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Abstract. The article is devoted to risk-sensitive optimality in Markov games. At-
tention is focused on Markov games evolving on communicating Markov chains with
two-players with opposite aims. Considering risk-sensitive optimality criteria means
that total reward generated by the game is evaluated by exponential utility function
with a given risk-sensitive coefficient. In particular, the first player (resp. the second
player) tries to maximize (resp. minimize) the long-run risk-sensitive average reward.
Observe that if the second player is dummy, the problem is reduced to finding optimal
policy of the Markov decision chain with the risk-sensitive optimality. Recall that for
the risk sensitivity coefficient equal to zero we arrive at traditional optimality criteria.
In this article, connections between risk-sensitive and risk-neutral Markov decision
chains and Markov games models are studied using discrepancy functions. Explicit
formulae for bounds on the risk-sensitive average long-run reward are reported. Policy
iteration algorithm for finding suboptimal policies of both players is suggested. The
obtained results are illustrated on numerical example.
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1 Introduction
This contribution is devoted to risk-sensitive optimality in Markov games evolving on communicating Markov
chains with two-players with opposite aims. In particular, the first player (resp. the second player) tries to maximize
(resp. minimize) the long-run risk-sensitive average reward calculated by an exponential utility function with a
given risk-sensitive coefficient. Observe that if the second player is dummy, the problem is reduced to finding
optimal policy of the risk-sensitive Markov decision chain introduced by Howard and Matheson in their seminal
paper [8]. Recall that for the risk sensitivity coefficient equal to zero we arrive at traditional optimality criteria. In
this article, connections between risk-sensitive and risk-neutral Markov decision chains and Markov games models
are studied using discrepancy functions. Explicit formulae for bounds on the risk-sensitive average long-run reward
are reported. Policy iteration algorithms for finding suboptimal policies of both players are suggested.

2 Notation and Preliminaries
In this note, we consider at discrete time points t = 0, 1, . . . a dynamic systemX = {Xn, n = 0, 1, . . .} with finite
state space I = {1, 2, . . . , N}. The behavior of the system X is influenced by two players, P (1) and P (2), with
opposite aims. Supposing that at time t the system is in state i ∈ I then player P (1), resp. player P (2), selects
action a(1) from finite set A(1)

i , resp. action a(2) from finite set A(2)
i . Then state j is reached in the next transition

with a given probability pij(a
(1), a(2)) and one-stage reward ri(a(1), a(2)) is accrued. We shall call this two

person game a Markov game.

In this note, we assume that the stream of rewards generated by the Markov processes X is evaluated by an
exponential utility function (so-called risk-sensitive models) with a given risk sensitivity coefficient. To this end, let
us consider an exponential utility function, say ūγ(·), i.e. a separable utility function with constant risk sensitivity
γ ∈ R. Then the utility assigned to the (random) outcome ξ is given by

ūγ(ξ) :=

{
(sign γ) exp(γξ), if γ 6= 0, risk-sensitive case,

ξ for γ = 0 risk-neutral case.
(1)

Obviously ūγ(·) is continuous and strictly increasing. For γ > 0 ūγ(·) is convex, if γ < 0 ūγ(·) is concave.
Finally if γ= 0 (risk neutral case) ūγ(·) is linear. Observe that exponential utility function ūγ(·) is separable and
1Institute of Information Theory and Automation of the Czech Academy of Sciences, Pod Vodárenskou věžı́ 4,
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multiplicative if the risk sensitivity γ 6= 0 and additive for γ = 0. In particular, for uγ(·) := exp(γξ) we have
uγ(ξ1 + ξ2) = uγ(ξ1) · uγ(ξ2) if γ 6= 0 and uγ(ξ1 + ξ2) ≡ ξ1 + ξ2 for γ = 0.

Moreover, recall that the certainty equivalent corresponding to ξ, say Zγ(ξ), is given by

ūγ(Zγ(ξ)) = E [ūγ(ξ)] (the symbol E is reserved for expectation). (2)

From (1), (2) we can immediately conclude that

Zγ(ξ) =

{
γ−1 ln{E uγ(ξ)}, if γ 6= 0

E [ξ] for γ = 0.
(3)

The development of the system X over time is controlled by actions of both players that have complete in-
formation about the history of the system. In particular, player P (1), resp. player P (2), tries to maximize, resp.
minimizes the total reward. Supposing that the system is in state i ∈ I if decision a(1) ∈ A(1)

i is taken by the
first player, player P (2) selects decision a(2) ∈ A(2)

i such that to “minimize” possible outcome (so decisions
a(1), a(2) are not simultaneous, player P (1) is the leader and player P (2) is the follower in the considered Stackel-
berg duopoly model). Risk-sensitive Markov decision chains can be considered as a special case of Markov games
with only one player.

A (Markovian) policy controlling the decision process, π = (f0, f1, . . .), is identified by a sequence of decision
vectors {fn, n = 0, 1, . . .} where fn = (f (1)n, f (2)n) ∈ F ≡ F (1)×F (2). In particular, player P (1), resp. player
P (2), generates a sequence of decisions f (1),n where f (1),n ∈ F (1) ≡ A(1)

1 × . . . × A(1)
N , resp. f (2),n where

f (2),n ∈ F (2) ≡ A(2)
1 × . . .×A

(2)
N .

Let πm = (fm, fm+1, . . .), hence π = (f0, f1, . . . , fm−1, πm), in particular π = (f0, π1). The sym-
bol E πi denotes the expectation if X0 = i and policy π = (fn) is followed, in particular, E πi (Xm = j) =∑
ij∈I pi,i1(f0

i ) . . . pim−1,j(f
m−1
m−1 ); P(Xm = j) is the probability that X is in state j at time m.

Policy π which selects at all times the same decision rule, i.e. π ∼ (f), is called stationary. Hence following
policy π ∼ (f) X is a homogeneous Markov chain with transition probability matrix P (f) whose ij-th element is
pij(fi) = pij(f

(1)
i , f

(2)
i ). Then ri(fi) := ri(f

(1)
i , f

(2)
i ) is the one-stage reward obtained in state i. Similarly, r(f)

is an N -column vector of one-stage rewards whose i-the elements equals ri(fi).

Stationary policy π̃ is randomized if there exist decision vectors f [1], f [2], . . . , f [m] ∈ F (observe that f [1] =

(f [1](1), f [1](2)) ∈ F (1) × F (2)). On following policy π̃ we select in state i action f [j]
i with a given probability

κ
[j]
i (of course, κ[j]

i ≥ 0 with
∑N
j=1 κ

(j)
i = 1 for all i ∈ I). Observe that E πi (Xm = j) = [Pm(f)]ij (here [A]ij

denotes the ij-th element of the matrix A, A ≥ B, resp. A > B iff for each i, j [A]ij ≥ [B]ij resp. [A]ij ≥ [B]ij
and [A]ij > [B]ij for some i, j). The symbol I denotes an identity matrix and e is reserved for a unit column
vector.

3 Risk-Sensitive Optimality in Markov Processes
Let ξn be the cumulative reward obtained in the n first transition of the considered Markov chain X . Since the
process starts in state X0, ξn =

∑n−1
k=0 rXk

. Similarly let ξ(m,n) be reserved for the cumulative (random) reward,
obtained from the mth up to the nth transition (obviously, ξn = rX0

+ ξ(1,n), we tacitly assume that ξ(1,n) starts
in state X1).

On introducing for arbitrary g, wj ∈ R (i, j ∈ I) the discrepancy function (cf. [10])
ϕ̃i,j(w, g) := ri − wi + wj − g we can easily verify the following identity:

ξn = ng + wX0
− wXn

+

n−1∑
k=0

ϕ̃Xk,Xk+1
(w, g). (4)

Considering the risk-sensitive models in virtue of (1), (4) for the expectation of ξn in the risk-sensitive case

Uπi (γ, n) := E πi e
γ

n−1∑
k=0

ξn
we conclude that

Uπi (γ, n) = eγ[ng+wi] × E πi e
γ[

n−1∑
k=0

ϕ̃Xk,Xk+1
(w,g)−wXn ]

. (5)



Now observe that

E πi e
γ

n−1∑
k=0

ϕ̃Xk,Xk+1
(w,g)

=
∑
j∈I

pij(f
0
i ) eγ[ri−wi+wj−g] × E π

1

j e
γ

n−1∑
k=1

ϕ̃Xk,Xk+1
(w,g)

(6)

E πj {e
γ

n−1∑
k=m

ϕ̃Xk,Xk+1
(w,g)
|Xm = j} =

∑
`∈I

pj,`(f
m
j ) eγ[rj−wj+w`−g] × E π

m+1

` e
γ

n−1∑
k=m+1

ϕ̃Xk,Xk+1
(w,g)

. (7)

If stationary policy π ∼ (f) is followed (5) can be drastically simplified if the numbers g, wj’s are selected such
that

∑
j∈I pij(fi) eγϕ̃ij(g,w) = 1 for all i ∈ I.3 Obviously, this condition is equivalent to the following set of

linear equations

eγ[g(f)+wi(f)] =
∑
j∈I

pij(fi) eγ[ri(fi)+wj(f)] (i ∈ I) (8)

for the values g(f), wi(f)(i = 1, . . . , N); observe that these values depend on the selected risk sensitivity γ. Eqs.
(5) can be called the γ-average reward/cost optimality equation.

On introducing the new variables vi(f) := eγwi(f), ρ(f) := eγg(f), and on replacing transition probabilities
pij(fi)’s by general nonnegative numbers defined by qij(fi) := pij(fi) · eγri(fi) (8) can be alternatively written as
the following set of equations

ρ(f)vi(f) =
∑
j∈I

qij(fi) vj(f) (i ∈ I) (9)

For what follows it is convenient to consider (9) in matrix form. To this end, we introduce (cf. [6]) N × N
matrix Q(f) = [qij(fi)] with spectral radius (Perron eigenvalue) ρ(f) along with its right Perron eigenvector
v(f) = [vi(fi)]. Then (9) can be written in matrix form as

ρ(f)v(f) = Q(f)v(f). (10)

Furthermore, if the transition probability matrix P (f) is irreducible then also Q(f) is irreducible and the right
Perron eigenvector v(f) can be selected strictly positive.

From (3),(5),(6),(8) we immediately get for stationary policy π ∼ (f) that

Uπi (γ, n) = eγ[ng(f)+wi(f)] × E πi eγwXn (f), Zπi (γ, n) =
1

γ
lnUπi (γ, n).

Hence
n−1Zπi (γ, n) = g(f) + o(n) (11)

(recall that g(f) = γ−1 ln ρ(f), wi(f) = γ−1 ln vi(f)).

If the Markov chain is irreducible there exist f̂ , f∗ ∈ F along with numbers ρ̂ = ρ(f̂), ρ∗ = ρ(f∗) and strictly
positive vectors v̂ = v(f̂), with elements vi(f̂) and v∗ = v(f∗) with elements vi(f∗) such that for any f ∈ F
(vectorial max and min should be considered componentwise)

Q(f) · v̂ ≥ min
f∈F
{Q(f) · v̂} = Q(f̂) · v̂ = ρ̂ · v̂ (12)

Q(f) · v∗ ≤ max
f∈F
{Q(f) · v∗} = Q(f∗) · v∗ = ρ∗ · v∗ (13)

ρ(f̂) ≡ ρ̂ ≤ ρ(f) ≤ ρ(f∗) ≡ ρ∗ for all f ∈ F . (14)

In words:

ρ̂ ≡ ρ(f̂) (resp. ρ∗ = ρ(f∗)) is the minimum (resp. maximum) possible eigenvalue of Q(f) over all f ∈ F
(cf. [1],[3],[8]).

Minimal (resp. maximal) risk-sensitive average reward g(f̂) = γ−1 ln ρ(f̂) (resp. g(f∗) = γ−1 ln ρ(f∗)).

3To verify this claim it suffices to apply successively (7) backwards starting time point n− 1 (cf. [8]).



4 Risk-Sensitive Optimality in Markov Games
In contrast to Markov decision model considered in section 3 we assume that the expected utility Uπi (γ, n) depends
on decision f (1),n, f (2),n taken by the both players. Since Markov decision processes can be considered as a very
special case of Markov games, it is interesting to mention that stochastic games were formulated by Shapley [12]
in 1953, many years before outburst of systematic interest in Markov decision processes. For the early results on
Markov decision processes see Bellman’s papers [1], [2], Bellman’s monograph [3], Blackwell’s paper [4] and
especially Howard’s book [7].

In contrast to Markov decision processes we must take into consideration decision taken by both players. Hence
the optimality equations (12), (13) must be replaced by the Nash equilibrium condition, see [11]. According to the
Nash equilibrium condition there exist f∗ = (f (1)∗, f (2)∗) ∈ F = F (1) × F (2) such that for any f (1)

i ∈ F (1)
i and

any f (2)
i ∈ F (2)

i for the resulting decisions fdi = (f
(1)
i , f

(2)∗
i ), fui = (f

(1)∗
i , f

(2)
i ), it holds∑

j∈I
qij(f

d
i )v∗j ≤

∑
j∈I

qij(f
∗
i )v∗j = ρ(f∗)v∗i ≤

∑
j∈I

qij(f
u
i )v∗j , (15)

or in matrix notations ρ(f)v(f) = Q(f)v(f) we are looking for f∗ = (f (1)∗, f (2)∗) ∈ F (1) ×F (2) such that

Q(fd)v(f∗) ≤ ρ(f∗)v(f∗) = Q(f∗)v(f∗) ≤ Q(fu)v(f∗) (16)

where ρ(f∗) = eγg(f
∗), vi(f∗) = eγwi(f

∗).

From (3),(5),(6),(8) we immediately get for stationary policy π ∼ (f) that

Uπ
∗

i (γ, n) = eγ[ng(f∗)+wi(f
∗)] × E π

∗

i eγwXn (f∗), Zπ
∗

i (γ, n) =
1

γ
lnUπ

∗

i (γ, n), (17)

n−1Zπ
∗

i (γ, n) = g(f∗) + o(n). (18)

Since the average risk-sensitive reward g(f) = γ−1 ln[ρ(f)] and ρ(f) is the Perron eigenvalue of a nonnegative
matrix Q(f), it is well-known (see e.g. [6]) that for any f

′
, f
′′ ∈ F Q(f

′
) ≤ Q(f

′′
)⇒ ρ(f

′
) ≤ ρ(f

′′
). To gener-

ate lower and upper bounds on minimal and maximal Perron eigenvalue ρ(f∗) we replace elements qij(f
(1)
i , f

(2)
i )

by their minimal and maximal possible values q
′

ij and q
′′

ij . Then the problem is approximated by a (uncontrollable)
risk-sensitive Markov chain and it is possible to generate lower and upper bounds on ρ(f∗) = eγg(f∗) by calculat-
ing Perron eigenvalues (i.e. the spectral radii) of nonnegative matrices. Unfortunately, using this approach we can
expect only very rough bounds on the optimal value of the average risk-sensitive reward.

More friendly bounds can be obtained by a more detailed analysis of the set of all admissible matrices. Of
course, it is reasonable to suggest algorithmic procedures that need not evaluate all admissible matrices. Algorithm
1 is a slight modification of the policy iteration method reported in [8] only for finding maximum Perron eigenvalue
in a set of nonnegative irreducible matrices.

Algorithm 1. (Policy iterations for finding maximal, resp. minimal, Perron eigenvalue.)
Step 0. Find matrix Q(0) := Q(f (1),0, f (2),0) with f (1),0 ∈ F (1), f (2),0 ∈ F (2) such that the row sums are
maximal (resp. minimal).
Step 1. For matrix Q(k) (k = 0, 1, . . .) calculate its spectral radius ρ(k) along with its right Perron eigenvector
v(k).
Step 2. Construct (if possible) matrix Q(k+1) := Q(f (1),k+1, f (2),k+1) with
fk+1 := (f (1),k+1, f (2),k+1) where f (1),k+1 ∈ F (1), f (2),k+1 ∈ F (2), such that

Q(k+1) · v(k) ≥ ρ(k) v(k) = Q(k) · v(k) resp. Q(k+1) · v(k) ≤ ρ(k) v(k) = Q(k) · v(k) (19)

Step 3. If Q(k+1) = Q(k) then go to Step 4, else set k := k + 1 and repeat Step 1.
Step 4. Set Q̂ := Q(k+1), ρ̂ := ρ(k+1), v̂ := v(k+1), f̂ := f (k+1) and stop. ρ̂ is the maximal
(resp. minimal) Perron eigenvalue.

The heart of the above algorithms is the following



Policy improvement routine:
Since for the right (resp. left) Perron eigenvectors v(k) (resp. z(k)) of an irreducible matrix Q(k) it holds Q(k) ·
v(k) = ρ(k)v(k) (resp. z(k)Q(k) = ρ(k)z(k)) if ϕ(k+1) := Q(k+1) · v(k) −Q(k) · v(k) > 0 (resp. < 0) then

Q(k+1) · v(k+1) −Q(k) · v(k) = ρ(k+1)[v(k+1) − v(k)] + [ρ(k+1) − ρ(k)]v(k)

On premultiplying the above equality by z(k+1) (strictly positive row vector) we arrive at

ρ(k+1) · z(k+1)[v(k+1) − v(k)] + [ρ(k+1) − ρ(k)] · z(k+1)v(k) = z(k+1)Q(k+1)[v(k+1) − v(k)] + z(k+1)ϕ(k+1)

implying that z(k+1)ϕ(k+1) = [ρ(k+1) − ρ(k)]z(k+1)v(k).
Since z(k+1)v(k) > 0 if z(k+1)ϕ(k+1) > 0 (resp. z(k+1)ϕ(k+1) < 0) then ρ(k+1) > ρ(k) (resp. ρ(k+1) < ρ(k)).

Illustrative example.
Let I = {1, 2}, A(1)

1 = A(2)
1 = A(1)

2 = A(2)
2 = {1, 2} and the corresponding

transition probabilities be given by the row vectors pi(f
(1)
i , f

(2)
i ) = [pi1(f

(1)
i , f

(2)
i ), pi2(f

(1)
i , f

(2)
i )] for f (1)

i , f
(2)
i =

1, 2. The reward accrued in state i is equal to ri(f
(1)
i , f

(2)
i ).

The following example is borrowed from [5], Example 3.2.2, page 96. Let transition data and one-stage rewards
be:

p1(1, 1) = [0.5; 0.5] r1(1, 1) = 10 p1(1, 2) = [0.5; 0.5] r1(1, 2) = −6

p1(2, 1) = [0.8; 0.2] r1(2, 1) = −4 p1(2, 2) = [0.8; 0.2] r2(2, 2) = 8

p2(1, 1) = [0.3; 0.7] r2(1, 1) = −2 p1(1, 2) = [0.3; 0.7] r2(1, 2) = 5

p2(2, 1) = [0.9; 0.1] r2(2, 1) = 4 p2(2, 2) = [0.9; 0.1] r2(2, 2) = −10

Considering the risk-sensitive model, we replace one-stage reward ri(f
(1)
i , f

(2)
i ) by

r̄i(f
(1)
i , f

(2)
i ) := ln[ri(f

(1)
i , f

(2)
i )] if ri(f

(1)
i , f

(2)
i ) > 0 or by

r̄i(f
(1)
i , f

(2)
i ) := ln[−ri(f (1)

i , f
(2)
i )] if ri(f

(1)
i , f

(2)
i ) < 0.

Observe that eγr̄i(f
(1)
i ,f

(2)
i ) = |ri(f (1)

i , f
(2)
i )|γ . On recalling that

qij(f
(1)
i , f

(2)
i ) =: pij(f

(1)
i , f

(2)
i )× ri(f (1)

i , f
(2)
i ), let the row vectors

qi(f
(1)
i , f

(2)
i ) =: [qi1(f

(1)
i , f

(2)
i ), qi2(f

(1)
i , f

(2)
i )]. Then Q(f (1), f (2)) is the square (nonnegative) matrix whose

i-th row is equal to qi(f
(1)
i , f

(2)
i ).

In particular, if γ = 1, resp. γ = 0.5,

γ = 1 γ = 1 γ = 0.5 γ = 0.5

q1(1, 1) = [5; 5] q1(1, 2) = [3; 3] q1(1, 1) = [1.581; 1.581] q1(1, 2) = [1.225; 1.225]

q1(2, 1) = [3.2; 0.8] q1(2, 2) = [6.4; 1.6] q1(2, 1) = [1.6; 0.4] q1(2, 2) = [2.2628; 0.5656]

q2(1, 1) = [0.6; 1.4] q2(1, 2) = [1.5; 3.5] q2(1, 1) = [0.4242; 0.9899] q2(1, 2) = [0.671; 1.5652]

q2(2, 1) = [3.6; 0.4] q2(2, 2) = [9; 1] q2(2, 1) = [1.8; 0.2] q2(2, 2) = [2.846; 0.3162]

As we can see, if γ = 1, on selecting in state 1 decision (1,1) and in state 2 decision (2,2) spectral radius of the
resulting matrix is equal to 10 – maximum possible value. Similarly, selecting in state 1 decision (2,1) and in state
2 decision (1,1) spectral radius of the resulting matrix is equal to 3.4358 – minimum possible eigenvalue.
However, if γ = 0.5, on selecting in state 1 decision (1,1) and in state 2 decision (2,2) spectral radius of the
resulting matrix is equal to 3.1621 – maximum possible value. Minimum possible value of the spectral radius is
again obtained on selecting in state 1 decision (2,1) and in state 2 decision (1,1) spectral radius of the resulting
matrix is equal to 1.8075, very close to spectral radius 1.8378 obtained if in state 1 decision (1,2) is selected and
in state 2 decision (1,1) is unchanged.
Obviously, if γ = 0 the spectral radius equals one for all decisions.

Moreover, if the risk-sensitive coefficient γ = 1 by a direct calculation we can see that if the second players
selects decision 2 (resp.1) in both states the first player maximize the profit by selecting action 2 in both states
(resp. action 1 in state 1 and action 2 in state 2). If the second players selects decision 2 in state 1 and decision 1 in
state 2 the optimal policy of the player 1 is to select action 2 in states 1 and 2. Finally, if the second players selects
decision 1 in state 1 and decision 2 in state 2 the optimal policy of the player 1 is to select in state 1 action 1 and
action 2 in state 2. Observe that in this case it is necessary to solve 4 problems concerning finding optimal policy
of a risk-sensitive Markov decision chain.



To this end we suggest the following algorithmic procedure. More details and some numerical examples can be
found in [13]. Observe that we restrict only on non-randomized decisions.

Algorithm 2. (Policy iterations for approximating optimal average reward.)
Step 0. Find matrix Q(0) := Q(f (1),0, f (2),0) with f (1),0 ∈ F (1), f (2),0 ∈ F (2) such that its spectral radius is
maximal (resp. minimal).
Step 1. For matrix Q(k) (k = 0, 1, . . .) calculate its spectral radius ρ(k) along with its right Perron eigenvector
v(k).
Step 2. Construct (if possible) matrix Q(k+1) := Q(f (1),k+1, f (2),k+1) with
fk+1 := (f (1),k+1, f (2),k+1) where f (1),k+1 ∈ F (1), f (2),k+1 ∈ F (2), such that
f (1),k+1 = f (1),k for k odd, resp. f (2),k+1 = f (2),k for k even, and

Q(k+1) · v(k) ≤ ρ(k) v(k) = Q(k) · v(k) if k is odd resp. (20)
Q(k+1) · v(k) ≥ ρ(k) v(k) = Q(k) · v(k) if k is even (21)

Step 3. If for some ` = 0, 1, . . . k it happens that Q(k+1) = Q(`) then go to Step 4, else set k := k + 1 and
repeat Step 1.
Step 4. Set Q̄ := Q(`)Q(`+1) · . . . Q(k). Calculate ρ̄, the spectral radius of Q̄ and stop.

Then ρ∗ = (ρ̄)
1

k−` is equal to the long-run risk-sensitive average reward generated by decisions of the first and
second player. in the class of non-randomized policies.
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