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Abstract: In this note, we discuss when the concave integral coincides with the pan- integral with1

respect to the standard arithmetic operations + and ·. The subadditivity of the underlying monotone2

measure is one sufficient condition for this equality. We show also another sufficient condition, which,3

in the case of finite spaces, is necessary, too. Some convergence results concerning pan-integrals are4

also included.5
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1. Introduction7

Integrals play a prominent role in almost any area dealing with quantitative information, varying8

from physics to sociology, including economy or engineering, but also many intelligent systems.9

The standard calculus is based on the Riemann integral [27]. Note that Riemann has generalized10

the earlier approaches known from antic Greece, and he has completed the ideas originated by11

Newton, Leibniz, Cauchy and others. Lebesque [11] has further generalized this integral, working with12

sigma-additive measures, and thus he has enabled the development of many other theories, first of all13

the Kolmogorovian probability theory [10]. Even in Kolmogorov era, there were ideas of integrating14

some particular non-additive measures, especially outer and inner measures, see [32]. These efforts15

were completed by the introduction of the Choquet integral [3], which for sigma-additive measures16

coincides with the Lebesgue integral. Further development of integrals based on monotone but non17

necessarily additive measures was initiated first of all by needs of economy, multicriteria decision18

support, psychology, sociology, etc., i.e., by needs of branches where the phenomenon of interaction is19

crucial. Among these new types of integrals (based on monotone measures) recall Sugeno integral [29],20

Shilkret integral [28], pan-integral [35], and the concave integral introduced by Lehrer [12]. Note that21

there are successful efforts how to axiomatize some types of integrals, see, e.g. the concept of universal22

integrals from [8], or how to construct integrals, recall the decomposition integrals introduced in [5]. As23

already mentioned, the Choquet integral generalizes the Lebesgue integral, i.e., for any sigma-additive24

measure µ these integrals coincide. Similarly, when considering a sigma-additive measure µ, the25

Lebesgue integral coincides with the pan-integral, as well as with the concave integral. Note that26

this is not the case of the Shilkret integral neither of the Sugeno integral. Recall also that all three27

earlier mentioned integrals (Choquet, pan and concave integrals) are decomposition integrals. namely,28

the Choquet integral is based on finite chains, the pan-integral is based on finite partition while the29

concave integral is related to arbitrary finite set systems, for more details see [5]. The aim of this paper30
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is a further discussion of the coincidence of integrals, whose starting point is the above mentioned fact31

that, if a sigma-additive measure mju is considered, the all four Lebesgue, Choquet, pan and concave32

integrals coincide. Obviously, for mju which is not sigma-additive, the Lebesgue integral is not defined,33

and the remaining three integrals are different, in general. Nevertheless, for some particular monotone34

measure mju, some of these integrals may coincide.35

Lehrer [12,13] discussed the relationship between the concave integral and the Choquet integral,36

and showed that these two integrals coincide if and only if the underlying capacity ν is convex (also37

known as supermodular). In [34] the order relationship between the pan-integral (with respect to38

the usual addition + and usual multiplication ·) and the Choquet integral was shown by using the39

subadditivity and superadditivity of monotone measures.40

We have recently discussed the relationship between the concave integral and the pan-integral on41

finite spaces [25]. We have introduced the concept of minimal atom of a monotone measure. By means42

of two important structure characteristics related to minimal atoms: minimal atoms disjoint property43

and subadditivity for minimal atoms, we have shown a necessary and sufficient condition ensuring that44

the concave integral coincides with the pan-integral on finite spaces. A research on coincidences of45

the Choquet integral and the pan-integral on finite space was made by using the minimal atom of46

monotone measure (see [24]).47

We pointed out that in the above-mentioned study we have only considered the case that the48

underlying space is finite. But our approach based on minimal atoms does not apply to infinite spaces,49

see [25].50

This paper will focus on the relationship between the concave integrals and pan-integrals on51

general spaces (not necessarily finite). We shall show that if the underlying monotone measure µ is52

subadditive, then the concave integral coincides with the pan-integral w.r.t. the usual addition + and53

usual multiplication ·.54

2. Preliminaries55

Let X be a nonempty set and A a σ-algebra of subsets of X. F+ denotes the class of all finite56

nonnegative real-valued measurable functions on the measurable space (X,A). Unless stated otherwise57

all the subsets mentioned are supposed to belong to A, and all the functions mentioned are supposed58

to belong to F+.59

Definition 1. ([34]) A monotone measure on A is an extended real valued set function µ : A → [0,+∞]60

satisfying the following conditions:61

(1) µ(∅) = 0; (vanishing at ∅)62

(2) µ(A) ≤ µ(B) whenever A ⊂ B and A, B ∈ F . (monotonicity)63

When µ is a monotone measure, the triple (X,A, µ) is called a monotone measure space ([15,26,64

34]). In some literature, such a monotone measure µ constrained by the boundary condition µ(X) = 165

is also called a capacity or a fuzzy measure or a nonadditive probability, etc..66

Let µ be a monotone measure on (X,A). µ is said to be67

(i) subadditive if µ(A ∪ B) ≤ µ(A) + µ(B) for any A, B ∈ A;68

(ii) superadditive if µ(A ∪ B) ≥ µ(A) + µ(B) for any A, B ∈ A such that A ∩ B = ∅ [4];69

(iii) supermodular if µ(A ∪ B) + µ(A ∩ B) ≥ µ(A) + µ(B) for any A, B ∈ A [4];70

(iv) continuous from below (resp. from above), if limn→∞ µ(En) = µ(E) whenever En ↗ E (resp.71

whenever En ↘ E and µ(E1) < ∞) ([6]).72

73

In our discussions we concern three types of nonlinear integrals, the Choquet integral, the concave74

integral and the pan-integral. We recall their definitions.75

We consider a given monotone measure space (X,A, µ), and let f ∈ F+, χA denote the indicator76

function of measurable set A.77
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The Choquet integral [3] (see also [4,26]) of f on X with respect to µ, is defined by

∫ Cho
f dµ =

∫ ∞

0
µ({x : f (x) ≥ t}) dt,

where the right side integral is the Riemann integral.78

Lehrer [13] introduced a new integral known as concave integral (see also [12,31]), as follows:79

The concave integral of f on X is defined by80

∫ cav
f dµ = sup

{ n

∑
i=1

λiµ(Ai) :
n

∑
i=1

λiχAi ≤ f ,

{Ai}n
i=1 ⊂ A, λi ≥ 0, n ∈ N

}
.

The concept of a pan-integral [34,35] involves two binary operations, the pan-addition ⊕ and81

pan-multiplication ⊗ of real numbers (see also [2,17,22,26,30,33,34]). In this paper we only consider82

the pan-integrals with respect to the usual addition + and usual multiplication ·. Note that the general83

case of pan-integrals is discussed in Concluding Remarks84

The pan-integral of f on X w.r.t. the usual addition + and usual multiplication · (in short,85

pan-integral), is given by86

∫ pan
f dµ = sup

{ n

∑
i=1

λiµ(Ai) :
n

∑
i=1

λiχAi ≤ f ,

{Ai}n
i=1 ⊂ A is a partition of X, λi ≥ 0, n ∈ N

}
.

All these integrals are covered by a resent concept of decomposition integrals by Even and Lehrer87

[5]88

Note that the pan-integral is related to finite partitions of X, the concave integral to any finite89

set systems of measurable subsets of X. The Choquet integral is based on chains of sets, it can be90

expressed in the following form:91

∫ Cho
f dµ = sup

{ n

∑
i=1

λiµ(Ai) :
n

∑
i=1

λiχAi ≤ f ,

{Ai}n
i=1 ⊂ A is a chain, λi ≥ 0, n ∈ N

}
.

Comparing above three definitions, it is obvious that for each f ∈ F+,92 ∫ cav
f dµ ≥

∫ pan
f dµ (2.1)

and ∫ cav
f dµ ≥

∫ Cho
f dµ. (2.2)

In general,
∫ cav f dµ 6=

∫ pan f dµ,
∫ cav f dµ 6=

∫ Cho f dµ.93

Example 2. Let X = N (the set of all positive integers). The monotone measure µ : 2N → [0, 1] is
defined by

µ(E) =

{
1 if |E| = ∞ and 1 ∈ E,

0 otherwise.

We take

f (x) =

{
2, if x = 1;
1, if x = 2, 3, . . . .
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Then
∫ cav f dµ = 2, and

∫ pan f dµ =
∫ Cho f dµ = 1. Thus,

∫ cav f dµ 6=
∫ pan f dµ,

∫ cav f dµ 6=
∫ Cho f dµ.94

Observe that the Choquet integral and the pan-integral are not comparable.95

Example 3. Let X = {1, 2},A = 2X , and the monotone measure µ be defined as µ(X) = 3, µ({1}) =
µ({2}) = 1, µ(∅) = 0. Let f (x) = x. Then

∫ Cho
f dµ = µ(X) + µ({2}) = 4

and ∫ pan
f dµ = max

(
µ(X), µ({1}) + 2µ({2})

)
= 3.

Thus, we have
∫ Cho f dµ >

∫ pan f dµ.96

Example 4. Let X = {1, 2},A = 2X, and the monotone measure µ be defined as µ(A) = 1 if A 6= ∅
and µ(∅) = 0. Let f (x) = x. Then

∫ Cho
f dµ = µ(X) + µ({2}) = 2

and ∫ pan
f dµ = max

(
µ(X), µ({1}) + 2µ({2})

)
= 3.

Thus,
∫ Cho f dµ <

∫ pan f dµ.97

The above examples indicate that any two of the three integrals do not coincide, in general. They98

are significantly different from each other.99

3. The main results100

We consider a given measurable space (X,A), and letM be the class of all monotone measures101

defined on (X,A).102

For the convenience of our discussion, we denote Chµ( f ) =
∫ Cho f dµ, Cavµ( f ) =

∫ cav f dµ and103

Panµ( f ) =
∫ pan f dµ.104

In [13] (see also [1,12,14]) the relationship between the the concave integral and the Choquet105

integral was discussed, as follows:106

Theorem 5. Given µ ∈ M. Then Cavµ ≡ Chµ, i.e., for each f ∈ F+,

∫ cav
f dµ =

∫ Cho
f dµ

if and only if µ is supermodular, i.e., for any A, B ∈ A

µ(A ∪ B) + µ(A ∩ B) ≥ µ(A) + µ(B).

The following results were shown in [34] (Theorem 10.7 and 10.8 in [34]).107

Theorem 6. Given µ ∈ M. Then108

(i) if µ is superadditive, then Panµ ≤ Chµ, i.e., for each f ∈ F+, Panµ( f ) ≤ Chµ( f );109

(ii) if µ is subadditive, then Panµ ≥ Chµ.110

Moreover, we have the following result (see also Mesiar et al. [? ]):111
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Theorem 7. Given µ ∈ M. If Panµ ≡ Chµ, i.e., for each f ∈ F+,

∫ pan
f dµ =

∫ Cho
f dµ,

then µ is superadditive.112

Proof. Observe that Chµ(χE) = µ(E) for any E ⊆ X and, thus for any A, B ⊆ X, A ∩ B = ∅, we113

have114

µ(A ∪ B) = Chµ(χA∪B) = Panµ(χA∪B)

= sup
{ k

∑
i=1

λi · µ(Di) | (Di)
k
i=1 is a disjoint system,

λ1, λ2, · · · , λk ≥ 0 and
k

∑
i=1

λiχAi ≤ χA∪B

}
≥ µ(A) + µ(B),

i.e., µ is superadditive. 2115

Remark 8. The converse of Theorem 7 may not be true. Observe that in Example 2, the monotone116

measure µ is superadditive, but
∫ Cho f dµ >

∫ pan f dµ.117

Now we present our main result.118

Theorem 9. Given µ ∈ M. If µ is subadditive, then Cavµ ≡ Panµ, i.e., for each f ∈ F+,∫ pan
f dµ =

∫ cav
f dµ.

Proof. It suffices to prove that
∫ pan f dµ ≥

∫ cav f dµ holds for any f ∈ F+. To prove this fact, it
suffices to prove that for any {Ai}N

i=1 ⊂ A and λi ≥ 0, i = 1, 2, . . . , N, there is a sequence of pairwise
disjoint subsets

{
Bj
}M

j=1 ⊂ A and a sequence of nonnegative numbers lj, j = 1, 2, . . . , M such that

N

∑
i=1

λiχAi =
M

∑
j=1

ljχBj (3.3)

and
N

∑
i=1

λiµ(Ai) ≤
M

∑
j=1

ljµ(Bj). (3.4)

For N = 2, observe that

λ1χA1 + λ2χA2 = λ1χA1−(A1∩A2)
+ λ2χA2−(A1∩A2)

+ (λ1 + λ2)χA1∩A2 .

If we let
l1 = λ1, l2 = λ2, l3 = λ1 + λ2

and
B1 = A1 − (A1 ∩ A2), B2 = A2 − (A1 ∩ A2), B3 = A1 ∩ A2,
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then
2

∑
i=1

λiχAi =
3

∑
j=1

ljχBj .

Moreover, thanks to the subadditivity of µ, we have119

λ1µ(A1) + λ2µ(A2)

≤ λ1 (µ(B1) + µ(B3)) + λ2 (µ(B2) + µ(B3))

= l1µ(B1) + l2µ(B2) + l3µ(B3).

Now suppose that (3.3) and (3.4) hold for N = k, we need to verify that they are also true for N = k + 1.120

For ∑k+1
i=1 λiχAi , we have121

k+1

∑
i=1

λiχAi =
k

∑
i=1

λiχAi + λk+1χAk+1

=
N
′

∑
j=1

αjχCj + λk+1χAk+1 ,

where Cj, j = 1, 2, . . . , N
′

are pairwise disjoint subsets of X, αj ≥ 0 with ∑k
i=1 λiµ(Ai) ≤ ∑N

′

j=1 αjµ(Cj).
Observe the facts that

Cj =
(
Cj − (Cj ∩ Ak+1)

)⋃
(Cj ∩ Ak+1)

and

Ak+1 =

Ak+1 −
N
′⋃

j=1

(Ak+1 ∩ Cj)

⋃ N
′⋃

j=1

(Ak+1 ∩ Cj)

 .

If we let122

Bj = Cj − (Cj ∩ Ak+1), j = 1, 2, . . . , N
′

BN′+j = Cj ∩ Ak+1, j = 1, 2, . . . , N
′
,

B2N′+1 = Ak+1 −
N
′⋃

j=1

(Ak+1 ∩ Cj)

and let
lj = αj, lN′+j = αj + λk+1, j = 1, 2, . . . , N

′
, l2N′+1 = λk+1,

then
k+1

∑
i=1

λiχAi =
2N
′
+1

∑
j=1

ljχBj
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and123

k+1

∑
i=1

λiµ(Ai)

≤
N
′

∑
j=1

αjµ(Cj) + λk+1µ(Ak+1)

≤
N
′

∑
j=1

αj

(
µ(Bj) + µ(BN′+j)

)

+λk+1

µ(B2N′+1) +
N
′

∑
j=1

µ(BN′+j)


=

N
′

∑
j=1

αjµ(Bj) +
N
′

∑
j=1

(αj + λk+1)µ(BN′+j) + λk+1µ(B2N′+1)

=
2N
′
+1

∑
j=1

ljµ(Bj). 2

The following example shows that the subadditivity in Theorem 9 is not a necessary condition.124

Example 10. Let X = [0, 1] and A = B(X) (the Borel σ-algebra over X). Let a monotone measure µ be
defined as

µ(E) =

{
1 if E = X,

0 if E 6= X.

Then, for all f ∈ F+ ∫ cav
f dµ =

∫ pan
f dµ =

∫ Cho
f dµ = inf{ f (x)|x ∈ X}.

But µ is not subadditive. Indeed, for any Borel measurable proper subset E of A, we have µ(E ∪ Ec) =125

µ(X) = 1 > 0 = µ(E) + µ(Ec).126

The next theorem gives another sufficient condition ensuring the coincidence of the pan-integral127

and concave integral, now covering Example 10, too.128

Theorem 11. Let µ be a monotone measure on (X,A). If there is a countable partition {Et | t ∈ T} ⊂ A of X,
so that et = µ(Et), t ∈ T, and

µ(E) ≤ ∑
t∈T,Et⊂E

et, ∀E ∈ A,

then the concave integral coincides with the pan-integral with respect to the usual arithmetic operation “ + ”129

and “ · ”.130

Proof. It is not difficult to check that under the above constraints on µ, for any f ∈ F+ it holds∫ cav
f dµ =

∫ pan
f dµ = ∑

t∈T
et · inf{ f (x)|x ∈ Et}. 2
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Observe that if X is a finite space, then the constraints on µ given in Theorem 11 are also necessary,
see [25]. Moreover, consider a lower probability µ on a finite set X = {1, 2, . . . , n} in the sense of de
Finetti [19], i.e., there is partition {E1, E2, · · · , Er} of X such that

µ(E1) = e1, µ(E2) = e2, · · · , µ(Er) = er, e1 + e2, · · · , er = 1,

and for any E ⊂ X it holds
µ(E) = ∑

1≤i≤r,Ei⊂E
ei.

Note that µ is then a belief measure [34] which is k-additive [7]. Clearly, µ satisfies the constraints of
Theorem 11, and thus Cavµ = Panµ. Moreover, both these integrals coincide in this case also with the
Choquet integral, i.e., Chµ = Cavµ = Panµ. Note that the case when µ is σ-additive (i.e., a discrete
probability measure on X) is a particular subcase of the mentioned class of lower probabilities related
to the finest partition of X into the singletons, i.e., when E1 = {1}, E2 = {2}, · · · , En = {n}. Another
particular subclass of de Finetti’s lower probabilities, known from the game theory, is formed by the
unanimity games. In that case, for a non-empty subset E of X, we define a monotone measure µE on X
as

µE(A) =

{
1 if E ⊂ A,

0 otherwise.

and then for all three considered integrals their equal output is min{ f (i) | i ∈ E}.131

4. Concluding Remarks132

We have proved the coincidence of the concave integral and the pan-integral w.r.t. the usual133

addition + and usual multiplication · on general spaces (not necessarily finite spaces) by considering the134

subadditivity of related monotone measures. However, the subadditivity condition is only sufficient,135

but not necessary (see Example 10). We have shown also some other sufficient conditions ensuring the136

discussed coincidence Cavµ = Panµ, including Theorem 11 which in the case of a finite universe X137

gives also a necessary condition. In general, a complete characterization of capacities µ ensuring the138

coincidence Cavµ = Panµ is a challenging open problem.139

Note that the pan-integral [34,35] was established based on a special type of commutative isotonic140

semiring (R+,⊕,⊗). A related concept of generalizing Lebesgue integral based on a generalized ring141

(R+,⊕,⊗) (the commutativity of ⊗ is not required) was proposed and discussed in [36]. On the142

other hand, Mesiar et al. introduced pseudo-concave integrals [20] (see also [21]) and pseudo-concave143

Benvenuti integrals [9] by means of the pseudo-addition ⊕ and pseudo-multiplication ⊗ of reals based144

on a generalized ring (R+,⊕,⊗). Similarly, Choquet-like integrals [18] are based on a particular ring145

(R+,⊕,⊗).146

In further research, we shall investigate the relationships among these four integrals on a fixed147

generalized ring (R+,⊕,⊗).148
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