Risk-Sensitive Optimality in Markov Games

Karel Sladký ${ }^{1}$, Victor Manuel Martínez Cortés ${ }^{2}$

Abstract

The article is devoted to risk-sensitive optimality in Markov games. Attention is focused on Markov games evolving on communicating Markov chains with two-players with opposite aims. Considering risk-sensitive optimality criteria means that total reward generated by the game is evaluated by exponential utility function with a given risk-sensitive coefficient. In particular, the first player (resp. the second player) tries to maximize (resp. minimize) the long-run risk-sensitive average reward. Observe that if the second player is dummy, the problem is reduced to finding optimal policy of the Markov decision chain with the risk-sensitive optimality. Recall that for the risk sensitivity coefficient equal to zero we arrive at traditional optimality criteria. In this article, connections between risk-sensitive and risk-neutral Markov decision chains and Markov games models are studied using discrepancy functions. Explicit formulae for bounds on the risk-sensitive average long-run reward are reported. Policy iteration algorithm for finding suboptimal policies of both players is suggested. The obtained results are illustrated on numerical example.

Keywords: dynamic programming, Markov decision chains, two-person Markov games, communicating Markov chains, risk-sensitive optimality.

JEL classification: C44, C61, C63
AMS classification: 90C40, 60J10, 93E20

1 Introduction

This contribution is devoted to risk-sensitive optimality in Markov games evolving on communicating Markov chains with two-players with opposite aims. In particular, the first player (resp. the second player) tries to maximize (resp. minimize) the long-run risk-sensitive average reward calculated by an exponential utility function with a given risk-sensitive coefficient. Observe that if the second player is dummy, the problem is reduced to finding optimal policy of the risk-sensitive Markov decision chain introduced by Howard and Matheson in their seminal paper [8]. Recall that for the risk sensitivity coefficient equal to zero we arrive at traditional optimality criteria. In this article, connections between risk-sensitive and risk-neutral Markov decision chains and Markov games models are studied using discrepancy functions. Explicit formulae for bounds on the risk-sensitive average long-run reward are reported. Policy iteration algorithms for finding suboptimal policies of both players are suggested.

2 Notation and Preliminaries

In this note, we consider at discrete time points $t=0,1, \ldots$ a dynamic system $X=\left\{X_{n}, n=0,1, \ldots\right\}$ with finite state space $\mathcal{I}=\{1,2, \ldots, N\}$. The behavior of the system X is influenced by two players, $P^{(1)}$ and $P^{(2)}$, with opposite aims. Supposing that at time t the system is in state $i \in \mathcal{I}$ then player $P^{(1)}$, resp. player $P^{(2)}$, selects action $a^{(1)}$ from finite set $\mathcal{A}_{i}^{(1)}$, resp. action $a^{(2)}$ from finite set $\mathcal{A}_{i}^{(2)}$. Then state j is reached in the next transition with a given probability $p_{i j}\left(a^{(1)}, a^{(2)}\right)$ and one-stage reward $r_{i}\left(a^{(1)}, a^{(2)}\right)$ is accrued. We shall call this two person game a Markov game.

In this note, we assume that the stream of rewards generated by the Markov processes X is evaluated by an exponential utility function (so-called risk-sensitive models) with a given risk sensitivity coefficient. To this end, let us consider an exponential utility function, say $\bar{u}^{\gamma}(\cdot)$, i.e. a separable utility function with constant risk sensitivity $\gamma \in \mathbb{R}$. Then the utility assigned to the (random) outcome ξ is given by

$$
\bar{u}^{\gamma}(\xi):=\left\{\begin{array}{cl}
(\operatorname{sign} \gamma) \exp (\gamma \xi), & \text { if } \gamma \neq 0, \tag{1}\\
\xi \quad \text { risk-sensitive case } \\
\xi=0 & \text { risk-neutral case }
\end{array}\right.
$$

Obviously $\bar{u}^{\gamma}(\cdot)$ is continuous and strictly increasing. For $\gamma>0 \bar{u}^{\gamma}(\cdot)$ is convex, if $\gamma<0 \bar{u}^{\gamma}(\cdot)$ is concave. Finally if $\gamma=0$ (risk neutral case) $\bar{u}^{\gamma}(\cdot)$ is linear. Observe that exponential utility function $\bar{u}^{\gamma}(\cdot)$ is separable and

[^0]multiplicative if the risk sensitivity $\gamma \neq 0$ and additive for $\gamma=0$. In particular, for $u^{\gamma}(\cdot):=\exp (\gamma \xi)$ we have $u^{\gamma}\left(\xi_{1}+\xi_{2}\right)=u^{\gamma}\left(\xi_{1}\right) \cdot u^{\gamma}\left(\xi_{2}\right)$ if $\gamma \neq 0$ and $u^{\gamma}\left(\xi_{1}+\xi_{2}\right) \equiv \xi_{1}+\xi_{2}$ for $\gamma=0$.

Moreover, recall that the certainty equivalent corresponding to ξ, say $Z^{\gamma}(\xi)$, is given by

$$
\begin{equation*}
\bar{u}^{\gamma}\left(Z^{\gamma}(\xi)\right)=\mathrm{E}\left[\bar{u}^{\gamma}(\xi)\right] \quad \text { (the symbol } \mathrm{E} \text { is reserved for expectation). } \tag{2}
\end{equation*}
$$

From (1), (2) we can immediately conclude that

$$
Z^{\gamma}(\xi)= \begin{cases}\gamma^{-1} \ln \left\{\mathrm{E} u^{\gamma}(\xi)\right\}, & \text { if } \gamma \neq 0 \tag{3}\\ \mathrm{E}[\xi] & \text { for } \gamma=0\end{cases}
$$

The development of the system X over time is controlled by actions of both players that have complete information about the history of the system. In particular, player $P^{(1)}$, resp. player $P^{(2)}$, tries to maximize, resp. minimizes the total reward. Supposing that the system is in state $i \in \mathcal{I}$ if decision $a^{(1)} \in \mathcal{A}_{i}^{(1)}$ is taken by the first player, player $P^{(2)}$ selects decision $a^{(2)} \in \mathcal{A}_{i}^{(2)}$ such that to "minimize" possible outcome (so decisions $a^{(1)}, a^{(2)}$ are not simultaneous, player $P^{(1)}$ is the leader and player $P^{(2)}$ is the follower in the considered Stackelberg duopoly model). Risk-sensitive Markov decision chains can be considered as a special case of Markov games with only one player.

A (Markovian) policy controlling the decision process, $\pi=\left(f^{0}, f^{1}, \ldots\right)$, is identified by a sequence of decision vectors $\left\{f^{n}, n=0,1, \ldots\right\}$ where $f^{n}=\left(f^{(1) n}, f^{(2) n}\right) \in \mathcal{F} \equiv \mathcal{F}^{(1)} \times \mathcal{F}^{(2)}$. In particular, player $P^{(1)}$, resp. player $P^{(2)}$, generates a sequence of decisions $f^{(1), n}$ where $f^{(1), n} \in \mathcal{F}^{(1)} \equiv \mathcal{A}_{1}^{(1)} \times \ldots \times \mathcal{A}_{N}^{(1)}$, resp. $f^{(2), n}$ where $f^{(2), n} \in \mathcal{F}^{(2)} \equiv \mathcal{A}_{1}^{(2)} \times \ldots \times \mathcal{A}_{N}^{(2)}$.

Let $\pi^{m}=\left(f^{m}, f^{m+1}, \ldots\right)$, hence $\pi=\left(f^{0}, f^{1}, \ldots, f^{m-1}, \pi^{m}\right)$, in particular $\pi=\left(f^{0}, \pi^{1}\right)$. The symbol E_{i}^{π} denotes the expectation if $X_{0}=i$ and policy $\pi=\left(f^{n}\right)$ is followed, in particular, $\mathrm{E}_{i}^{\pi}\left(X_{m}=j\right)=$ $\sum_{i_{j} \in \mathcal{I}} p_{i, i_{1}}\left(f_{i}^{0}\right) \ldots p_{i_{m-1}, j}\left(f_{m-1}^{m-1}\right) ; \mathrm{P}\left(X_{m}=j\right)$ is the probability that X is in state j at time m.

Policy π which selects at all times the same decision rule, i.e. $\pi \sim(f)$, is called stationary. Hence following policy $\pi \sim(f) X$ is a homogeneous Markov chain with transition probability matrix $P(f)$ whose $i j$-th element is $p_{i j}\left(f_{i}\right)=p_{i j}\left(f_{i}^{(1)}, f_{i}^{(2)}\right)$. Then $r_{i}\left(f_{i}\right):=r_{i}\left(f_{i}^{(1)}, f_{i}^{(2)}\right)$ is the one-stage reward obtained in state i. Similarly, $r(f)$ is an N-column vector of one-stage rewards whose i-the elements equals $r_{i}\left(f_{i}\right)$.

Stationary policy $\tilde{\pi}$ is randomized if there exist decision vectors $f^{[1]}, f^{[2]}, \ldots, f^{[m]} \in \mathcal{F}$ (observe that $f^{[1]}=$ $\left.\left(f^{1}, f^{[1](2)}\right) \in \mathcal{F}^{(1)} \times \mathcal{F}^{(2)}\right)$. On following policy $\tilde{\pi}$ we select in state i action $f_{i}^{[j]}$ with a given probability $\kappa_{i}^{[j]}$ (of course, $\kappa_{i}^{[j]} \geq 0$ with $\sum_{j=1}^{N} \kappa_{i}^{(j)}=1$ for all $i \in \mathcal{I}$). Observe that $\mathrm{E}_{i}^{\pi}\left(X_{m}=j\right)=\left[P^{m}(f)\right]_{i j}$ (here $[A]_{i j}$ denotes the $i j$-th element of the matrix $A, A \geq B$, resp. $A>B$ iff for each $i, j[A]_{i j} \geq[B]_{i j}$ resp. $[A]_{i j} \geq[B]_{i j}$ and $[A]_{i j}>[B]_{i j}$ for some i, j). The symbol I denotes an identity matrix and e is reserved for a unit column vector.

3 Risk-Sensitive Optimality in Markov Processes

Let ξ_{n} be the cumulative reward obtained in the n first transition of the considered Markov chain X. Since the process starts in state $X_{0}, \xi_{n}=\sum_{k=0}^{n-1} r_{X_{k}}$. Similarly let $\xi_{(m, n)}$ be reserved for the cumulative (random) reward, obtained from the m th up to the nth transition (obviously, $\xi_{n}=r_{X_{0}}+\xi_{(1, n)}$, we tacitly assume that $\xi_{(1, n)}$ starts in state X_{1}).

On introducing for arbitrary $g, w_{j} \in \mathbb{R}(i, j \in \mathcal{I})$ the discrepancy function (cf. [10]) $\tilde{\varphi}_{i, j}(w, g):=r_{i}-w_{i}+w_{j}-g \quad$ we can easily verify the following identity:

$$
\begin{equation*}
\xi_{n}=n g+w_{X_{0}}-w_{X_{n}}+\sum_{k=0}^{n-1} \tilde{\varphi}_{X_{k}, X_{k+1}}(w, g) \tag{4}
\end{equation*}
$$

Considering the risk-sensitive models in virtue of (1), (4) for the expectation of ξ_{n} in the risk-sensitive case $U_{i}^{\pi}(\gamma, n):=\mathrm{E}_{i}^{\pi} \mathrm{e}^{\gamma \sum_{k=0}^{n-1} \xi_{n}}$ we conclude that

$$
\begin{equation*}
U_{i}^{\pi}(\gamma, n)=\mathrm{e}^{\gamma\left[n g+w_{i}\right]} \times \mathrm{E}_{i}^{\pi} \mathrm{e}^{\gamma\left[\sum_{k=0}^{n-1} \tilde{\varphi}_{X_{k}, X_{k+1}}(w, g)-w_{X_{n}}\right]} \tag{5}
\end{equation*}
$$

Now observe that

$$
\begin{align*}
\mathrm{E}_{i}^{\pi} \mathrm{e}^{\gamma \sum_{k=0}^{n-1} \tilde{\varphi}_{X_{k}, X_{k+1}}(w, g)} & =\sum_{j \in \mathcal{I}} p_{i j}\left(f_{i}^{0}\right) \mathrm{e}^{\gamma\left[r_{i}-w_{i}+w_{j}-g\right]} \times \mathrm{E}_{j}^{\pi^{1}} \mathrm{e}^{\gamma \sum_{k=1}^{n-1} \tilde{\varphi}_{X_{k}, X_{k+1}}(w, g)} \tag{6}\\
\mathrm{E}_{j}^{\pi}\left\{\mathrm{e}^{\gamma \sum_{k=m}^{n-1} \tilde{\varphi}_{X_{k}, X_{k+1}(w, g)}} \mid X_{m}=j\right\} & =\sum_{\ell \in \mathcal{I}} p_{j, \ell}\left(f_{j}^{m}\right) \mathrm{e}^{\gamma\left[r_{j}-w_{j}+w_{\ell}-g\right]} \times \mathrm{E}_{\ell}^{\pi^{m+1}} \mathrm{e}^{\gamma \sum_{k=m+1}^{n-1} \tilde{\varphi}_{X_{k}, X_{k+1}}(w, g)} . \tag{7}
\end{align*}
$$

If stationary policy $\pi \sim(f)$ is followed (5) can be drastically simplified if the numbers g, w_{j} 's are selected such that $\sum_{j \in \mathcal{I}} p_{i j}\left(f_{i}\right) \mathrm{e}^{\gamma \tilde{\varphi}_{i j}(g, w)}=1$ for all $i \in \mathcal{I} .{ }^{3}$ Obviously, this condition is equivalent to the following set of linear equations

$$
\begin{equation*}
\mathrm{e}^{\gamma\left[g(f)+w_{i}(f)\right]}=\sum_{j \in \mathcal{I}} p_{i j}\left(f_{i}\right) \mathrm{e}^{\gamma\left[r_{i}\left(f_{i}\right)+w_{j}(f)\right]} \quad(i \in \mathcal{I}) \tag{8}
\end{equation*}
$$

for the values $g(f), w_{i}(f)(i=1, \ldots, N)$; observe that these values depend on the selected risk sensitivity γ. Eqs. (5) can be called the γ-average reward/cost optimality equation.

On introducing the new variables $v_{i}(f):=\mathrm{e}^{\gamma w_{i}(f)}, \rho(f):=\mathrm{e}^{\gamma g(f)}$, and on replacing transition probabilities $p_{i j}\left(f_{i}\right)$'s by general nonnegative numbers defined by $q_{i j}\left(f_{i}\right):=p_{i j}\left(f_{i}\right) \cdot \mathrm{e}^{\gamma r_{i}\left(f_{i}\right)}(8)$ can be alternatively written as the following set of equations

$$
\begin{equation*}
\rho(f) v_{i}(f)=\sum_{j \in \mathcal{I}} q_{i j}\left(f_{i}\right) v_{j}(f) \quad(i \in \mathcal{I}) \tag{9}
\end{equation*}
$$

For what follows it is convenient to consider (9) in matrix form. To this end, we introduce (cf. [6]) $N \times N$ matrix $Q(f)=\left[q_{i j}\left(f_{i}\right)\right]$ with spectral radius (Perron eigenvalue) $\rho(f)$ along with its right Perron eigenvector $v(f)=\left[v_{i}\left(f_{i}\right)\right]$. Then (9) can be written in matrix form as

$$
\begin{equation*}
\rho(f) v(f)=Q(f) v(f) \tag{10}
\end{equation*}
$$

Furthermore, if the transition probability matrix $P(f)$ is irreducible then also $Q(f)$ is irreducible and the right Perron eigenvector $v(f)$ can be selected strictly positive.

From (3),(5),(6),(8) we immediately get for stationary policy $\pi \sim(f)$ that

$$
U_{i}^{\pi}(\gamma, n)=\mathrm{e}^{\gamma\left[n g(f)+w_{i}(f)\right]} \times \mathrm{E}_{i}^{\pi} \mathrm{e}^{\gamma w_{X_{n}}(f)}, \quad Z_{i}^{\pi}(\gamma, n)=\frac{1}{\gamma} \ln U_{i}^{\pi}(\gamma, n)
$$

Hence

$$
\begin{equation*}
n^{-1} Z_{i}^{\pi}(\gamma, n)=g(f)+o(n) \tag{11}
\end{equation*}
$$

(recall that $g(f)=\gamma^{-1} \ln \rho(f), w_{i}(f)=\gamma^{-1} \ln v_{i}(f)$).
If the Markov chain is irreducible there exist $\hat{f}, f^{*} \in \mathcal{F}$ along with numbers $\hat{\rho}=\rho(\hat{f}), \rho^{*}=\rho\left(f^{*}\right)$ and strictly positive vectors $\hat{v}=v(\hat{f})$, with elements $v_{i}(\hat{f})$ and $v^{*}=v\left(f^{*}\right)$ with elements $v_{i}\left(f^{*}\right)$ such that for any $f \in \mathcal{F}$ (vectorial max and min should be considered componentwise)

$$
\begin{align*}
& Q(f) \cdot \hat{v} \geq \min _{f \in \mathcal{F}}\{Q(f) \cdot \hat{v}\}=Q(\hat{f}) \cdot \hat{v}=\hat{\rho} \cdot \hat{v} \tag{12}\\
& Q(f) \cdot v^{*} \leq \max _{f \in \mathcal{F}}\left\{Q(f) \cdot v^{*}\right\}=Q\left(f^{*}\right) \cdot v^{*}=\rho^{*} \cdot v^{*} \tag{13}\\
& \rho(\hat{f}) \equiv \hat{\rho} \leq \rho(f) \leq \rho\left(f^{*}\right) \equiv \rho^{*} \quad \text { for all } f \in \mathcal{F} . \tag{14}
\end{align*}
$$

In words:
$\hat{\rho} \equiv \rho(\hat{f})$ (resp. $\rho^{*}=\rho\left(f^{*}\right)$) is the minimum (resp. maximum) possible eigenvalue of $Q(f)$ over all $f \in \mathcal{F}$ (cf. [1],[3],[8]).
Minimal (resp. maximal) risk-sensitive average reward $g(\hat{f})=\gamma^{-1} \ln \rho(\hat{f})\left(\right.$ resp. $g\left(f^{*}\right)=\gamma^{-1} \ln \rho\left(f^{*}\right)$).

[^1]
4 Risk-Sensitive Optimality in Markov Games

In contrast to Markov decision model considered in section 3 we assume that the expected utility $U_{i}^{\pi}(\gamma, n)$ depends on decision $f^{(1), n}, f^{(2), n}$ taken by the both players. Since Markov decision processes can be considered as a very special case of Markov games, it is interesting to mention that stochastic games were formulated by Shapley [12] in 1953, many years before outburst of systematic interest in Markov decision processes. For the early results on Markov decision processes see Bellman's papers [1], [2], Bellman's monograph [3], Blackwell's paper [4] and especially Howard's book [7].

In contrast to Markov decision processes we must take into consideration decision taken by both players. Hence the optimality equations (12), (13) must be replaced by the Nash equilibrium condition, see [11]. According to the Nash equilibrium condition there exist $f^{*}=\left(f^{(1) *}, f^{(2) *}\right) \in \mathcal{F}=\mathcal{F}^{(1)} \times \mathcal{F}^{(2)}$ such that for any $f_{i}^{(1)} \in \mathcal{F}_{i}^{(1)}$ and any $f_{i}^{(2)} \in \mathcal{F}_{i}^{(2)}$ for the resulting decisions $f_{i}^{d}=\left(f_{i}^{(1)}, f_{i}^{(2) *}\right), f_{i}^{u}=\left(f_{i}^{(1) *}, f_{i}^{(2)}\right)$, it holds

$$
\begin{equation*}
\sum_{j \in \mathcal{I}} q_{i j}\left(f_{i}^{d}\right) v_{j}^{*} \leq \sum_{j \in \mathcal{I}} q_{i j}\left(f_{i}^{*}\right) v_{j}^{*}=\rho\left(f^{*}\right) v_{i}^{*} \leq \sum_{j \in \mathcal{I}} q_{i j}\left(f_{i}^{u}\right) v_{j}^{*} \tag{15}
\end{equation*}
$$

or in matrix notations $\rho(f) v(f)=Q(f) v(f)$ we are looking for $f^{*}=\left(f^{(1) *}, f^{(2) *}\right) \in \mathcal{F}^{(1)} \times \mathcal{F}^{(2)}$ such that

$$
\begin{equation*}
Q\left(f^{d}\right) v\left(f^{*}\right) \leq \rho\left(f^{*}\right) v\left(f^{*}\right)=Q\left(f^{*}\right) v\left(f^{*}\right) \leq Q\left(f^{u}\right) v\left(f^{*}\right) \tag{16}
\end{equation*}
$$

where $\rho\left(f^{*}\right)=\mathrm{e}^{\gamma g\left(f^{*}\right)}, v_{i}\left(f^{*}\right)=\mathrm{e}^{\gamma w_{i}\left(f^{*}\right)}$.
From (3),(5),(6),(8) we immediately get for stationary policy $\pi \sim(f)$ that

$$
\begin{align*}
& U_{i}^{\pi^{*}}(\gamma, n)=\mathrm{e}^{\gamma\left[n g\left(f^{*}\right)+w_{i}\left(f^{*}\right)\right]} \times \mathrm{E}_{i}^{\pi^{*}} \mathrm{e}^{\gamma w_{X_{n}}\left(f^{*}\right)}, \quad Z_{i}^{\pi^{*}}(\gamma, n)=\frac{1}{\gamma} \ln U_{i}^{\pi^{*}}(\gamma, n), \tag{17}\\
& n^{-1} Z_{i}^{\pi^{*}}(\gamma, n)=g\left(f^{*}\right)+o(n) . \tag{18}
\end{align*}
$$

Since the average risk-sensitive reward $g(f)=\gamma^{-1} \ln [\rho(f)]$ and $\rho(f)$ is the Perron eigenvalue of a nonnegative matrix $Q(f)$, it is well-known (see e.g. [6]) that for any $f^{\prime}, f^{\prime \prime} \in \mathcal{F} Q\left(f^{\prime}\right) \leq Q\left(f^{\prime \prime}\right) \Rightarrow \rho\left(f^{\prime}\right) \leq \rho\left(f^{\prime \prime}\right)$. To generate lower and upper bounds on minimal and maximal Perron eigenvalue $\rho\left(f^{*}\right)$ we replace elements $q_{i j}\left(f_{i}^{(1)}, f_{i}^{(2)}\right)$ by their minimal and maximal possible values $q_{i j}^{\prime}$ and $q_{i j}^{\prime \prime}$. Then the problem is approximated by a (uncontrollable) risk-sensitive Markov chain and it is possible to generate lower and upper bounds on $\rho\left(f^{*}\right)=\mathrm{e}^{\gamma g\left(f^{*}\right)}$ by calculating Perron eigenvalues (i.e. the spectral radii) of nonnegative matrices. Unfortunately, using this approach we can expect only very rough bounds on the optimal value of the average risk-sensitive reward.

More friendly bounds can be obtained by a more detailed analysis of the set of all admissible matrices. Of course, it is reasonable to suggest algorithmic procedures that need not evaluate all admissible matrices. Algorithm 1 is a slight modification of the policy iteration method reported in [8] only for finding maximum Perron eigenvalue in a set of nonnegative irreducible matrices.

Algorithm 1. (Policy iterations for finding maximal, resp. minimal, Perron eigenvalue.)
Step 0. Find matrix $Q^{(0)}:=Q\left(f^{(1), 0}, f^{(2), 0}\right)$ with $f^{(1), 0} \in \mathcal{F}^{(1)}, f^{(2), 0} \in \mathcal{F}^{(2)}$ such that the row sums are maximal (resp. minimal).
Step 1. For matrix $Q^{(k)}(k=0,1, \ldots)$ calculate its spectral radius $\rho^{(k)}$ along with its right Perron eigenvector $v^{(k)}$.
Step 2. Construct (if possible) matrix $Q^{(k+1)}:=Q\left(f^{(1), k+1}, f^{(2), k+1}\right)$ with
$f^{k+1}:=\left(f^{(1), k+1}, f^{(2), k+1}\right)$ where $f^{(1), k+1} \in \mathcal{F}^{(1)}, f^{(2), k+1} \in \mathcal{F}^{(2)}$, such that

$$
\begin{equation*}
Q^{(k+1)} \cdot v^{(k)} \geq \rho^{(k)} v^{(k)}=Q^{(k)} \cdot v^{(k)} \text { resp. } Q^{(k+1)} \cdot v^{(k)} \leq \rho^{(k)} v^{(k)}=Q^{(k)} \cdot v^{(k)} \tag{19}
\end{equation*}
$$

Step 3. If $Q^{(k+1)}=Q^{(k)}$ then go to Step 4, else set $k:=k+1$ and repeat Step 1.
Step 4. Set $\hat{Q}:=Q^{(k+1)}, \hat{\rho}:=\rho^{(k+1)}, \hat{v}:=v^{(k+1)}, \hat{f}:=f^{(k+1)}$ and stop. $\hat{\rho}$ is the maximal (resp. minimal) Perron eigenvalue.

The heart of the above algorithms is the following

Policy improvement routine:

Since for the right (resp. left) Perron eigenvectors $v^{(k)}$ (resp. $z^{(k)}$) of an irreducible matrix $Q^{(k)}$ it holds $Q^{(k)}$. $v^{(k)}=\rho^{(k)} v^{(k)}\left(\right.$ resp. $\left.z^{(k)} Q^{(k)}=\rho^{(k)} z^{(k)}\right)$ if $\varphi^{(k+1)}:=Q^{(k+1)} \cdot v^{(k)}-Q^{(k)} \cdot v^{(k)}>0$ (resp. <0) then

$$
Q^{(k+1)} \cdot v^{(k+1)}-Q^{(k)} \cdot v^{(k)}=\rho^{(k+1)}\left[v^{(k+1)}-v^{(k)}\right]+\left[\rho^{(k+1)}-\rho^{(k)}\right] v^{(k)}
$$

On premultiplying the above equality by $z^{(k+1)}$ (strictly positive row vector) we arrive at

$$
\rho^{(k+1)} \cdot z^{(k+1)}\left[v^{(k+1)}-v^{(k)}\right]+\left[\rho^{(k+1)}-\rho^{(k)}\right] \cdot z^{(k+1)} v^{(k)}=z^{(k+1)} Q^{(k+1)}\left[v^{(k+1)}-v^{(k)}\right]+z^{(k+1)} \varphi^{(k+1)}
$$

implying that $z^{(k+1)} \varphi^{(k+1)}=\left[\rho^{(k+1)}-\rho^{(k)}\right] z^{(k+1)} v^{(k)}$.
Since $z^{(k+1)} v^{(k)}>0$ if $z^{(k+1)} \varphi^{(k+1)}>0$ (resp. $z^{(k+1)} \varphi^{(k+1)}<0$) then $\rho^{(k+1)}>\rho^{(k)}$ (resp. $\rho^{(k+1)}<\rho^{(k)}$).

Illustrative example.

Let $\mathcal{I}=\{1,2\}, \mathcal{A}_{1}^{(1)}=\mathcal{A}_{1}^{(2)}=\mathcal{A}_{2}^{(1)}=\mathcal{A}_{2}^{(2)}=\{1,2\}$ and the corresponding
transition probabilities be given by the row vectors $p_{i}\left(f_{i}^{(1)}, f_{i}^{(2)}\right)=\left[p_{i 1}\left(f_{i}^{(1)}, f_{i}^{(2)}\right), p_{i 2}\left(f_{i}^{(1)}, f_{i}^{(2)}\right)\right]$ for $f_{i}^{(1)}, f_{i}^{(2)}=$ 1,2 . The reward accrued in state i is equal to $r_{i}\left(f_{i}^{(1)}, f_{i}^{(2)}\right)$.
The following example is borrowed from [5], Example 3.2.2, page 96. Let transition data and one-stage rewards be:

$p_{1}(1,1)=[0.5 ; 0.5]$	$r_{1}(1,1)=10$	$p_{1}(1,2)=[0.5 ; 0.5]$	$r_{1}(1,2)=-6$
$p_{1}(2,1)=[0.8 ; 0.2]$	$r_{1}(2,1)=-4$	$p_{1}(2,2)=[0.8 ; 0.2]$	$r_{2}(2,2)=8$
$p_{2}(1,1)=[0.3 ; 0.7]$	$r_{2}(1,1)=-2$	$p_{1}(1,2)=[0.3 ; 0.7]$	$r_{2}(1,2)=5$
$p_{2}(2,1)=[0.9 ; 0.1]$	$r_{2}(2,1)=4$	$p_{2}(2,2)=[0.9 ; 0.1]$	$r_{2}(2,2)=-10$

Considering the risk-sensitive model, we replace one-stage reward $r_{i}\left(f_{i}^{(1)}, f_{i}^{(2)}\right)$ by
$\bar{r}_{i}\left(f_{i}^{(1)}, f_{i}^{(2)}\right):=\ln \left[r_{i}\left(f_{i}^{(1)}, f_{i}^{(2)}\right)\right]$ if $r_{i}\left(f_{i}^{(1)}, f_{i}^{(2)}\right)>0 \quad$ or by
$\bar{r}_{i}\left(f_{i}^{(1)}, f_{i}^{(2)}\right):=\ln \left[-r_{i}\left(f_{i}^{(1)}, f_{i}^{(2)}\right)\right]$ if $r_{i}\left(f_{i}^{(1)}, f_{i}^{(2)}\right)<0$.
Observe that $\mathrm{e}^{\gamma \bar{r}_{i}\left(f_{i}^{(1)}, f_{i}^{(2)}\right)}=\left|r_{i}\left(f_{i}^{(1)}, f_{i}^{(2)}\right)\right|^{\gamma}$. On recalling that
$q_{i j}\left(f_{i}^{(1)}, f_{i}^{(2)}\right)=: p_{i j}\left(f_{i}^{(1)}, f_{i}^{(2)}\right) \times r_{i}\left(f_{i}^{(1)}, f_{i}^{(2)}\right)$, let the row vectors
$q_{i}\left(f_{i}^{(1)}, f_{i}^{(2)}\right)=:\left[q_{i 1}\left(f_{i}^{(1)}, f_{i}^{(2)}\right), q_{i 2}\left(f_{i}^{(1)}, f_{i}^{(2)}\right)\right]$. Then $Q\left(f^{(1)}, f^{(2)}\right)$ is the square (nonnegative) matrix whose i-th row is equal to $q_{i}\left(f_{i}^{(1)}, f_{i}^{(2)}\right)$.

In particular, if $\gamma=1$, resp. $\gamma=0.5$,

$\gamma=1$	$\gamma=1$		$\gamma=0.5$	$\gamma=0.5$
$q_{1}(1,1)=[5 ; 5]$	$q_{1}(1,2)=[3 ; 3]$		$q_{1}(1,1)=[1.581 ; 1.581]$	$q_{1}(1,2)=[1.225 ; 1.225]$
$q_{1}(2,1)=[3.2 ; 0.8]$	$q_{1}(2,2)=[6.4 ; 1.6]$		$q_{1}(2,1)=[1.6 ; 0.4]$	$q_{1}(2,2)=[2.2628 ; 0.5656]$
$q_{2}(1,1)=[0.6 ; 1.4]$	$q_{2}(1,2)=[1.5 ; 3.5]$		$q_{2}(1,1)=[0.4242 ; 0.9899]$	$q_{2}(1,2)=[0.671 ; 1.5652]$
$q_{2}(2,1)=[3.6 ; 0.4]$	$q_{2}(2,2)=[9 ; 1]$		$q_{2}(2,1)=[1.8 ; 0.2]$	$q_{2}(2,2)=[2.846 ; 0.3162]$

As we can see, if $\gamma=1$, on selecting in state 1 decision $(1,1)$ and in state 2 decision $(2,2)$ spectral radius of the resulting matrix is equal to 10 - maximum possible value. Similarly, selecting in state 1 decision $(2,1)$ and in state 2 decision $(1,1)$ spectral radius of the resulting matrix is equal to 3.4358 - minimum possible eigenvalue.
However, if $\gamma=0.5$, on selecting in state 1 decision $(1,1)$ and in state 2 decision $(2,2)$ spectral radius of the resulting matrix is equal to 3.1621 - maximum possible value. Minimum possible value of the spectral radius is again obtained on selecting in state 1 decision $(2,1)$ and in state 2 decision $(1,1)$ spectral radius of the resulting matrix is equal to 1.8075 , very close to spectral radius 1.8378 obtained if in state 1 decision $(1,2)$ is selected and in state 2 decision $(1,1)$ is unchanged.
Obviously, if $\gamma=0$ the spectral radius equals one for all decisions.
Moreover, if the risk-sensitive coefficient $\gamma=1$ by a direct calculation we can see that if the second players selects decision 2 (resp.1) in both states the first player maximize the profit by selecting action 2 in both states (resp. action 1 in state 1 and action 2 in state 2). If the second players selects decision 2 in state 1 and decision 1 in state 2 the optimal policy of the player 1 is to select action 2 in states 1 and 2 . Finally, if the second players selects decision 1 in state 1 and decision 2 in state 2 the optimal policy of the player 1 is to select in state 1 action 1 and action 2 in state 2 . Observe that in this case it is necessary to solve 4 problems concerning finding optimal policy of a risk-sensitive Markov decision chain.

To this end we suggest the following algorithmic procedure. More details and some numerical examples can be found in [13]. Observe that we restrict only on non-randomized decisions.

Algorithm 2. (Policy iterations for approximating optimal average reward.)
Step 0. Find matrix $Q^{(0)}:=Q\left(f^{(1), 0}, f^{(2), 0}\right)$ with $f^{(1), 0} \in \mathcal{F}^{(1)}, f^{(2), 0} \in \mathcal{F}^{(2)}$ such that its spectral radius is maximal (resp. minimal).
Step 1. For matrix $Q^{(k)}(k=0,1, \ldots)$ calculate its spectral radius $\rho^{(k)}$ along with its right Perron eigenvector $v^{(k)}$.
Step 2. Construct (if possible) matrix $Q^{(k+1)}:=Q\left(f^{(1), k+1}, f^{(2), k+1}\right)$ with
$f^{k+1}:=\left(f^{(1), k+1}, f^{(2), k+1}\right)$ where $f^{(1), k+1} \in \mathcal{F}^{(1)}, f^{(2), k+1} \in \mathcal{F}^{(2)}$, such that $f^{(1), k+1}=f^{(1), k}$ for k odd, resp. $f^{(2), k+1}=f^{(2), k}$ for k even, and

$$
\begin{align*}
& Q^{(k+1)} \cdot v^{(k)} \leq \rho^{(k)} v^{(k)}=Q^{(k)} \cdot v^{(k)} \quad \text { if } k \text { is odd } \quad \text { resp. } \tag{20}\\
& Q^{(k+1)} \cdot v^{(k)} \geq \rho^{(k)} v^{(k)}=Q^{(k)} \cdot v^{(k)} \text { if } k \text { is even } \tag{21}
\end{align*}
$$

Step 3. If for some $\ell=0,1, \ldots k$ it happens that $Q^{(k+1)}=Q^{(\ell)}$ then go to Step 4, else set $k:=k+1$ and repeat Step 1.
Step 4. Set $\bar{Q}:=Q^{(\ell)} Q^{(\ell+1)} \ldots Q^{(k)}$. Calculate $\bar{\rho}$, the spectral radius of \bar{Q} and stop.
Then $\rho^{*}=(\bar{\rho})^{\frac{1}{k-\ell}}$ is equal to the long-run risk-sensitive average reward generated by decisions of the first and second player. in the class of non-randomized policies.

Acknowledgements

This research was supported by the Czech Science Foundation under Grant 13-14445S and by CONACyT (Mexico) and AS CR (Czech Republic) under Project 171396.

References

[1] Bellman, R.: On a quasi-linear equation, Canad. J. of Math. 8 (1956), 198-202.
[2] Bellman, R.: A Markovian decision process, J. of Math. and Mech. 6 (1957), 679-684.
[3] Bellman, R.: Dynamic Programming. Princeton Univ. Press, Princeton. Princeton 1957.
[4] Blackwell, D.: Discrete dynamic programming, Ann. Mathem. Statist. 33 (1962), 719-726.
[5] Filar, J.A. and Vrieze, O.J.: Competitive Markov Decision Processes. Springer Verlag, Berlin, 1996.
[6] Gantmakher, F. R.: The Theory of Matrices. Chelsea, London, 1959.
[7] Howard, R. A.: Dynamic Programming and Markov Processes. MIT Press, Cambridge, Mass., 1960.
[8] Howard, R. A. and Matheson, J.: Risk-sensitive Markov decision processes, Manag. Sci. 23 (1972), 356-369.
[9] Kolokoltsov, V.N. and Malafayev, O.A.: Understanding Game Theory. World Scientific, Singapore, 2010.
[10] Mandl, P.: On the variance in controlled Markov chains, Kybernetika 7 (1971), 1-12.
[11] Nash, J.: Equilibrium points in n-person games, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 48-49.
[12] Shapley, L.S.: Stochastic games, Proc. National Academy of Sciences U.S.A. 39 (1953), 1095-1100.
[13] Sladký, K., Martínez-Cortés, V.M.: Risk-Sensitive Optimality in Markov Games. Research Report No.2361, Institute of Information Theory and Automation of the CAS, Prague 2017.

[^0]: ${ }^{1}$ Institute of Information Theory and Automation of the Czech Academy of Sciences, Pod Vodárenskou věží 4, 18208 Praha 8, Czech Republic, sladky@utia.cas.cz
 ${ }^{2}$ Department of Mathematics, Autonomous Metropolitan University, Iztapalapa Campus, Mexico, mat.victor.m.mtz.c@gmail.com

[^1]: ${ }^{3}$ To verify this claim it suffices to apply successively (7) backwards starting time point $n-1$ (cf. [8]).

