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Theorem 3.6. Let m ∈ M be fixed and I be an open interval and let Ψ be a twice differentiable function on I satisfying the
condition Ψ ′′ (x) ≥ 0 for x ∈ I . Let X : Ω → I be a random variable and IH [µ, X] ∈ I . Then the inequality

IH

µ, Ψ (X) + Ψ ′


IH [µ, X]


IH [µ, X]


> IH


µ, Ψ


IH [µ, X]


+ XΨ ′


IH [µ, X]


holds.

Example 3.7. SinceH2 = {B|B is a finite chain in A}, then IH2 = IH2 is a Choquet integral andwe have Jensen’s inequality
for Choquet integral in Theorem 1.8 which was obtained in [5,43].

Theorem 3.8. Let m ∈ M be fixed. If X, Y ∈ F , p > 1 and 1
p +

1
q = 1, then we have Hölder’s inequality for the convex integral

IH3 [m, XY ] 6

IH3


m, Xp 1

p

IH3


m, Y q 1

q .

Proof. Positive homogeneity of IH3 implies that

IH3

m, X

1
p Y

1
q


(IH3 [m, X])
1
p (IH3 [m, Y ])

1
q

= IH3


m,


X

IH3 [m, X]

 1
p


Y
IH3 [m, Y ]

 1
q


. (3.5)

So, by geometric inequality and monotonicity of IH3 , we have

IH3


m,


X

IH3 [m, X]

 1
p


Y
IH3 [m, Y ]

 1
q


6 IH3


m,

1
pX

IH3 [m, X]
+

1
qY

IH3 [m, Y ]


. (3.6)

Then by convexity of IH3 , (3.5), (3.6) we have

IH3

m, X

1
p Y

1
q


(IH3 [m, X])
1
p (IH3 [m, Y ])

1
q

6
1
p

IH3


m,

X
IH3 [m, X]


+

1
q

IH3


m,

Y
IH3 [m, Y ]


. (3.7)

Again by positive homogeneity and (3.7), we obtain

IH3

m, X

1
p Y

1
q


(IH3 [m, X])
1
p (IH3 [m, Y ])

1
q

6
1
p

IH3 [m, X]
IH3 [m, X]

+
1
q

IH3 [m, Y ]
IH3 [m, Y ]

=
1
p

+
1
q

= 1,

i.e.,

IH3

m, X

1
p Y

1
q


6

IH3 (m, X)

 1
p

IH3 (m, Y )

 1
q . �

Corollary 3.9. Let m ∈ M be fixed. If X, Y ∈ F , then the inequality

IH3 [m, XY ] 6

IH3


m, X2 1

2

IH3


m, Y 2 1

2 (3.8)

holds.

Corollary 3.10. Let m ∈ M be fixed. Let X ∈ F , p, q ∈ (0, ∞) , t ∈ (0, 1). If r ∈ (0, ∞) satisfies 1
r =

1−t
p +

t
q , then the

inequality
IH3


m, X r 1

r 6

IH3


m, Xq t

q

IH3


m, Xp 1−t

p

holds.

Proof. Let p1 =
p

r(1−t) and q1 =
q
rt . Then

1
p1

+
1
q1

= 1, q1 > 0. So, by Theorem 3.8,

IH3

m, X r

= IH3

m, X rtX r(1−t) 6


IH3


m, X rtq1

 1
q1


IH3


m, X r(1−t)p1

 1
p1

=

IH3


m, Xq rt

q

IH3


m, Xp r(1−t)

p ,
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i.e., 
IH3


m, X r 1

r 6

IH3


m, Xq t

q

IH3


m, Xp 1−t

p .

This completes the proof. �

Example 3.11. As an applicable example of the Hölder’s inequality in Theorem 3.8, we can present the concept of a
convergence in pth mean for convex integral. Let {Xn} be a sequence of convex integrable functions on Ω . We say that
{Xn} converges in pth mean (p > 0) to X if

lim
n→∞

IH3

m, |Xn − X |

p
= 0.

Since 0 < r < s, Y ≡ 1, |Xn − X |
r substitute for X and s

r substitute for p, then we have

IH3

m, |Xn − X |

r
≤


IH3


m, |Xn − X |

r s
r

 r
s 

IH3 [m, 1]
 s−r

s

=

IH3


m, |Xn − X |

s r
s

IH3 [m, 1]

 s−r
s . (3.9)

Clearly, if 0 < r < s, {Xn} converges in sth mean, i.e., if limn→∞ IH3

m, |Xn − X |

s
= 0, and IH3 [m, 1] is finite, then by (3.9)

{Xn} converges in rth mean.

Analyzing the proof of Theorem 3.8, we can obtain the following theorems for superdecomposition-integral and
decomposition-integral.

Theorem 3.12 (Hölder’s Inequality). Let m ∈ M be fixed. If X, Y ∈ F , p > 1, 1
p +

1
q = 1 and the superdecomposition-integral

IH [m, .] satisfies the following condition:
IH [m, X + Y ] ≤ IH [m, X] + IH [m, Y ] for any X, Y ∈ F ,

then the inequality

IH [m, XY ] 6

IH


m, Xp 1

p

IH


m, Y q 1

q

holds.

Theorem 3.13. Let m ∈ M be fixed. If X, Y ∈ F , p > 1 and 1
p +

1
q = 1, and the decomposition-integral IH [m, .] satisfies the

following condition:
IH [m, X + Y ] ≤ IH [m, X] + IH [m, Y ] for any X, Y ∈ F ,

then the inequality

IH [m, XY ] 6

IH


m, Xp 1

p

IH


m, Y q 1

q

holds.

Example 3.14. Since H2 = {B|B is a finite chain in A}, then IH2 = IH2 is a Choquet integral.

(I) If X, Y are comonotonic, then we have Hölder’s inequality for Choquet integral in Theorem 1.5 which was obtained
in [5,45].

(II) Since m ∈ M is submodular, then the Choquet integral is subadditive (see Proposition 7.9 in [23]). Then we obtain a
new version of Hölder’s inequality for Choquet integral which was obtained in [43,44].

Theorem 3.15. Let m ∈ M be fixed. If X, Y ∈ F , then the inequality
IH3


m, X s 1

s +

IH3


m, Y s 1

s >

IH3


m, (X + Y )s

 1
s (3.10)

holds any s > 1.

Proof. Without loss of generality, we can assume that IH3

m, (X + Y )s


≠ 0. Then by monotonicity and convexity of IH3 ,

we have

IH3

m, (X + Y )s


= IH3


m, (X + Y ) (X + Y )s−1

6 IH3

m, (X + Y ) (X + Y )s−1

6 IH3

m, X (X + Y )s−1

+ IH3

m, Y (X + Y )s−1 . (3.11)
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By Theorem 3.8, we have

IH3

m, X (X + Y )s−1 6


IH3


m, X s 1

s

IH3


m, (X + Y )s

 s−1
s , (3.12)

and

IH3

m, Y (X + Y )s−1 6


IH3


m, Y s 1

s

IH3


m, (X + Y )s

 s−1
s . (3.13)

So, (3.11)–(3.13), imply that

IH3

m, (X + Y )s


6


IH3


m, X s 1

s +

IH3


m, Y s 1

s

 
IH3


m, (X + Y )s

 s−1
s ,

i.e., 
IH3


m, (X + Y )s



IH3


m, (X + Y )s

1− 1
s

6

IH3


m, X s 1

s +

IH3


m, Y s 1

s .

This completes the proof. �

Similarly, we can obtain the following theorems, which present Minkowski’s inequality for (super)decomposition-
integral.

Theorem 3.16 (Minkowski’s Inequality). Let m ∈ M be fixed. If IH [m, .] satisfies the following condition:
IH [m, X + Y ] ≤ IH [m, X] + IH [m, Y ] for any X, Y ∈ F ,

then the inequality
IH


m, X s 1

s +

IH


m, Y s 1

s >

IH


m, (X + Y )s

 1
s

holds for any s > 1.

Theorem 3.17. Let m ∈ M be fixed. If IH [m, .] satisfies the following condition:
IH [m, X + Y ] ≤ IH [m, X] + IH [m, Y ] for any X, Y ∈ F ,

then the inequality
IH


m, X s 1

s +

IH


m, Y s 1

s >

IH


m, (X + Y )s

 1
s

holds for any s > 1.

Example 3.18. When H2 = {B|B is a finite chain in A}, then IH2 = IH2 is a Choquet integral.

(I) If X, Y are comonotonic, then we have Minkowski’s inequality for Choquet integral in Theorem 1.5 which was
obtained in [45].

(II) If m ∈ M is submodular, then we obtain a new version of Minkowski’s inequality for Choquet integral which was
obtained in [43,44].

4. Concluding remarks

Probabilistic inequalities are powerful and practicalmathematical tools in optimization and approximation theory. In this
paper, we have investigated somewell-known probabilistic inequalities such as Hölder’s inequality,Minkowski’s inequality,
Chebyshev’s inequality and Jensen’s inequality for decomposition-integrals and superdecomposition-integrals. Note that the
earlier results of Zhao and Zhang [5],Mesiar et al. [43],Wang [44], Girotto andHolzer [46], Zhu andOuyang [45] are related to
the Choquet integral, and their proofs exploit several particular properties of this integral such as the comonotone additivity,
for example. We have considered a large class of decomposition (superdecomposition) integrals and thus rather different
proof techniqueswere necessary. For the abovementioned inequalities, we have obtained results valid for all decomposition
(super-decomposition) integrals. Having inmind a big potential of these recently introduced integrals in all domains dealing
with optimal solutions (decomposition integralswere introduced in [30] in 2014,while superdecomposition integrals in [47]
in 2015), we expect several applications of our results just in these domains.
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