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Integral equivalence of couples (μ, x) and (μ, y), where μ is a possibility (necessity) 
measure on [n] = {1, . . . , n} and x, y ∈ [0,1]n is discussed and studied. We characterize 
the sets H(μ,x) of all y such that the couples (μ, x) and (μ, y) are integral equivalent 
and we add an illustrative example. Subsequently, a new characterization of possibility 
(necessity) measures is obtained and the coincidence of universal integrals for possibility 
(necessity) measures and particular vectors from [0,1]n is shown, thus generalizing these 
results introduced by Dubois and Rico for the Choquet and the Sugeno integrals.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

One distinguished class of utility functions exploited in multiple-criteria decision making is formed by universal integrals 
on [0,1] introduced by Klement et al. [6]. They calculate a global evaluation of alternatives characterized by score vectors 
from [0,1]n , where n is the number of considered criteria. The most applied integrals are the Choquet integral [1] and 
the Sugeno integral [9]. Among the other universal integrals on [0,1], recall the Shilkret integral [8], Weber integral [11]
and copula-based integrals [7]. All these discrete integrals are based on a normed monotone measure on the space [n] =
{1, . . . , n} named capacity.

Recently, Dubois and Rico [2] have studied the equality of Choquet (Sugeno) integrals of particular couples of score 
vectors, considering possibility and necessity measures as underlying capacities. Inspired by their results, we extend their 
problem to all universal integrals on [0,1], aiming to characterize, for a fixed possibility (necessity) measure and a fixed 
score vector x, the class of all score vectors with integral values identical to those related to x, independently of the 
considered universal integral on [0,1].

The paper is organized as follows. In the next section, we introduce some necessary preliminaries concerning capacities 
and universal integrals. In Section 3, we study and discuss the above sketched problem considering possibility measures. In 
Section 4, necessity measures are considered. Finally, some concluding remarks are added.
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http://dx.doi.org/10.1016/j.ijar.2017.04.008
0888-613X/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ijar.2017.04.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
mailto:chentao@cuc.edu.cn
mailto:radko.mesiar@stuba.sk
mailto:lijun@cuc.edu.cn
mailto:andrea.stupnanova@stuba.sk
http://dx.doi.org/10.1016/j.ijar.2017.04.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2017.04.008&domain=pdf


T. Chen et al. / International Journal of Approximate Reasoning 86 (2017) 62–72 63
2. Preliminaries

For a fixed n ≥ 2, we denote [n] = {1, . . . , n}. For any x = (x1, . . . , xn) ∈ [0,1]n , we denote by (·) a permutation (·) :
[n] → [n] such that x(1) ≤ · · · ≤ x(n) , and x(0) = 0 by convention. More, we will use notation A(i) = {(i), . . . , (n)}. Though the 
permutation (·) need not be unique (this happens if there are some ties in the sample (x1, . . . , xn)), this has no influence 
on the results presented later. Further, we will use the standard lattice notation ∨ for the join (maximum on [0,1]) and ∧
for the meet (minimum on [0,1]).

Definition 2.1 ([10]). A monotone set function μ : 2[n] → [0,1] is called a capacity whenever it satisfies two boundary con-
ditions μ(∅) = 0 and μ([n]) = 1. A capacity μ is called a possibility (necessity) measure whenever it is maxitive (minitive), 
i.e., if

μ(A ∪ B) = μ(A) ∨ μ(B) (μ(A ∩ B) = μ(A) ∧ μ(B))

for any A, B ⊆ [n]. The set of all capacities on [n] will be denoted as Mn .

For any possibility measure �, the function π : [n] → [0,1], π(i) = �({i}) is called a possibility distribution (of �) [12], 
and for any A ⊆ [n] it holds

�(A) =
∨
i∈A

π(i),

with convention that supremum of the empty set is 0. For any capacity μ : 2[n] → [0,1], its dual (conjugate) capacity 
μd : 2[n] → [0,1] is given by

μd(A) = 1 − μ([n] \ A).

Necessity measures are dual to possibility measures, i.e., N : 2[n] → [0,1] is a necessity measure if and only if its conjugate 
Nd = � is a possibility measure. Considering the possibility distribution π of �, it holds

N(A) = 1 −
∨
i /∈A

π(i).

The greatest capacity μ∗ : 2[n] → [0,1] is given by

μ∗(A) =
{

0 if A = ∅
1 else

,

and it is a possibility measure with possibility distribution π∗ = 1.
Its dual μ∗ ,

μ∗(A) =
{

1 if A = [n]
0 else

,

is a necessity measure, and it is the smallest capacity on [n].
Before introducing the concept of universal integrals on [0,1] we recall the notion of a semicopula.

Definition 2.2 ([3]). An operation ⊗ : [0,1]2 → [0,1] is called a semicopula whenever it is increasing in both coordinates 
and 1 is its neutral element, i.e., x ⊗ 1 = 1 ⊗ x = x for all x ∈ [0,1].

The greatest semicopula ∧ : [0,1]2 → [0,1] is the standard min operator, x ∧ y = min{x, y}. The smallest semicopula is 
the drastic product T D ,

x T D y =
{

x ∧ y if x ∨ y = 1

0 else
.

Another distinguished semicopulas are the product T P , x T P y = x · y, and the Lukasiewicz t-norm T L, x T L y = max{x + y −
1, 0}.

The concept of universal integrals was proposed by Klement et al. [6], and it covers all integrals mentioned in Section 1.

Definition 2.3. Let ⊗ : [0,1]2 → [0,1] be a fixed semicopula. The mapping I : ⋃
n∈N

Mn × [0,1]n → [0,1] is called a (⊗-based) 

universal integral on [0,1] whenever the next axioms are satisfied:
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(U1) I is increasing in both coordinates, i.e., I(μ1, x(1)) ≤ I(μ2, x(2)) for all μ1, μ2 ∈ Mn, μ1 ≤ μ2 and x(1), x(2) ∈
[0,1]n, x(1) ≤ x(2);

(U2) I(μ, c · 1A) = c ⊗ μ(A) for any μ ∈Mn, c ∈ [0,1] and A ⊆ [n];
(U3) I(μ1, x(1)) = I(μ2, x(2)) for any integral equivalent couples

(μ1, x(1)) ∈ [0,1]n1 , (μ2, x(2)) ∈ [0,1]n2 ,
μ1({i ∈ [n1]| x(1)

i ≥ t}) = μ2({ j ∈ [n2]| x(2)
j ≥ t}) for all t ∈ [0,1].

Note that due to [5, Theorem 3] the axioms (U1) and (U3) can be merged into a unique axiom (U4) equivalent to the 
simultaneous validity of (U1) and (U3), requiring

(U4) I(μ1, x(1)) ≤ I(μ2, x(2)) whenever for all t ∈ [0,1] it holds

μ1({i ∈ [n1]|x(1)
i ≥ t}) ≤ μ2({ j ∈ [n2]|x(2)

j ≥ t}).

Recall that the Choquet and the Shilkret integral are based on the product semicopula and that for μ ∈ Mn and x ∈ [0,1]n

they are defined by

Ch(μ,x) =
n∑

i=1

(x(i) − x(i−1))μ(A(i)) and

Sh(μ,x) =
n∨

i=1

x(i) μ(A(i)),

respectively. Among some other universal integrals based on the product we recall integrals I(k)
T P

, k ∈ N, which are the only 
integrals being simultaneously universal and decomposition integrals [4],

I(k)
T P

(μ,x) = sup
{ k∑

i=1

aiμ(Ai)
∣∣ (Ai)

k
i=1 is a chain, (ai)

k
i=1 ∈ [0,1]k,

k∑
i=1

ai1Ai ≤ x
}
.

Note that Sh = I(1)
T P

≤ I(2)
T P

≤ · · · ≤ I(k)
T P

≤ . . . and that Ch = ∨
k∈N

I(k)
T P

. In fact, on Mn × [0,1]n , the integrals Ch and I(n)
T P

coincide.

Sugeno integral Su is related to the greatest semicopula ∧ and it is given by

Su(μ,x) =
n∨

i=1

(x(i) ∧ μ(A(i)).

Coming back to the axiom (U3), denote by hμ,x : [0,1] → [0,1] a function given by

hμ,x(t) = μ({i ∈ [n]| xi ≥ t}).
Due to the increasingness of μ, the function hμ,x is decreasing and hμ,x(0) = 1. In probability theory, hμ,x can be seen as a 
survival function of random vector x (considering the probability space ([n], 2[n], μ)), and with a slight abuse of terminology, 
we will call hμ,x a survival function for any couple (μ, x) ∈ Mn ×[0,1]n, n ∈N. Recall that, in probability theory, the survival 
function S :R → [0,1] of a random variable X (on a probability space (�, A, P )) is given by S(x) = P (X ≥ x). In our context, 
for the extremal capacities μ∗ and μ∗ it holds

hμ∗,x(t) =
{

1 if t ≤ x(n)

0 otherwise
, and hμ∗,x(t) =

{
1 if t ≤ x(1)

0 otherwise
.

Due to the axiom (U3), the coincidence of survival functions hμ1,x(2) = hμ2,x(2) ensures the coincidence I(μ1, x(1)) =
I(μ2, x(2)) for any universal integral I acting on [0,1]. So, for example, if the considered capacity μ ∈ Mn is symmetric, 
i.e., μ(A) depends on cardinality |A| of the set A ⊆ [n] only, then for any permutation σ : [n] → [n], any x ∈ [0,1]n and any 
universal integral I it holds I(μ, x) = I(μ, xσ ), where xσ = (xσ(1), . . . , xσ(n)).

Inspired by results of Dubois and Rico [2], we focus on possibility and necessity measures, and in particular on the 
equality of the related survival functions. This equality ensures the equality of related universal integrals, including the 
equality of Choquet and Sugeno integrals studied in [2].

3. Possibility measures and equality of survival functions

For a fixed n ≥ 2, let � ∈Mn be a possibility measure, and let π : [n] → [0,1] be the related possibility distribution. For 
a fixed score vector x ∈ [0,1]n , we describe the corresponding survival function.
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Fig. 1. Illustration of Example 3.1, construction of h�,x .

Proposition 3.1. The survival function h�,x : [0,1] → [0,1] is given by

h�,x(t) =
∨
xi≥t

π(i) = �(A(ix,t )), where ix,t = min{ j ∈ [n]|x( j) ≥ t}. (1)

The proof of Proposition 3.1 follows from the previous definitions. For a better clarification of survival function h�,x , 
observe first that

h�,x(t) = 1 = u1 for any t ∈ [0, t1], t1 =
∨

π(i)=1

xi .

Recall that u1 = �([n]).
For u2 = �([n] \ {i ∈ [n]| xi ≤ t1}) = �({i| xi > t1}) =∨

xi>t1

π(i), we have

• either u2 = 0 and then h�,x(t) = 0 for any t ∈]t1, 1],
• or u2 > 0 then h�,x(t) = u2 for any t ∈]t1, t2], where t2 =∨

π(i)=u2

xi .

By induction, we have

• h�,x(t) = uk > 0 for any t ∈]tk−1, tk] for k = 1, . . . , r, and
• h�,x(t) = 0 for any t ∈]tr, 1],

where t0 = 0, uk =∨
xi>tk−1

π(i), and � either uk = 0 and then r = k − 1,

� or uk > 0 and then tk =
∨

π(i)=uk

xi .

Observe that if, by chance, an interval ]t, t] is considered, then the corresponding claim is always valid due to the fact 
that ]t, t] = ∅.

Example 3.1. Consider a possibility distribution π : [3] → [0,1] given by

π(1) = 0.5, π(2) = 1 and π(3) = 0.4.

Then for any x ∈ [0,1]3 such that x1 < x2 < x3 we have t1 = x2, i.e., h�,x(t) = 1 for any t ∈ [0, x2]. Next, u2 = �({3}) =
π(3) = 0.4 and t2 = x3, i.e., h�,x(t) = 0.4 for any t ∈]x2, x3]. As u3 = 0, we can summarize

h�,x(t) =

⎧⎪⎨
⎪⎩

1 if t ∈ [0, x2]
0.4 if t ∈]x2, x3]
0 if t ∈]x3,1].

For illustration, see Fig. 1.
Similarly, if x1 > x2 > x3, it holds

h�,x(t) =

⎧⎪⎨
⎪⎩

1 if t ∈ [0, x2]
0.5 if t ∈]x2, x1]
0 if t ∈]x1,1]. �
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As already mentioned, for the greatest capacity μ∗ ∈Mn it holds

hμ∗,x(t) =
⎧⎨
⎩1 if t ∈

[
0,

n∨
i=1

xi

]
0 else.

Obviously, hμ∗,x = hμ∗,y if and only if 
n∨

i=1
xi =

n∨
i=1

yi . Then the greatest score vector x∗ ∈ [0,1]n such that hμ∗,x = hμ∗,x∗ is 

the constant vector

x∗ =
(

n∨
i=1

xi, . . . ,

n∨
i=1

xi

)
.

On the other hand, there is no smallest vector x∗ such that hμ∗,x = hμ∗,x∗ whenever x �= (0, . . . , 0). However then, there are 
n minimal vectors x1, . . . , xn such that hμ∗,x = hμ∗,x1 = · · · = hμ∗,xn , where

x1 =
(

n∨
i=1

xi,0, . . . ,0

)
, . . . ,xn =

(
0, . . . ,0,

n∨
i=1

xi

)
.

Definition 3.1. Let μ ∈ Mn and x ∈ [0,1]n be fixed. Any score vector y ∈ [0,1]n such that hμ,x = hμ,y is called μ-integral 
equivalent to x.

The set of all score vectors μ-integral equivalent to x is denoted as H(μ,x).
The main aim of this section is the description of the set H(�, x), where � is a possibility measure on [n], and 

x is a score vector from [0,1]n . Note that for any possibility measure � ∈ Mn , such that �(A) > 0 whenever A �= ∅, 
H(�, (0, . . . , 0)) = {(0, . . . , 0)}.

Considering again the greatest capacity μ∗ ∈Mn , we see that

H(μ∗,x) =
{

y ∈ [0,1]n
∣∣∣ n∨

i=1

yi =
n∨

i=1

xi

}
.

Then, if y, z ∈ H(μ∗, x) also y ∨ z ∈ H(μ∗, x), i.e., H(μ∗, x) is an upper semi-lattice with top element x∗ . Moreover, if 
x �= (0, . . . , 0), then H(μ∗, x) is not a convex subset of [0,1]n , though it can be represented as a union of 2n − 2 convex 

subsets of [0,1]n . Denoting 
n∨

i=1
xi = c > 0, the mentioned convex classes are related to proper subsets A ⊂ [n],

HA(μ∗,x) = {y ∈ [0, c]n|yi = c for any i ∈ A}.
For any capacity μ ∈Mn , we have an equivalence relation ∼μ on [0,1]n defined by x ∼μ y if and only if hμ,x = hμ,y . Then 
it is obvious that H(μ,x) is an equivalence class of ∼μ containing the vector x.

Theorem 3.1. Under the previous notation, y ∈H(�, x) if and only if∨
π(i)=u j

yi = t j and yi ≤ t j whenever π(i) > u j+1 for all j = 1, . . . , r.

The set H(�, x) is an upper semi-lattice with the top element x� given by

x�
i =

{
t j whenever u j ≥ π(i) > u j+1, j = 1, . . . , r

1 whenever π(i) = 0
,

for i = 1, . . . , n.

Proof. The proof follows from Proposition 3.1. Indeed, based on (1) we see that y ∈H(�,x) if and only if, for any t ∈ [0,1], 
it holds 

∨
y j≥t

π( j) = ∨
xi≥t

π(i). In particular, we see that 
∨

π(i)=1
yi = t1 (recall that u1 = 1), and thus h�,y(t) = 1 for any t ∈

[0, t1]. Moreover, 
∨

yi>t1

π(i) = u2, and 
∨

π(i)=u2

yi = t2, hence h�,y(t) = u2 for any t ∈]t1, t2]. The proof of equality h�,y = h�,x

follows by induction.
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For any y, z ∈ [0,1]n ,

h�,y∨z(t) = �({i ∈ [n]|yi ∨ zi ≥ t}) = �({i ∈ [n]|yi ≥ t} ∪ {i ∈ [n]|zi ≥ t}) =
= �({i ∈ [n]|yi ≥ t}) ∨ �({i ∈ [n]|zi ≥ t}) = h�,y(t) ∨ h�,z(t).

Then, for any y, z ∈H�,x, h�,y∨z = h�,y ∨ h�,z , which implies y ∨ z ∈H�,x , i.e., H�,x is an upper semi-lattice. The descrip-
tion of its top element x� follows from the first part of this theorem. �

Theorem 3.1 was already exemplified considering the greatest possibility measure μ∗ . As another extremal case, consider 

the Dirac measure δk, k ∈ [n], δk(A) =
{

1 if k ∈ A

0 otherwise
. The measure δk is one of n minimal possibility measures on [n], and 

its possibility distribution is just the characteristic function 1δk,x(t) =
{

1 if t ∈ [0, xk]
0 otherwise

, and H(δk, x) = {y ∈ [0,1]n| yk = xk}
with top element xδk = (1, . . . , 1, xk, 1, . . . , 1).

Example 3.2. Continuing in Example 3.1, for any x ∈ [0,1]3 such that x1 < x2 < x3 it holds

H(�,x) = {y ∈ [0,1]3| y1 ≤ x2, y2 = x2, y3 = x3}.
Note that the permutation σ related to � is given by σ = (2, 1, 3) and xσ ,+ = (x2, x2, x3) is the top element of H(�,x). �

Dubois and Rico [2] have introduced two special members of the class H(�,x). If � is a possibility measure related 
to a possibility distribution π : [n] → [0,1] which is decreasing, i.e., 1 = π(1) ≥ π(2) ≥ · · · ≥ π(n), then their score vector 
x+ ∈ [0,1]n given by

x+
i =

∨
π( j)≥π(i)

x j, i ∈ [n], (2)

satisfies the constraints given in Theorem 3.1 and thus x+ ∈H(�,x), and, moreover x+ is the top element of H(�,x), x+ =
x� whenever π(n) > 0.

Observe that if π(n) = 0 then the value xn has no influence on the survival function h�,x , and then, if x+
n �= 1, clearly x+

cannot be a top element of H(�,x).
Note that if 1 = π(1) > π(2) > · · · > π(n) then

x+
i =

i∨
j=1

x j .

If there are some ties, π( j) = π( j + 1), then

x+
i =

ki∨
j=1

x j for all i ∈ [n],

where ki = max{ j ∈ [n]| π( j) = π(i)}.
To see the fact that, if π(n) > 0, x+ is the top element of H(�,x) (i.e., x+ ∈ H(�,x), and for any y ∈ H(�,x) it holds 

y ≤ x+), suppose that there is y ∈H(�,x) not satisfying y ≤ x+ . This means that yi > x+
i for some i ∈ [n].

◦ Suppose first y1 > x+
1 . Then h�,y(y1) = 1 but h�,x(t) < 1 if t > x+

1 . This means that h�,x(y1) < 1 and thus y /∈ H(�,x).
◦ For the rest of the proof, suppose y1 ≤ x+

1 , . . . , yr ≤ x+
r and yr+1 > x+

r+1 for some r ∈ {1, . . . , n − 1}. Then h�,y(yr+1) =
π(r + 1) but

h�,x(yr+1) =max{π( j)| j > r + 1, x j ≥ yr+1}
≤max{π( j)| j > r + 1, x j > x+

r+1} < π(r + 1)

(with convention max ∅ = 0), and thus also now y /∈ H(�,x).

For a general possibility measure �, based on a permutation σ : [n] → [n] such that 1 = π(σ (1)) ≥ π(σ (2)) ≥ · · · ≥
π(σ (n)), they have introduced a score vector xσ ,+ ∈H(�,x), where

xσ ,+
i =

i∨
xσ ( j) i ∈ [n]. (3)
j=1
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Observe that σ is not unique whenever the range of π consists from less than n elements, i.e., if π(i) = π( j) for some 
i �= j. Then also the score vector xσ ,+ need not be uniquely determined by �, and hence it need not be the top element of 
H(�,x). As an example, consider again the greatest possibility measure μ∗ . Then any permutation σ satisfies π(σ (1)) ≥
π(σ (2)) ≥ · · · ≥ π(σ (n)). For n = 3 and x =

(
1
3 , 2

3 ,1
)

, it holds:

x(1 2 3),+ =
(

1

3
,

2

3
,1

)
= x,

x(1 3 2),+ =
(

1

3
,1,1

)
,

x(2 1 3),+ =
(

2

3
,

2

3
,1

)
,

x(2 3 1),+ =
(

2

3
,1,1

)
,

x(3 1 2),+ = (1,1,1) = xμ∗
,

x(3 2 1),+ = (1,1,1) = xμ∗
.

Coming back to x+ given by (2), note that this formula can be applied for any possibility measure � with a possibility 
distribution π . We have the next corollary of Theorem 3.1 and whose particular case when 1 = π(1) ≥ · · · ≥ π(n) was 
already discussed above.

Corollary 3.1. For x ∈ [0,1]n, define x+ by (2), i.e., x+
i = ∨

π( j)≥π(i)
x j . Then x+ ∈H(�,x). Moreover, x+ = x� is the top element of H(�,x)

whenever π(i) > 0 for any i ∈ [n].

Example 3.3. For k = 1, consider the Dirac measure δ1 and the score vector x = (a, 0, . . . , 0), a ∈ [0,1]. Then

x+ = x = (a,0, . . . ,0) but xδ1 = (a,1, . . . ,1).

Observe that π(n) = 0 in this case and that x+ is not a top element of H(δ1, x). On the other hand, considering the greatest 
possibility measure μ∗ we have

x+ = xμ∗ = (a, . . . ,a).

Recall that for μ∗ it holds π∗(1) = · · · = π∗(n) = 1 > 0, while for δ1 we have π(1) = 1 but π(2) = · · · = π(n) = 0. �
The next characterization of possibility measures is a modification of Theorem 1 (related to the Choquet integral) and 

Theorem 6 (related to the Sugeno integral) from Dubois and Rico paper [2], where no integral is applied, and thus a 
strengthening of the results of [2].

Theorem 3.2. Let μ ∈Mn be a capacity. Then the following are equivalent:

(i) μ is a possibility measure;
(ii) there is a permutation σ : [n] → [n] such that for any A ⊆ [n], (1A)σ ,+ ∈H(μ, 1A), where 1A is the characteristic function of A, 

1A(i) =
{

1 if i ∈ A

0 if i /∈ A
, and (1A)σ ,+ is given by (3), i.e.,

(1A)σ ,+(i) =
i∨

j=1

1A(σ ( j)).

Proof. The implication (i) ⇒ (ii) follows from Corollary 3.1.

Suppose that (ii) is valid and denote π(i) = μ({i}). Observe that, for any A ⊆ [n], hμ,1A (t) =
{

1 if t = 0

μ(A) else
. Fix k ∈ [n]

and put Ak = {k}. Then

(1Ak )
σ ,+ = 1Bk , where Bk = {i ∈ [n]|σ−1(k) ≤ i},

and hence

π(k) = μ(Ak) = μ(Bk) = μ({i ∈ [n]|σ−1(k) ≤ i}).
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For an arbitrary A ⊆ [n], |A| > 1, it holds

(1A)σ ,+ = 1B , where B =
{

i ∈ [n]
∣∣∣ ∨

k∈A

σ−1(k) ≤ i

}
.

Let k0 ∈ A be such that σ−1(k0) = ∨
k∈A

σ−1(k). Then π(k0) = ∨
k∈A

π(k) and B = Bk0 . It follows that

μ(A) = μ(B) = μ(Bk0) = π(k0) =
∨
k∈A

π(k),

i.e., μ is a possibility measure and π is the corresponding possibility distribution. �
Example 3.4.

(i) Consider the possibility measure � on [3] from Example 3.1. For the permutation σ = σ−1 = (2 1 3) we have:

1A (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1)

1A
σ ,+ (0,0,0), (0,1,1), (1,1,1), (0,0,1), (1,1,1), (0,1,1), (1,1,1), (1,1,1)

.

In all 8 cases it holds h�,1A = h�,(1A)σ ,+ . Note that if 1A = (e1, e2, e3) ∈ {0, 1}3 then

1σ ,+
A = (e2, e1 ∨ e2, e1 ∨ e2 ∨ e3).

(ii) For n = 3, define a capacity μ ∈M3, μ(A) =
{

1 if cardA > 1

0 otherwise
. For A = {1}, hμ,1A (t) =

{
1 if t = 0

0 otherwise
.

On the other hand, for any ternary permutation σ such that σ(3) = 3,

hμ,(1A)σ ,+(t) = 1 for all t ∈ [0,1].
Similarly, if σ(3) �= 3, the property (ii) in Theorem 3.2 is violated. Obviously, the considered capacity μ is not a possi-
bility measure. �

4. Necessity measures and equality of survival functions

For any capacity μ ∈Mn , for its dual capacity μd ∈Mn it holds, for any x ∈ [0,1]n ,

hμd,x(t) = μd({i ∈ [n]| xi ≥ t}) = 1 − μ({ j ∈ [n]| x j < t}).
Thus hμd,x = hμd,y for some y ∈ [0,1]n if and only if

μ({ j ∈ [n]| x j < t}) = μ({i ∈ [n]| yi < t}) for any t ∈ [0,1],
or, equivalently,

μ({ j ∈ [n]|1 − x j > u}) = μ({i ∈ [n]|1 − yi > u}) for any u ∈ [0,1].
On the other hand, we have, for any t ∈]0, 1],

hμ,1−x(t) = μ({i |1 − xi ≥ t}) = inf{μ({i |1 − xi > u})| u ∈ [0, t [ }.
These facts prove the next result.

Proposition 4.1. For any capacity μ ∈Mn and score vector x ∈ [0,1]n, it holds the next equality

1 −H(μ,x) = H(μd,1 − x), (4)

where 1 −H(μ,x) = {1 − y| y ∈H(μ,x)}.

The equality (4) allows to rewrite all results introduced in Section 3 for possibility measures for the case when necessity 
measures are considered.
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Fig. 2. Illustration of constructing hN,x .

Let N ∈Mn be a necessity measure related to a possibility distribution π , and let x ∈ [0,1]n . Then the next results hold.

Theorem 4.1. The survival function hN,x : [0,1] → [0,1] is given by

hN,x(t) = 1 −
∨
xi<t

π(i) (5)

and then hN,x(t) = 0 = w1 for any t ∈]v1, v0], where v0 = 1, v1 =∧
π(i)=1−w1

xi = ∧
π(i)=1

xi . Note that if v1 = 1 then hN,x > 0 for all t ∈ [0,1].
Next, put w2 = 1 − ∨

xi<t1

π(i) and v2 =∧
π(i)=1−w2

xi . Then

• either w2 = 1 and then hN,x(t) = 1 for any t ∈ [0, v1],
• or w2 < 1 then hN,x(t) = w2 for any t ∈]v2, v1].

By induction, we have

• hN,x(t) = wk for any t ∈]vk, vk−1] for k = 1, . . . , r, and
• hN,x(t) = 1 for any t ∈ [0, vr],

where wk = 1 −∨
xi<vk−1

π(i), and � either wk = 1, and then r = k − 1,

� or wk < 1, and then vk =
∧

π(i)=1−wk

xi .

The construction of hN,x (based on π, x from Example 3.1) is illustrated in Fig. 2.

Theorem 4.2. Under the notation of Theorem 4.1, y ∈ H(N,x) if and only if 
∧

π(i)=1−w j

yi = v j and yi ≥ v j whenever π(i) > 1 −
w j+1 for all j = 1, . . . , r. The set H(N,x) is a lower semi-lattice with the bottom element xN given by

(xN)i =
{

w j whenever 1 − w j ≥ π(i) > 1 − w j+1, j = 1, . . . , r

0 whenever π(i) = 0,

for i = 1, . . . , n.

Example 4.1.

(i) Dirac measures are simultaneously possibility and necessity measures. Thus, for any k ∈ [n] and x ∈ [0,1]n, H(δk, x) is 
a lattice with the top element xδk = (1, . . . , xk, 1, . . . , 1) and the bottom element xδk = (0, . . . , xk, 0, . . . , 0). Note that

H(δk,x) = {y ∈ [0,1]n| yk = xk},
and it is a convex set.

(ii) The smallest capacity μ∗ ∈Mn is a necessity measure and

H(μ∗,x) =
{

y ∈ [0,1]n
∣∣∣ n∧

yi =
n∧

xi

}
.

i=1 i=1
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Obviously, its bottom element is xμ∗ =
(

n∧
i=1

xi, . . . ,
n∧

i=1
xi

)
, but it has no top element whenever x �= (1, . . . , 1). On the 

other hand, the lower semi-lattice H(μ∗, x) has n maximal elements whenever x �= (1, . . . , 1). �
Due to Theorem 4.2, we see that for any score vector x ∈ [0,1]n and any necessity measure N related to a possibility 

distribution π , the vector x− introduced by Dubois and Rico [2] by

x−
i =

∧
π( j)≥π(i)

x j, i ∈ [n], (6)

belongs to the class H(N,x).
Similarly, if σ : [n] → [n] is a permutation such that π(σ (1)) ≥ π(σ (2)) ≥ · · · ≥ π(σ (n)), then the vector xσ ,− given by

xσ ,−
i =

i∧
j=1

xσ ( j), i ∈ [n], (7)

belongs to H(N,x).
Based on Corollary 3.1, we have also the next result.

Theorem 4.3. Let N be a necessity measure related to a possibility distribution π such that π(i) > 0 for all i ∈ [n]. Then, for any score 
vector x ∈ [0,1]n, the vector x− given by (6) is the bottom element of H(N,x), i.e., x− = xN .

Finally, based on Theorem 3.2, we introduce a new characterization of necessity measures.

Theorem 4.4. Let μ ∈Mn be a capacity. Then the following are equivalent:

(i) μ is a necessity measure;
(ii) there is a permutation σ : [n] → [n] such that for any A ⊆ [n], (1A)σ ,−∈ H(μ, 1A), where (1A)σ ,− is given by (7), i.e., for i ∈ [n]

(1A)σ ,−(i) =
i∧

j=1

1A(σ ( j)).

5. Concluding remarks

We have discussed the equality of survival functions hμ,x = hμ,y for particular capacities μ, namely for possibility and 
necessity measures related to a possibility distribution π . Our results generalize some results of Dubois and Rico [2] focused 
on the study of the equality of Choquet integrals Ch(μ, x) = Ch(μ, y) and of Sugeno integrals Su(μ, x) = Su(μ, y). Our 
approach, based on the equality of survival functions, ensures the equality I(μ, x) = I(μ, y) for an arbitrary universal integral 
I acting on [0,1], compare [6]. As a by-product, we have obtained an alternative characterization of possibility and necessity 
measures. We expect the generalization of our results to domains where the interval [0,1] is replaced by some other ordered 
structure, for example a bounded distributive lattice L. In particular, when L is a finite bounded chain, then possibility and 
necessity measure can be easily introduced and studied by means of approaches exploited in this paper, and several results 
introduced here can be just copied. Moreover, we aim to study some other particular classes of capacities from Mn in a 
way similar to the presented study of possibility and necessity measures.
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