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Abstract The connection between probability and g-integral is investigated. The purposes
of this paper are mainly to introduce the concept g-expectation with general kernels on a
g-semiring, and then extend the Jensen type inequality in general form, thus refining the
previous results in probability and measure theory.
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1 Introduction

The theory of pseudo-analysis, as a generalization of the classical analysis, has obtained a
growing interest in many areas such as probability and statistics, measure theory, partial dif-
ferential equations, optimization, control theory, decision making, knowledge based systems
[3,8,9,17,22–24,27,28,32,34,35]. For example, in 2013, Bede and O’Regan [3] proposed
the theory of pseudo-linear operators which advances the theory of aggregation operators
in knowledge based systems. Some other applications of pseudo-analysis can be found in
[8,9,17,22–24,27,28,32,34,35].
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Inequalities are powerful tools in many areas of mathematics, especially in information
sciences, engineering, probability theory and economics. For example, in the expression of the
relationship between convergence concepts in probability theory, we always use probabilistic
inequalities. Therefore, inequalities should be analyzed and consideredwhen using the theory
of pseudo-analysis. Recently, there were obtained generalizations of inequalities based on the
theory of pseudo-analysis [1,2,10,29–31]. The classical Jensen inequality [16] is one of the
most important inequalities for convex functions in mathematics, especially in mathematical
engineering, information sciences, probability theory and stochastic processes.

Theorem 1.1 Let I ⊂ R be a real interval and (�,F, μ) be a finite measure space and
X : � → I be a μ-integrable function. Then the classical Jensen inequality

1

μ (�)

∫

�

� ◦ Xdμ � �

⎛
⎝ 1

μ (�)

∫

�

Xdμ

⎞
⎠

holds for every convex function � on I .
In particular, if μ = P, P is the probability measure, then the classical Jensen inequality

E [� (X)] ≥ � (E [X ]) (1.1)

holds.

The study of this inequality is important in many fields, such as pseudo-analysis [29,
31], probability theory and statistics [18,19], generalized measure theory [30], multivariate
analysis [14], stochastic processes [7], Markov diffusion processes [15], information theory
[11] and etc. In 2010, generalizations of the Jensen integral inequality for pseudo-integral on
two cases of the real semiring with pseudo-operations was proposed by Pap and Štajner in
[29]. In probability theory and statistics, Jensen’s inequality for medians and for multivariate
medians was proposed by Merkle [18,19]. In 2014, Terán [33] extended Jensen’s inequality
to metric spaces endowed with a convex combination operation. He also proposed some
applications of this inequality for both random elements and random sets. In multivariate
analysis, a refined Jensen’s inequality in Hilbert spaces and empirical approximations were
proved by [14]. In generalized measure context, Román-Flores et al. [30] studied the Jensen
type inequality for Sugeno integral. Some new generalizations of Jensen type inequality for
generalized Sugeno integral can be found as the result of Kaluszka et al. [10] in 2014. In
matrix-valuedmeasures, Farenick and Zhou obtained a Jensen’s inequality relative to matrix-
valued measures [6]. In Markov diffusion process, Lerner [15] proved a Jensen’s inequality
for the entropy functional of a Markov diffusion process.

Let (�1,F1, μ1) and (�2,F2, μ2) be two finite measure spaces. Define two operators

Ak,�2
id [X ] (ω1) := 1

K�2
id (ω1)

∫

�2

k (ω1, ω2) X (ω2) dμ2 (ω2), (1.2)

A
k,�2
id [X ] (ω1) :=

∫

�2

k (ω1, ω2) X (ω2) dμ2 (ω2), (1.3)

where k : �1 × �2 → R
+ is measurable and non-negative kernel, X is measurable function

on �2,

K�2
id (ω1) :=

∫

�2

k (ω1, ω2) dμ2 (ω2), ω1 ∈ �1.
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In the following theorems, we propose general versions of Jensen inequality in probability
and measure theory.

Theorem 1.2 Let (�1,F1, μ1) and (�2,F2, μ2) be two finite measure spaces and I be a
finite or infinite open interval and let� be a differentiable function on a finite or infinite open
interval I containing zero. Let X : �2 → I be a random variable such that Ak,�2

id [X ] (ω1) ∈
I for each fixed ω1 ∈ �1. If � is convex, then inequality

Ak,�2
id [� (X)] (ω1) � �

[
Ak,�2
id [X ] (ω1)

] KG
id(ω1)

K�2
id (ω1)

+ KGc

id (ω1)

K�2
id (ω1)

(
Ak,�2
id [X ] (ω1)�

′ (Ak,�2
id [X ] (ω1)

)
+ � (0)

)

holds for each fixed ω1 ∈ �1 where G = {ω2 ∈ �2 : X (ω2) �= 0} and Ak,�2
id is defined by

(1.2).
In particular, taking k (ω1, ω2) ≡ 1, we get the inequality

∫

�2

� (X) dμ2 � �

⎛
⎜⎝ 1

μ2 (�2)

∫

�2

Xdμ2

⎞
⎟⎠ μ2 ({ω2 : X (ω2) �= 0})

+
⎡
⎢⎣

⎛
⎜⎝ 1

μ2 (�2)

∫

�2

Xdμ2

⎞
⎟⎠� ′

⎛
⎜⎝ 1

μ2 (�)

∫

�2

Xdμ2

⎞
⎟⎠ + � (0)

⎤
⎥⎦ μ2 ({ω2 : X (ω2) = 0}) .

(1.4)

Proof See Appendix A, proof of Theorem 1.2.

Remark 1.3 (I) If μ2 ({ω2 : X (ω2) = 0}) = 0, then (1.4) reduces to Jensen’s inequality

1

μ2 (�2)

∫

�2

� (X) dμ2 � �

⎛
⎜⎝ 1

μ2 (�2)

∫

�2

Xdμ2

⎞
⎟⎠ .

(II) If μ2 = P, P is the probability measure, and k (ω1, ω2) ≡ 1 in Theorem 1.2, then we get

E [� (X)] ≥ � (E [X ])P (X �= 0) + (
E [X ]� ′ (E [X ]) + � (0)

)
P (X = 0) , (1.5)

and if P (X = 0) = 0, we get the classical Jensen inequality. If P (X = 0) > 0 and

� (0) ≥ � (E [X ]) − E [X ]� ′ (E [X ])

for every convex and differentiable function �, then inequality (1.5) is a refinement of
the classical Jensen inequality.

In a similar way we can prove the following theorem.

Theorem 1.4 Let (�1,F1, μ1) and (�2,F2, μ2) be two finite measure spaces and I be a
finite or infinite open interval and let� be a differentiable function on a finite or infinite open
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interval I containing zero. Let X : �2 → I be a random variable such thatAk,�2
id [X ] (ω1) ∈

I for each fixed ω1 ∈ �1. If � is convex, then inequality

A
k,�2
id (� (X)) � �

(
A
k,�2
id [X ]

)
A
k,G
id [1]

+ � ′ (Ak,�2
id [X ]

)
A
k,�2
id [X ]

(
1 − A

k,G
id [1]

)
+ � (0)Ak,Gc

id [1] .

holds for each fixed ω1 ∈ �1 where G = {ω2 ∈ �2 : X (ω2) �= 0} and A
k,�2
id is defined by

(1.3).

Proof See Appendix A, proof of Theorem 1.4.

The purposes of this paper are mainly to introduce the concept of pseudo-expectation with
general kernels, and then extend the Jensen type inequality in general form, thus generalizing
and improving the previous results in literature [29].

The rest of the paper is organized as follows. Some notions and definitions that are
useful in this paper are given in Sect. 2. In this section, we also introduce the concept of
pseudo-expectation with general kernels in Definition 2.4. In next section, we establish some
refinements of Jensen’s inequality in general form. Finally, some concluding remarks are
given.

2 Pseudo-expectation with general kernels

In this section, we first recall some well known results of pseudo-operations, pseudo-analysis
and pseudo-additive measures and integrals [1,2,23,29]. Then we introduce the concept of
pseudo-expectation with general kernels in Definition 2.4.

Let [a, b] be a closed (in some cases can be considered semiclosed) subinterval of
[−∞,∞]. The full order on [a, b] will be denoted by �.

Definition 2.1 A binary operation ⊕ on [a, b] is pseudo-addition if it is commutative, non-
decreasing (with respect to � ), continuous, associative, and with a zero (neutral) element
different from b and denoted by 0. Let [a, b]+ = {x | x ∈ [a, b] , 0 � x}. A binary operation
 on [a, b] is pseudo-multiplication if it is commutative, positively non-decreasing, i.e.,
x � y implies x  z � y  z for all z ∈ [a, b]+, associative and with a unit element
1 ∈ [a, b]+, i.e., for each x ∈ [a, b] , 1  x = x . We assume also 0  x = 0 and that  is
distributive over ⊕, i.e.,

x  (y ⊕ z) = (x  y) ⊕ (x  z)

The structure ([a, b] ,⊕,) is a semiring (see [13]).

Let � be a non-empty set. Let A be a σ -algebra of subsets of a set �.

Definition 2.2 [27] A set functionm : A → [a, b]+ (or semiclosed interval) is a⊕-measure
if there holds:

(i) m (φ) = 0 (if ⊕ is not idempotent);
(ii) m is σ -⊕-(decomposable) measure, i.e.

m

( ∞⋃
i=1

Ai

)
=

∞⊕
i=1

m(Ai )
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holds for any sequence {Ai }i∈N of pairwise disjoint sets fromA. If⊕ is idempotent operation
condition (i) can be left out and sets from sequence {Ai } do not have to be pairwise disjoint.

We consider an important case of pseudo-integrals.

Definition 2.3 First case of pseudo-integrals is when pseudo-operations are generated by a
monotone bijection g : [a, b] → [0,∞] , i.e., pseudo-operations are given with

x ⊕ y = g−1 (g (x) + g (y)) , x  y = g−1 (g (x) g (y)) .

Then the pseudo-integral for a function X : � → [a, b] reduces to the g-integral [23,26],

A�⊕, [X ] :=
⊕∫

�

Xdm = g−1

⎛
⎝

∫

�

(g ◦ X) d (g ◦ m)

⎞
⎠ ,

where the integral applied on the right side is the standard Lebesgue integral. In special case,
when m = g−1 ◦ μ, μ is the standard Lebesgue measure, then we obtain

⊕∫

�

Xdm = g−1

⎛
⎝

∫

�

g (X (ω)) dμ (ω)

⎞
⎠ .

When m = g−1 ◦ P, P is the probability measure, then

E
�⊕ [X ] := g−1

⎛
⎝

∫

�

(g ◦ X) dP

⎞
⎠ = g−1 (E [g (X)]) .

More on this structure as well as on corresponding measures and integrals can be found
in [23,26].

Definition 2.4 Let a generator g be the same as in Definition 2.3. Let (�1,F1) and (�2,F2)

be two measurable spaces and X : �2 → [a, b] be a measurable function. Then for any
σ -⊕-measure μ2 and for each fixed ω1 ∈ �1, we define an operator A

k,�2⊕, ,

A
k,�2⊕, [X ] (ω1) :=

⊕∫

�2

(k (ω1, ω2)  X (ω2))  dμ2 (ω2)

= g−1

⎛
⎜⎝

∫

�2

g (k (ω1, ω2)  X (ω2)) d (g ◦ μ2 (ω2))

⎞
⎟⎠ ,

by using Definition 2.3, where k : �1 × �2 → [a, b] is measurable kernel. In particular,
when μ2 = g−1 ◦ P, P is the probability measure, then we define

E
k,�2⊕, [X ] (ω1) := E

�2⊕ [k (ω1, ω2)  X (ω2)] .

In Definition 2.4, if g = id (i.e., g(x) = x for all x), then we define Ak,�2⊕, [.] = A
k,�2
id [.] .
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3 Main results: Some refinements of Jensen’s inequality

In this section, we establish some refinements of Jensen’s inequality in general form.

Theorem 3.1 Let (�1,F1) and (�2,F2) be two measurable spaces and X : �2 → [a, b]
be a measurable function, � : [a, b] → [a, b] be a convex and nonincreasing function and
let a generator g : [a, b] → [0,∞] of the pseudo-addition ⊕ and the pseudo-multiplication
 be a convex and increasing function such that g (X (ω2)) ∈ (a, b) for any ω2 ∈ �2 and
g ◦ � ◦ g−1 is a differentiable function. If Ak,�2⊕, [X ] (ω1) ∈ (a, b) for each fixed ω1 ∈ �1,

then for any σ -⊕-measure μ2 , we have

A
k,�2⊕, [�(X)] (ω1) ⊕

(
β  A

k,�2⊕, [X ] (ω1)  A
k,G
⊕,

[
g−1 (1)

]
(ω1)

)

�
[
�

(
A
k,�2⊕, [X ] (ω1)

)


(
A
k,G
⊕,

[
g−1 (1)

]
(ω1)

)]

⊕
([

β  A
k,�2⊕, [X ] (ω1)

]
⊕

[
�

(
g−1 (0)

)  A
k,Gc

⊕,
[
g−1 (1)

]
(ω1)

])
,

where G = {ω2 ∈ �2 : (g ◦ X) (ω2) �= 0} and β = g−1[(g ◦ � ◦ g−1)′(g ◦ A
k,�2⊕, [X ]

(ω1))] .

Proof Let � = g ◦ � ◦ g−1. It is easy to see that � is a convex function. Apply Theorem
1.4 with � and replace X (ω2), k (ω1, ω2) and μ2 (ω2) by g ◦ X (ω2) , g ◦ k (ω1, ω2) and
g ◦ μ2 (ω2) , respectively. Then

∫

�2

g ◦ k (ω1, ω2) g ◦ � ◦ X (ω2) d (g ◦ μ2 (ω2))

� g ◦ � ◦ g−1

⎛
⎜⎝

∫

�2

g ◦ k (ω1, ω2) g ◦ X (ω2) d (g ◦ μ2 (ω2))

⎞
⎟⎠

×
∫

G

g ◦ k (ω1, ω2) d (g ◦ μ2 (ω2))

+ � ′

⎛
⎜⎝

∫

�2

g ◦ k (ω1, ω2) g ◦ X (ω2) d (g ◦ μ2 (ω2))

⎞
⎟⎠

×
∫

�2

g ◦ k (ω1, ω2) g ◦ X (ω2) d (g ◦ μ2 (ω2))

− � ′

⎛
⎜⎝

∫

�2

g ◦ k (ω1, ω2) g ◦ X (ω2) d (g ◦ μ2 (ω2))

⎞
⎟⎠

×
∫

�2

g ◦ k (ω1, ω2) g ◦ X (ω2) d (g ◦ μ2 (ω2))

×
∫

G

g ◦ k (ω1, ω2) d (g ◦ μ2 (ω2)) + � (0)
∫

Gc

g ◦ k (ω1, ω2) d (g ◦ μ2 (ω2)) .
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So,

∫

�2

g (k (ω1, ω2)  �(X (ω2))) d (g ◦ μ2 (ω2))

� g ◦ � ◦ g−1

⎛
⎜⎝

∫

�2

g (k (ω1, ω2)  X (ω2)) d (g ◦ μ2 (ω2))

⎞
⎟⎠

×
∫

G

g ◦ k (ω1, ω2) d (g ◦ μ2 (ω2))

+ � ′

⎛
⎜⎝

∫

�2

g (k (ω1, ω2)  X (ω2)) d (g ◦ μ2 (ω2))

⎞
⎟⎠

×
∫

�2

g (k (ω1, ω2)  X (ω2)) d (g ◦ μ2 (ω2))

− � ′

⎛
⎜⎝

∫

�2

g (k (ω1, ω2)  X (ω2)) d (g ◦ μ2 (ω2))

⎞
⎟⎠

×
∫

�2

g (k (ω1, ω2)  X (ω2)) d (g ◦ μ2 (ω2))

×
∫

G

g ◦ k (ω1, ω2) d (g ◦ μ2 (ω2)) + � (0)
∫

Gc

g ◦ k (ω1, ω2) d (g ◦ μ2 (ω2)) .

Then
∫

�2

g (k (ω1, ω2)  �(X (ω2))) d (g ◦ μ2 (ω2))

+ � ′

⎛
⎜⎝

∫

�2

g (k (ω1, ω2)  X (ω2)) d (g ◦ μ2 (ω2))

⎞
⎟⎠

×
∫

�2

g (k (ω1, ω2)  X (ω2)) d (g ◦ μ2 (ω2))

×
∫

G

g ◦ k (ω1, ω2) d (g ◦ μ2 (ω2))

� g ◦ � ◦ g−1

⎛
⎜⎝

∫

�2

g ◦ (k (ω1, ω2)  X (ω2)) d (g ◦ μ2 (ω2))

⎞
⎟⎠

×
∫

G

g ◦ k (ω1, ω2) d (g ◦ μ2 (ω2))
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+ � ′

⎛
⎜⎝

∫

�2

g (k (ω1, ω2)  X (ω2)) d (g ◦ μ2 (ω2))

⎞
⎟⎠

×
∫

�2

g (k (ω1, ω2)  X (ω2)) d (g ◦ μ2 (ω2))

+� (0)
∫

Gc

g ◦ k (ω1, ω2) d (g ◦ μ2 (ω2)) .

Since g is an increasing function, its inverse g−1 is also an increasing function and we have

g−1

⎛
⎜⎝

∫

�2

g (k (ω1, ω2)  �(X (ω2))) d (g ◦ μ2 (ω2))

⎞
⎟⎠

⊕
⎡
⎢⎣g−1

⎛
⎜⎝� ′

⎛
⎜⎝

∫

�2

g (k (ω1, ω2)  X (ω2)) d (g ◦ μ2 (ω2))

⎞
⎟⎠

⎞
⎟⎠

 g−1

⎛
⎜⎝

∫

�2

g (k (ω1, ω2)  X (ω2)) d (g ◦ μ2 (ω2))

⎞
⎟⎠

 g−1

⎛
⎝

∫

G

g ◦ k (ω1, ω2) d (g ◦ μ2 (ω2))

⎞
⎠

⎤
⎦

�

⎡
⎢⎣� ◦ g−1

⎛
⎜⎝

∫

�2

g ◦ (k (ω1, ω2)  X (ω2)) d (g ◦ μ2 (ω2))

⎞
⎟⎠

 g−1

⎛
⎝

∫

G

g ◦ k (ω1, ω2) d (g ◦ μ2 (ω2))

⎞
⎠

⎤
⎦

⊕
⎡
⎢⎣g−1

⎛
⎜⎝� ′

⎛
⎜⎝

∫

�2

g (k (ω1, ω2)  X (ω2)) d (g ◦ μ2 (ω2))

⎞
⎟⎠

⎞
⎟⎠

 g−1

⎛
⎜⎝

∫

�2

g (k (ω1, ω2)  X (ω2)) d (g ◦ μ2 (ω2))

⎞
⎟⎠

⎤
⎥⎦

⊕
⎡
⎣g−1 (� (0))  g−1

⎛
⎝

∫

Gc

g ◦ k (ω1, ω2) d (g ◦ μ2 (ω2))

⎞
⎠

⎤
⎦ .

So,

A
k,�2⊕, [�(X)] (ω1)

⊕
[
g−1

(
� ′ (g (

A
k,�2⊕, [X ] (ω1)

)))
 A

k,�2⊕, [X ] (ω1)  A
k,G
⊕,

[
g−1 (1)

]
(ω1)

]
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�
[
�

(
A
k,�2⊕, [X ] (ω1)

)


(
A
k,G
⊕,

[
g−1 (1)

]
(ω1)

)]

⊕
[
g−1

(
� ′ (g (

A
k,�2⊕, [X ] (ω1)

)))
 A

k,�2⊕, [X ] (ω1)
]

⊕
[
g−1 (

g ◦ � ◦ g−1 (0)
)  A

k,Gc

⊕,
[
g−1 (1)

]
(ω1)

]
.

This completes the proof. ��
If k (ω1, ω2) ≡ g−1(1) in Theorem 3.1, then we have the following corollary.

Corollary 3.2 For agivenmeasurable space (�2,F2) , let X : �2 → [a, b]be ameasurable
function, � : [a, b] → [a, b] be a convex and nonincreasing function and let a generator
g : [a, b] → [0,∞] of the pseudo-addition ⊕ and the pseudo-multiplication  be a convex
and increasing function such that g (X (ω2)) ∈ (a, b) for any ω2 ∈ �2 and g ◦ � ◦ g−1 is a
differentiable function. If A�2⊕, [X ] ∈ (a, b) , then for any σ -⊕ -measure μ2, we have

A
�2⊕, [�(X)] ⊕

(
β  A

�2⊕, [X ]  μ (G)
)

�
[
�

(
A

�2⊕, [X ]
)

 μ (G)
]

⊕
([

β  A
�2⊕, [X ]

]
⊕ [

�
(
g−1 (0)

)  μ
(
Gc)]) ,

where G={ω2 ∈ �2 : (g ◦ X) (ω2) �= 0} and β =g−1
([(

g ◦ � ◦ g−1
)′ (

g ◦ A
�2⊕, [X ]

)])
.

Remark 3.3 When μ2 = g−1 ◦ P, P is the probability measure, then we obtain

E
�2⊕ [�(X)] ⊕

(
β  E

�2⊕ [X ]  g−1 (P (g (X) �= 0))
)

�
[
�

(
E

�2⊕ [X ]
)

 g−1 (P (g (X) �= 0))
]

⊕
[
β  E

�2⊕ [X ]
]

⊕ [
�

(
g−1 (0)

)  g−1 (P (g (X) = 0))
]
.

In particular, taking P
(
X = g−1 (0)

) = 0, we get the Jensen inequality

E
�2⊕ [�(X)] ≥ �

(
E

�2⊕ [X ]
)

. (3.1)

Example 3.4 Let g(x) = xγ , γ ∈ [1,∞). The corresponding pseudo-operations are x⊕ y =
γ
√
xγ + yγ and x  y = xy. Then (3.1) reduces to the following inequality

(
E

[
(� (X))γ

]) 1
γ ≥ �

((
E

[
Xγ

]) 1
γ

)
.

Theorem 3.5 Let (�1,F1) and (�2,F2) be twomeasurable spaces and X : �2 → [a, b] be
a measurable function, � : [a, b] → [a, b] be a concave and non-decreasing function and
let a generator g : [a, b] → [0,∞] of the pseudo-addition ⊕ and the pseudo-multiplication
 be a convex and decreasing function such that g (X (ω2)) ∈ (a, b) for any ω2 ∈ �2 and
g ◦ � ◦ g−1 is a differentiable function. If Ak,�2⊕, [X ] (ω1) ∈ (a, b) for each fixed ω1 ∈ �1,

then for any σ -⊕-measure μ2 , we have

A
k,�2⊕, [�(X)] (ω1) ⊕

(
β  A

k,�2⊕, [X ] (ω1)  A
k,G
⊕,

[
g−1 (1)

]
(ω1)

)

�
[
�

(
A
k,�2⊕, [X ] (ω1)

)


(
A
k,G
⊕,

[
g−1 (1)

]
(ω1)

)]

⊕
([

β  A
k,�2⊕, [X ] (ω1)

]
⊕

[
�

(
g−1 (0)

)  A
k,Gc

⊕,
[
g−1 (1)

]
(ω1)

])
,
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where G = {ω2 ∈ �2 : (g ◦ X) (ω2) �= 0} and β = g−1([(g ◦ � ◦ g−1)′(g ◦ A
k,�2⊕, [X ]

(ω1))]).

Proof Since g is a decreasing and convex function, g−1 is also decreasing but concave
function. Let � = g ◦ � ◦ g−1. It is easy to see that � is a convex function. Similarly as in
the proof of Theorem 3.1, we obtain the desired inequality. ��
Corollary 3.6 For agivenmeasurable space (�2,F2) , let X : �2 → [a, b]be ameasurable
function, � : [a, b] → [a, b] be a concave and non-decreasing function and let a generator
g : [a, b] → [0,∞] of the pseudo-addition ⊕ and the pseudo-multiplication  be a convex
and decreasing function such that g (X (ω2)) ∈ (a, b) for any ω2 ∈ �2 and g ◦ � ◦ g−1 is a
differentiable function. If A�2⊕, [X ] ∈ (a, b) , then for any σ -⊕ -measure μ2, we have

A
�2⊕, [�(X)] ⊕

(
β  A

�2⊕, [X ]  μ (G)
)

�
[
�

(
A

�2⊕, [X ]
)

 μ (G)
]

⊕
([

β  A
�2⊕, [X ]

]
⊕ [

�
(
g−1 (0)

)  μ
(
Gc)]) ,

where G = {ω2 ∈ �2 : (g ◦ X) (ω2) �= 0} and β = g−1([(g ◦ � ◦ g−1)′(g ◦ A
�2⊕, [X ])]).

Remark 3.7 When μ2 = g−1 ◦ P, P is the probability measure, then we obtain

E
�2⊕ [�(X)] ⊕

(
β  E

�2⊕ [X ]  g−1 (P (g (X) �= 0))
)

�
[
�

(
E

�2⊕ [X ]
)

 g−1 (P (g (X) �= 0))
]

⊕
([

β  E
�2⊕ [X ]

]
⊕ [

�
(
g−1 (0)

)  g−1 (P (g (X) = 0))
])

,

where β = g−1
((
g ◦ � ◦ g−1

)′ (
g ◦ E

�2⊕ [X ]
))

.

In particular, taking P
(
X = g−1 (0)

) = 0, we get the Jensen inequality

E
�2⊕ [�(X)] � �

(
E

�2⊕ [X ]
)

.

4 Concluding remarks

We have introduced and discussed the concept of pseudo-expectation with general kernels
and then have established some refinements of Jensen’s inequality in general form. This
inequality includes pseudo-integral, expectation, convolution integral, fractional integral, as
special cases. As we have seen,

• for k (ω1, ω2) ≡ 1 and μ2 = g−1 ◦ P, P is the probability measure, in Corollary 3.2,
we get the refined Jensen’s inequality for g -expectation. In particular, taking [a, b] =
[0,∞], g = id and P (X = 0) = 0, we get the Jensen’s inequality (1.1).

• For k (ω1, ω2) ≡ 1, μ2 = g−1 ◦ μ, μ is the standard Lebesgue measure, �2 = [0, 1], in
Corollary 3.2, we have the Jensen type for pseudo-integral obtained by Pap and Štrboja
[29].

• For k (ω1, ω2) = k (ω1 − ω2) and μ2 = g−1 ◦ μ, μ is the standard Lebesgue measure,
�2 = [0, ω1] for each fixed ω1, in Theorem 3.1, we get the Jensen’s inequality for
g-convolution integral.
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Appendix

Proof of Theorem 1.2 We use the inequality

� (x) � � (ρ) + � ′ (ρ) (x − ρ) (5.1)

for any x, ρ ∈ I which follows from convexity of �. Multiplying both sides of (5.1) by
k (ω1, ω2), we have

k (ω1, ω2) � (x) � k (ω1, ω2)� (ρ) + k (ω1, ω2)� ′ (ρ) (x − ρ) . (5.2)

We set x = X (ω2) and Ak,�2
id [X ] (ω1) = 1

K
�2
id (ω1)

∫
�2

(k (ω1, ω2) X (ω2)) dμ2 (ω2) = ρ

and integrate over the domain G = {ω2 ∈ �2 : X (ω2) �= 0} . Then

∫

G

k (ω1, ω2) � [X (ω2)] dμ2 (ω2) � � (ρ)

∫

G

k (ω1, ω2) dμ2 (ω2)

+ � ′ (ρ)

⎛
⎝

∫

G

k (ω1, ω2) X (ω2) dμ2 (ω2) − ρ

∫

G

k (ω1, ω2) dμ2 (ω2)

⎞
⎠

= � (ρ)

∫

G

k (ω1, ω2) dμ2 (ω2) + ρ� ′ (ρ)

×
⎛
⎜⎝

∫

�2

k (ω1, ω2) dμ2 (ω2) −
∫

G

k (ω1, ω2) dμ2 (ω2)

⎞
⎟⎠ ,

which gets the desired inequality

∫

�2

k (ω1, ω2) � [X (ω2)] dμ2 (ω2)

� � (ρ)

∫

G

k (ω1, ω2) dμ2 (ω2) + (
ρ� ′ (ρ) + � (0)

)
⎛
⎝

∫

Gc

k (ω1, ω2) dμ2 (ω2)

⎞
⎠ .

This completes the proof. ��

Proof of Theorem 1.4 . Using (5.2), set x = X (ω2) and

A
k,�2
id [X ] (ω1) =

∫

�2

k (ω1, ω2) X (ω2) dμ2 (ω2) = ρ
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and integrate over the domain G = {ω2 ∈ �2 : X (ω2) �= 0} . Then
∫

G

k (ω1, ω2) � (X (ω2)) dμ2 (ω2) � � (ρ)

∫

G

k (ω1, ω2) dμ2 (ω2)

+ � ′ (ρ)

⎛
⎝

∫

G

k (ω1, ω2) X (ω2) dμ2 (ω2) − ρ

∫

G

k (ω1, ω2) dμ2 (ω2)

⎞
⎠

= � (ρ)

∫

G

k (ω1, ω2) dμ2 (ω2)

+ � ′ (ρ)

⎛
⎜⎝

∫

�2

k (ω1, ω2) X (ω2) dμ2 (ω2) − ρ

∫

G

k (ω1, ω2) dμ2 (ω2)

⎞
⎟⎠

= � (ρ)

∫

G

k (ω1, ω2) dμ2 (ω2) + ρ� ′ (ρ)

⎛
⎝1 −

∫

G

k (ω1, ω2) dμ2 (ω2)

⎞
⎠ .

So,
∫

�2

k (ω1, ω2) � (X (ω2)) dμ2 (ω2) � � (ρ)

∫

G

k (ω1, ω2) dμ2 (ω2)

+ � ′ (ρ)

∫

�2

k (ω1, ω2) X (ω2) dμ2 (ω2) − ρ� ′ (ρ)

∫

G

k (ω1, ω2) dμ2 (ω2)

+ � (0)
∫

Gc

k (ω1, ω2) dμ2 (ω2) .

This completes the proof. ��
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