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Abstract

We construct a general dynamic model of losses of a large loan portfolio, secured by collat-
erals. In the model, the wealth of a debtor and the price of the corresponding collateral depend
each on two factors: a common one, having a general distribution, and an individual one, fol-
lowing an AR(1) process. The default of a loan happens if the wealth stops to be sufficient for
repaying the loan.

We show that the mapping transforming the common factors into the probability of default
(PD) and the loss given default (LGD) is one-to-one twice continuously differentiable.

As the transformation is not analytically tractable, we propose a numerical technique for
its computation and demonstrate its accuracy by a numerical study.

We show that the results given by our multi-period model may differ significantly from
those resulting from single-period models, and demonstrate that our model naturally replicates
the empirically observed decrease of PDs within a portfolio in time.

In addition, we give a formula for the overall loss of the portfolio and, as an example of its
application, we formulate a simple optimal scoring decision problem and discuss its solution.

Keywords: Credit Risk, Structural Factor Models, Loan Portfolio Management

1 Introduction

At present, factor models form one of the main branches in credit risk modeling. Pioneering work
on this topic was done by [24], [5] or [22], recent development may be found e.g. in [14], [23],
[3] or [16]. For a survey of present state of the art, see e.g., [2]. It is also worth noting that
many migration-rating models, which form another strong branch of credit risk modeling, may be
reformulated as factor ones (see [9]).

In a typical factor model, the (conditional) probability of default (PD) is dependent on one or
more real-valued factors. Particular functions used to express this dependence include logit [14],
probit [23], and e−x [3].

In the case of structural models - a special subgroup of the factor models - the shape of the
transforming function emerges implicitly from the distribution of the debtors’ wealth. In particular,
given the usual assumption that the (log) wealth is equal the sum of a common and an individual
factor,

PD = q(−Y ?)

where Y ? is the difference between the common factor and the minimal wealth needed to repay
the loan, and q is the cumulative distribution function of the individual factor; thus, structural
models with normal individual factors thus coincide with general factor models having the probit
transformation function.

If a collateral is incorporated in the model and its price is equal to the sum of another common
and another individual factor, then the expected LGD may be computed by an integration over
a censored distribution of the individual factor. When, specially, the individual factor is normal
independent of the individual factor underlying the defaults, a closed form formula for LGD exists
(for details, see e.g. [22] or Eq. (17) of [6]).

With a time series of factors and a structural model at hand, it seems natural to model the
dynamics of the PD and LGD by repeated transformations of the common factors according to the
model, as e.g. [21], [8] or [7] do. There is, however, a drawback to this approach because, by the
repeated usage of the single-period model, it is implicitly assumed that the debtors’ wealth “starts
from scratch” at each period, which would be justifiable only if the loans took exactly one period;
in practice, however, the duration of the loans counts in years, so the past of the wealth should be
taken into account.

To be specific, there are at least three sources of the time dependence of the wealth within a
loan portfolio:
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(i) the time dependence of the common factors,

(ii) the time dependence of the individual factors,

(iii) the periodic “cutting-off the poorest” from the portfolio by the defaults.

By its nature, the “single-period” approach is able to accomodate only (i). However, as it is
demonstrated in our paper, (ii) and (iii) may influence the losses of a portfolio significantly (see
Table 1); thus, they have to be taken into account, too.

The model proposed in the present paper, despite it is nothing more than a natural dynamic
generalization of single-period structural models, is able to handle all the three effects. Simultane-
ously, it is general enough: we do not put any specific restrictions on the distribution of the process
of the common factors. The individual factors, in line with empirical evidence (see, e.g., [20] or
[10]), are assumed to be AR(1) withe arbitrary “reasonable” distributions of their residua, which
may also be stochastically dependent.

We prove that, similarly to existing structural model, a one-to-one mapping transforming the
common factors into PDs and LGDs exists and, moreover, is twice continuously differentiable all
in the common factors and in the parameters of the model, which are the volatilities of individual
factors, their AR coefficients and the loan interest rate. Consequently, we show that the overall
percentage loss of the portfolio, seen as a function of the common factors and the parameters, is
twice continuously differentiable, too.

As both the transformation and the overall loss are analytically intractable, we further pro-
pose a numerical technique for the their computation. We also present a simple numerical study
demonstrating efficiency of the technique.

Is it was mentioned above, we also demonstrate that the PDs resulting from our model may
significantly differ from those resulting from the repeated usage of a one-period model. We also
show that, given a positive AR parameter, our model replicates the empirically observed decrease
of the PDs in time within the portfolio (see [1]).

Our model is widely applicable. Not only can it may be combined with any appropriate (macroe-
conomic) model of the factors’ evolution to describe the dynamics of PDs and LGDs, but it may
also serve in concrete portfolio management, namely for stress testing (via factors perturbations)
or for portfolio optimization. In all these cases, the theoretical properties proved in our paper, es-
pecially the differentiability, can help a great deal, either in numerical optimization or in statistical
estimation (for the role of the differentiability in the statistical estimation, see [12] and/or [19],
Chp. 2.3.).

As an example of the application of our model, we formulate a single optimal scoring model
with the debtors’ minimal wealth as the decision variable.

The paper is organized as follows: after this Introduction, the model is formulated (Section
2). Then, formulas for the PD and the mean charge-off, from which the LGD is subsequently
computed, are given (Section 3). Next, the bijectiveness of the transformation, its differentiability
and the differentiability of the overall loss are proved (Section 4). Consequently, the numerical
technique for the computation of the mapping and its inverse is described (Section 5). Further
(Section 7), the accuracy or our technique, the difference to the single-period models, and the
decrease of the PDs in time are demonstrated. Finally, the optimal scoring problem is presented
(Section 7) and the paper is concluded (Section 8). Some auxiliary mathematical material and
proofs are contained in the Appendix.

2 Setting

We consider a portfolio of N loans such that
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• the amounts of loans are identical for all the debtors, equal to one without loss of generality,

• all the loans have the same duration m and the same interest rate ε,

• each loan is arranged at time 0 and is amortized annuity way, i.e., by identical installments

b = b(ε) =

{
ε

1−vm ε 6= 0
1
m ε = 0

, v = v(ε) = (1 + ε)−1,

payed at each of the times 1, 2, . . . ,m (see [17], p. 39. for the formula determining the
repayment given annuity amortization).

Assume further that nominal free wealth Ait of the i-th debtor at time t fulfills

Ait = exp
{
Yt + Zit

}
, t ≥ 1,

where

• Y is a stochastic processes (common factor),

• Zi (individual factor) is a stochastic process such that

– Zi1 = σ1U
i
1, σ1 > 0, where U i1 is a centered standardized2 random variable,

– Zit = φZit−1 + σU it , t > 1, for some constants φ ∈ R, σ > 0, where U i2, U
i
3, . . . are

identically distributed centered standardized.

Further, assume that the i-th loan is secured by a collateral with price P i fulfilling

P i0 = 1

(i.e., is equal to the size of the loan) and

P it = exp
{
It + Eit

}
, t > 0,

where

• I is a stochastic processes (another common factor),

• Ei (individual factor) is a stochastic process fulfilling Eit = ψEit−1 + ρV it , t > 0, for some
constants ψ ∈ R and ρ > 0 where Ei0 ≡ 0 and V i1 , V

i
2 , . . . are identically distributed centered

standardized.

Finally, for any t and i, denote Ξit = (U it , V
i
t ) and assume that

• Ξ1
1,Ξ

2
1, . . . ,Ξ

N
1 ,Ξ

1
2,Ξ

2
2, . . . are mutually independent, independent of Y, I.

• Ξ1
1,Ξ

2
1, . . . ,Ξ

N
1 are identically distributed with a (joint) c.d.f. W1, strictly increasing in both

its arguments, having continuous uniformly bounded first- and second-order derivatives and,
moreover,

|u|w1
1(u) and |v|w2

1(v) are bounded (1)

where w1
1(u) = ∂

∂uW1(u,∞) and w2
1(v) = ∂

∂vW1(∞, v) are densities of U1, V1, respectively.

2i.e., having zero mean and unit second moment
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• Ξ1
2,Ξ

2
2, . . . ,Ξ

N
2 ,Ξ

1
3, . . . are identically distributed with a (joint) c.d.f. W , strictly increasing in

both its arguments, having continuous uniformly bounded first- and second-order derivatives
and, moreover,

|u|w1(u) and |v|w2(v) are bounded (2)

where w1(u) = ∂
∂uW (u,∞) and w2(v) = ∂

∂vW (∞, v) are densities of U2, V2, respectively.

Remark 1. Our assumptions are met if distributions of Ξ1
1 and Ξ2

1 are non-degenerated joint
normal.

Proof. The bounded differentiability may be easily verified using well known formulas for the den-
sities. The monotonicity of the c.d.f.’s follows from the positiveness of their densities. The bound-
edness of |u|w1

1(u) follows from its positivity and the monotonicity of its tails.

Remark 2. Let m = 1.
(i) If Y1 ∼ N (0, ς2), Z1 ∼ N (0, σ2), ς2 + σ2 = 1 then our setting replicates the Vasicek Model [24].
(ii) If Y1, Z1, are as in (i), I1 = α + γY1 for some α, γ > 0, E1 ∼ N (0, %2), 0 ≤ % ≤ 1, E1⊥⊥Z1,
then we are getting the model by [5] up to taking logarithms of the collateral price.
(iii) If Y1, I1, Z1, E1 are as in (ii) with (E1, Z1) joint normal correlated then we have the model by
[22].
(iv) If Y1, I1, Z1, E1 are general with E1⊥⊥Z1 then we get [6].

Proceeding with definitions, denote

Biτ = 1
[
Aiτ < τb

]
= 1

[
Ziτ < −Y ?τ

]
, Y ?τ = Yτ − log τ − logb, (3)

the variable indicating insufficiency of the i-th debtor’s wealth to cover the (accumulated) install-
ments at τ3 and denote

Siτ = 1[Bi1 = 0, Bi2 = 0, . . . , Biτ = 0]

an indicator of “survival” of the i-th debt up to time τ (S0 ≡ 1 by definition).

We say that the i-th debtor defaults at t if

Qit = 1

where
Qit = 1[Bit = 1, Sit−1 = 1].

The loss given default (LGD) of the i-th loan at time t is given

Git =
max(0, ht − P it )

ht

where

ht = ht(ε) =

{
b
∑m
τ=t v

m−τ+1 = bv 1−vm−t+1

1−v ε 6= 0
m−t+1
m ε = 0

is the principal outstanding at t (see [17] for a corresponding formula).

3Alternatively, additional obligations γτ > 0, 1 ≤ τ ≤ m, of the debtor may be considered changing our definitions
to

Biτ = 1

[
Aiτ < τb+

τ∑
ν=1

γτ

]
, Y ?τ = Yτ − log

(
τb+

τ∑
ν=1

γτ

)
without affecting our further results. Moreover, both the factors transformation and the overall loss would be
differentiable in all γ1, . . . , γm thanks to their differentiability in factor Y , proved later.
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The charge-off (percentage loss) of the i-th loan is then given as

Lit = QitG
i
t (4)

Further, denote

Nt =

N∑
i=1

Sit−1 t > 0,

the number of the debts having survived until t and define

QN,t =

∑
1≤i≤N Q

i
t

Nt
, t > 0,

the default rate,

LN,t =

∑
1≤i≤N L

i
t

Nt

the charge-off rate and

GN,t =

∑
1≤i≤N,Qit=1G

i
t∑

1≤i≤N Q
i
t

=
LN,t
QN,t

, t > 0,

the average loss given default.

Finally, denote

LN =
1

N

m∑
t=1

βt−1
∑

1≤i≤N

Lit, β ∈ (0, 1],

the overall relative discounted loss of the portfolio.

Finally, denote
Qt = lim

N→∞
QN,t, Gt = lim

N→∞
GN,t, t ≥ 1,

L = lim
N→∞

LN

the asymptotic versions of the default rate, loss given default and the overall loss (i.e., those given
a hypothetical infinite size of the portfolio).

We hold on the established practice and call Qt probability of default (PD), even though this
name is inaccurate because Qt is a random variable (equal, by the way, to the conditional probability
of default given the vector of factors up to t, see Proposition 1 (i)). Variables Gt and L, we call
simply LGD, overall loss, respectively.

The main goal of the present paper is to examine properties and computability of the mapping
Φt transforming the factors up to time t into the PDs and LGDs up to time t, i.e.

Φt(Y1, I1, . . . Yt, It; θ) = (Q1, G1, . . . , Qt, Gt), (5)

its inversion, and the mapping Λ transforming the common factors into the overall loss, i.e. fulfilling

L = Λ(Y1, I1, . . . , Ym, Im; θ) (6)

in dependence on parameter vector

θ = (ε, σ1, σ, ρ, φ, ψ)

taking values in space
Θ = (−1,∞)× (0,∞)3 × R2.
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3 Probability of Default and Mean Charge-off

In the present Section, mappings transforming the common factors into the probability of default,
the mean charge-off rate, respectively, are studied under temporary assumption that

Y ≡ y, I ≡ ι for some deterministic y ∈ RN,ι ∈ RN (7)

(meanwhile, variables Ξ are kept stochastic). Readers, interested only in our main results, may skip
this Section without loss of understanding; further text, however, references several formulas from
the present Section. For notational simplicity, we write Ξτ instead of Ξ1

τ , Uτ instead of U1
τ , etc.,

throughout the Section.

We start with some properties of the conditional distribution of (Zt, Et) given survival of the
debt until t− 1:

Lemma 1. For any t ≥ 1, denote
ξt = (yt, . . . , y1, θ).

and put

Ft(z, e; ξt−1) =

{
W1

(
z
σ1
, eρ

)
t = 1,

At
Ct

t > 1,
(8)

At = At(z, e; ξt−1) (9)

=

∫
{r≥−y?i−1,,s∈R}

W

(
z − φr
σ

,
e− ψs
ρ

)
dFt−1(r, s; ξt−2),

Ct = Ct(ξt−1) = 1− Ft−1(−y?t−1,∞; ξt−2),

y?t = y?t (yt, ε) = yt − log t− log b(ε).

Let t ≥ 1 and let ξt−1 be feasible, i.e. ξt−1 ∈ Rt−1 ×Θ. Then

(i) for each z, e ∈ R,
P[Zt ≤ z, Et ≤ e|St−1 = 1] = Ft(z, e; ξt−1),

(ii) Ft is strictly increasing in both z and e,

(iii) Ft is continuously differentiable in (z,e,ξt−1),

(iv) for each symbol s ∈ {z, e, yt−1, . . . , y1, ε, σ1, σ, φ, ρ, ψ} there exists continuous α
(s)
t (ξ) ∈ R+such

that ∣∣∣∣ ∂∂sFt(z, e; ξt−1)

∣∣∣∣ ≤ α(s)
t−1(ξt−1).

If, in addition,

u2
∣∣∣∣ ∂∂uw1

1(u)

∣∣∣∣, v2 ∣∣∣∣ ∂∂vw2
1(v)

∣∣∣∣ and |uv|w1(u, v) are bounded, the first two being integrable (10)

u2
∣∣∣∣ ∂∂uw1(u)

∣∣∣∣, v2 ∣∣∣∣ ∂∂vw2(v)

∣∣∣∣ and |uv|w(u, v) are bounded, the first two being integrable, (11)

w
1|2
1 (u|v) ≤ ω1|2

1 , w1|2(u|v) ≤ ω1|2, w2|1(v|u) ≤ ω2|1, u, v ∈ R, (12)

where w1 = ∂
∂u∂vW1 and w = ∂

∂u∂vW are densities of (U1, V1), (U2, V2), respectively, wi and wi1
denote the i-th coordinates of w1, w, respectively, ω

1|2
1 , ω1|2 and ω2|1 are finite constants, and where

w
1|2
1 , w1|2 and w2|1 are the conditional densities of U1|V1,U2|V2, V2|U2, respectively, then
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(v) Ft is twice continuously differentiable in (z, e, ξt−1),

(vi) for any symbols r, s ∈ {z, e, yt−1, . . . , y1, ε, σ1, σ, φ, ρ, ψ} there exists a continuous α(r,s)(ξ) ∈
R+ such that ∣∣∣∣ ∂

∂r∂s
Ft(z, e; ξt−1)

∣∣∣∣ ≤ α(r,s)(ξt−1), z, e ∈ R.

Proof. See Appendix B.

Remark 3. Conditions (10), (11) and (12) are met if distributions of Ξ1
1 and Ξ2

1 are non-degenerated
joint normal.

Proof. Denote f the standard normal density. Using the fact that f is decreasing on R+ and
the By Parts Formula gradually, we get

∫
R+ u

2| ∂∂uw
1
1(u)|du = −

∫
R+ u

2 ∂
∂uf(u)du = 2

∫
uf(u)du =

E|U1|, and, symmetrically,
∫
R− u

2|w1
1(u)|du = E|U1|, which imply the first formula in (10) (the

boundedness of function u2| ∂∂uw
1
1(u)| may be proved by showing that its tails are monotone beyond

certain threshold).

Further, as U1|V1 ∼ N (%V1, 1−%2) where % is the correlation coefficient between U1 and V1 (see
[4], Proposition 3.13), we have that

w
1|2
1 (u|v) = cf (c(u+ %v)) ≤ cf(0), c =

1√
1− %2

proving the first formula of (12). As, further,

max
u,v
|uv|w1(u, v) = max

u,v
|uv|cf (c(u+ %v)) f(v)

x=c(u+%v)
= max

v,x

∣∣∣x
c
− %v

∣∣∣ |v|cf(x)f(v)

≤ max
v,x
|xv|f(x)f(v) + c%max

v,x
v2f(x)f(v)

= max
x
|x|f(x) max

v
|v|f(v) + c%max

x
f(x) max

v
v2f(v) <∞

(the finiteness follows from the fact that the tails of the maximized functions are vanishing at ∞),
i.e. the last formula of (1) is proved. The proofs of the rest of (10), (11) and (12) are analogous.

The following two Propositions describe properties of the probability of default, the expected
charge-off rate, respectively, of a single debt in dependence on ξt.

Proposition 1. Let t ≥ 1 and let ξt−1 be feasible. Put

qt = qt(ξt) = Ft(−y?t ,∞; ξt−1).

Then

(i) P[Qt = 1|St−1 = 1] = qt,

(ii) qt is strictly decreasing in yt,

(iii) qt is continuously differentiable in ξt,

(iv) qt(•, ξt−1) is a bijection between R and (0,1),

(v) q−1t (z, ξt−1), where the inversion is meant with respect to the first argument of q, is continuously
differentiable in (z, ξt−1),
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(vi) if (10), (11) and (12) hold then qt and q−1t are twice continuously differentiable in ξt, (z, ξt−1),
respectively.

Proof. (i) follows from (3) and from the fact that Qt = Bt on [St−1 = 1], implying that P[Qt =
1|St−1 = 1] = P[Bt = 1|St−1 = 1]. (ii) and (iii) are implied by Lemma 1 (ii), (iii), respectively,
and by the fact that b(•) is continuously differentiable.4(iv) follows from the continuity of Ft(•,∞),
its strict monotonicity and the fact that it is a c.d.f., i.e., its limits in −∞ and +∞ are zero, one,
respectively. It remains to prove (v) and (vi): To this end, let ẑ ∈ (0, 1) be a constant and let

ŷ = q−1t (ẑ, ξ).

Define function φ by
φ(y, z, ξ) = qt(y, ξ)− z.

As
φ(ŷ, ẑ, ξ) = 0

and as ∂
∂yφ(ŷ, ẑ, ξt−1) < 0 by (ii) and (iii), it follows from the Implicit Function Theorem that there

exists a neighborhood N of (ẑ, ξt−1) and a continuously differentiable function υ, uniquely defined
on N , such that

φ(υ(z, ξ), z, ξ) = 0, (z, ξ) ∈ N. (13)

However, as (13) also uniquely defines q−1t , necessarily υ(z, ξ) = q−1t (z, ξ) for any (z, ξ) ∈ N, i.e..(v)
is proved.

Finally, if the assumptions of (vi) hold true, then, by Lemma 1 (v) and thanks to continuous
second order differentiability of b (which can be proved analogously as in Footnote 4), qt(ξt) is twice
continuously differentiable. Moreover, by the Implicit Function Theorem, υ is twice continuously
differentiable, i.e. (vi) is proved.

Proposition 2. Let t ≥ 1 and let ξt be feasible. Put

λt = λt(ιt, ξt) = λ?t (ιt − log ht, ξt)

where

λ?t (s, ξt) = Ht(−s; ξt)− exp(s)

∫ −s
−∞

exp(x)dHt(x; ξt) (14)

= exp(s)

∫ −s
−∞

Ht(x; ξt) exp(x)dx, (15)

Ht(e; ξt) = Ft(−y?t , e; ξt−1).

Then

(i) E[Lt|St−1 = 1] = λt,
5

(ii) λt is strictly decreasing in ιt and yt,

(iii) λt is continuously differentiable in (ιt, ξt),

(iv) λt(•, ξt) is a bijection between R and (0, qt),

(v) λ−1t (x, ξt), where the inversion is with respect to the first argument of λt, is continuously
differentiable in (x, ξt),

4The differentiability in zero, which is the only problematic point, follows from Lemma 5.
5Rigorously: E[Lt|St−1] = λt on [St−1 = 1].
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(vi) if (10), (11) and (12) hold then both λt and λ−1t are twice continuously differentiable in (ιt, ξt),
(x, ξt), respectively.

Proof. Ad (i). Using probability calculus, we gradually get that, on [St−1 = 1],

E[Lt|St−1] = h−1t E(Dt max(0, ht − Pt)|St−1)

= h−1t

∫
(ht − p)1[ht − p > 0]1[z < −y?t−1]dPPt,Zt|St−1

(p, z)

= h−1t

∫
(ht − exp{ιt + e})1[z < −y?t−1]1[e < log ht − ιt]dFt(e, z)

= h−1t

[
ht

∫
1[z < −y?t−1]1[e < log ht − ιt]dFt(e, z)

− exp{ιt}
∫

1[z < −y?t−1]1[e < log ht − ιt] exp{e}dFt(e, z)
]

= Ft(−y?t−1, log ht − ιt)− exp{ιt − log ht}
∫

1[z < −y?t−1]1[e < log ht − ιt] exp{e}dFt(e, z)

= Ht(ιt − log ht)− exp{ιt − log ht}
∫

1[e < log ht − ιt] exp{e}dHt(e)

which proves (i) in its variant (14) (at the last equality, we have used the fact that, for any positive
measurable f ,

∫
f(e)1[z ≤ −y?t−1]dFt(z, e) =

∫
f(e)dHt(e) which may be easily verified e.g. by an

approximation by simple functions). Finally, put ηt(e; ξt) = ∂
∂eFt(−y

?
t , e; ξt−1) (the existence of the

derivative is guaranteed by Lemma 1 (iii)) and note that ηt is a density corresponding to Ht. Using
the By Parts formula, we get∫ −s

−∞
exp(x)dHt(x) =

∫ −s
−∞

exp(x)ηt(x)dx = Ht(−s) exp{−s} −
∫ −s
−∞

Ht(x) exp(x)dx,

which, plugged into (14), gives (15).
Ad (ii). By differentiating (14) with ηt(x)dx in place of dHt(x) we get, using the Leibnitz Rule,
that

∂

∂s
λ?t (s) = −ηt(−s)− exp(s)

(∫ −s
−∞

exp(x)ηt(x)dx− exp(−s)ηt(−s)
)

= − exp(s)

∫ −s
−∞

exp(x)ηt(x)dx < 0 (16)

which proves the monotonicity of λ?t in s, implying the monotonicity of λt in ιt. The monotonicity
in yt follows from that of Ht, which is inherited from Ft, and the strict positivity of the integrand
in (15).
Ad (iii). The continuous differentiability of λt in ιt follows from that of λ?t in s (see (16) and note
that the continuity of the derivative follows from absolute continuity of the Lebesgue measure).
The differentiability in ξit (the i-th coordinate of ξt) and the continuity of the derivative follows
from Lemma 4. In particular, by differentiating (15) we get

∂

∂ξit
λ?(s, ξt) = exp(s)

∫ −s
−∞

∂

∂ξit
F t(−y?t , x; ξt) exp(x)dx;

with the integrable upper bound being equal to exp(x)α
(z)
t (if we differentiate according to yt) or

exp(x) max|ξ−ξt|≤ε α
(i)
t (ξ) (in the remaining cases). The continuity of the derivative follows from

the well known theorem guaranteeing continuity of a Lebesgue integral dependent on a parameter
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([18], Theorem 9.1.). (iii) now follows from the continuous differentiability of ht.
6

Ad (iv). As λ?t (s) ≥ 0 by (14) and λ?t (s) ≤ Ht(−s) by (15), necessarily

lim
ιt→∞

λt(ιt, ξt) = lim
s→∞

λ?t (s, ξt) = 0. (17)

Further, we have

ιt → −∞ =⇒ Pt → 0 a. s. =⇒ Gt → 1 a. s.

=⇒ E(Lt|St−1 = 1)→ E(Dt|St−1 = 1)⇒ λt(ιt, ξt)→ qt

(the expectations converge because Lt and Dt are uniformly bounded). Therefore and thanks to
(17), point (ii) of the present Proposition and the continuity of λt (following from its differentiability
in ιt) suffices for (iv).
Ad (v). The assertion may be proved analogously to (v) of Proposition 1.
Ad (vi). For any 1 ≤ i, j ≤ dim(ξt),

∂

∂ξi∂ξj
λ?t (s, ξt) = exp(s)

∫ −s
−∞

∂

∂ξi∂ξj
F t(−y?t , x; ξt) exp(x)dx

(an integrable upper bound here is exp(x) max|ξ−ξt|≤ε α
(i,j)
t (ξ)). Further, by differentiation of (16),

∂

∂s∂s
λ?t = − exp(s)

[∫ −s
−∞

exp(x)ηt(x)dx− exp(−s)ηt(−s)
]

= ηt(−s)− exp(s)

∫ −s
−∞

exp(x)ηt(x)dx

(the derivative is continuous because ηt is continuous by Lemma 1 (iii)) and, by differentiation of
(16) again,

∂

∂s∂ξit
λ?t = − exp(s)

∫ −s
−∞

exp(x)
∂

∂x∂ξit
Ft(−y?t , x)dx

(an integrable upper bound being exp(x) max|ξ−ξt|≤ε α
(z,j)
t (ξ) here). As ∂

∂s∂ξit
λ?t = ∂

∂ξit∂s
λ?t thanks

to the continuity of the l.h.s., we have proved that λ?t is twice continuously differentiable in (s, ξt)
which, together with the second continuous differentiability of ht

7 proves the continuous differentia-
bility of λt in (ιt, ξt) which itself suffices for (vi) (for details, the the analogous proof of Proposition
1 (vi)).

Next Corollary discusses two important special cases

Corollary 1. (i) If U⊥⊥V then

λt = qtγt, γt = γt(ιt, θ) = γ?t (ιt − log ht, θ)

where

γ?t (s, θ) = Rt(−s)− exp(s)

∫ −s
−∞

exp(x)dRt(x) = exp(s)

∫ −s
−∞

Rt(x) exp(x)dx

Rt(e) = Rt(e; θ) = P[Et ≤ e]. (18)

6The differentiability of ht follows similarly as that of b, see Footnote 4.
7Proved analogously to Footnote 4
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(ii) If, U⊥⊥V and V1 ∼ N (0, 1) then

γ?t (s, θ) = ϕ(− s

ρt
)− exp

{
s+

ρ2t
2

}
ϕ

(
−s− ρ2t
ρt

)
, ρ2t =

{
ρ2 · 1−ψ

2t+2

1−ψ2 ψ 6= 1

ρ2t ψ = 1
(19)

where ϕ is the standard normal c.d.f.

Proof. (i) follows from the fact that

U⊥⊥V ⇒ E⊥⊥Z ⇒ Et⊥⊥Zt, St−1

(in the last implication, we have used the fact that St−1 is a function of Z1, Z2, . . . , Zt−1) implying

Ht(e) = P[Zt ≤ −y?t−1, Et ≤ e|St−1 = 1]

= P[Et ≤ e|Zt ≤ −y?t−1, St−1 = 1]P[Zt ≤ −y?t−1|St = 1] = Rt(e)qt

which, plugged into (14) and (15), gives (i).
Ad (ii). By an easy calculation we get that Et ∼ N (0, ρ2t ), i.e.,

Rt(e) = ϕ

(
e

ρt

)
, dRt(e) =

1

ρt
√

2π
exp

{
− e2

2ρ2t

}
dx,

and, consequently,∫ −s
−∞

exp(x)dRt(x) =

∫ −s
−∞

1

ρt
√

2π
exp

(
x− x2

2ρ2t

)
dx

=

∫ −s
−∞

1

ρt
√

2π
exp

(
− (x− ρ2t )2

2ρ2t
+
ρ2t
2

)
dx

= exp

{
ρ2t
2

}
P[N (ρ2t , ρ

2
t ) ≤ −s] = exp

{
ρ2t
2

}
ϕ

(
−s− ρ2t
ρt

)
which, together with (i), gives (ii).

Now we may prove the required properties of a mapping, which will later be shown to fulfill (5).

4 Main Results

We start the present Section by the construction of the mapping transforming the factors to the
rates.

Theorem 1. Let t ≥ 1.

(i)
(Q1, G1, . . . , Qt, Gt) = Φt(Y1, I1, . . . Yt, It; θ) (20)

where

Φt(y1, ι1, . . . , yt, ιt; θ)

= (q1(y1, θ), g1(ι1, y1, θ), . . . , qt(yt, . . . , y1, θ), gt(ιt, yt, . . . , y1, θ)) (21)

and

gτ (ιτ , yτ , . . . , y1, θ) =
λτ (ιτ , yτ , . . . , y1, θ)

qτ (yτ , . . . , y1, θ)
, 1 ≤ τ ≤ t.

Moreover, Φt is one-to-one between R2×t and (0, 1)2×t and is continuously differentiable in
(y1, ι1, . . . , yt, ιt, θ) (see Propositions 1 and 2 for definitions of qτ , λτ , respectively).
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(ii) The inversion of Φt is given by

Ψt(z1, x1, . . . , zt, xt; θ)

= (ỹ1(z1; θ), ι̃τ (z1, x1; θ), . . . , ỹt(zt, . . . , z1; θ), ι̃t(xt, zt, . . . , z1; θ)) (22)

where

ỹ1(z1; θ) = q−11 (z1, θ), ι̃1(z1, x1; θ) = λ−11 (x1z1, ỹ1(z1; θ), θ), z1, x1 ∈ (0, 1),

and, for any τ > 1,

ỹτ (zτ , . . . z1; θ) = q−1τ (zτ , ỹτ−1(zτ−1, . . . , z1; θ), . . . , ỹ1(z1; θ); θ),

ι̃τ (xτ , zτ , . . . z1; θ) = λ−1τ (xτzτ , ỹτ (z1, . . . , zτ ; θ), . . . , ỹ1(z1; θ); θ),

z1, z2, . . . , zτ , xτ ∈ (0, 1) (23)

(the inversions of qτ and λτ are meant with respect to their first arguments). Moreover, Ψt

is continuously differentiable in (z1, x1, . . . , zt, xt, θ).

(iii) If (10), (11) and (12) hold true then Φt and Ψt are twice continuously differentiable in
(y1, ι1, . . . , yt, ιt, θ), (z1, x1, . . . , zt, xt, θ), respectively.

Proof. We start with the proof of (ii). If t > 1, then the assertion may be easily verified by
Proposition 1 (iv) and Proposition 2 (iv). Let t > 1 and assume (ii) to hold for t − 1. Let
νt = (z1, x1, . . . , zt, xt) ∈ (0, 1)2×t. Then

Φt(Ψt(νt)) = Φt(Ψt−1(νt−1), q−1t (zt, ỹt−1, . . . , ỹ1; θ), λ−1t (ztxt, ỹt, . . . , ỹ1; θ))

=
(

Φt−1(Ψt−1(νt−1)), qt(q
−1
t (zt, ỹt−1, . . . , ỹ1; θ), ỹt−1, . . . , ỹ1; θ),

λt(λ
−1
t (ztxt, ỹt, . . . , ỹ1; θ), ỹt, . . . , ỹ1; θ)

qt(q
−1
t (zt, ỹt−1, . . . , ỹ1; θ), ỹt−1, . . . , ỹ1; θ)

)
= (z1, x1, . . . , zt, xt) = νt. (24)

Similarly we could show that Φt(Ψt(υt)) = υt for any υt ∈ R2×t which, together with (24), would
prove that Ψt is an inverse of Φt. The differentiability of Ψt is easy to verify using (v)’s of Propo-
sitions 1, 2, respectively, and the Chain Rule for Derivatives.
Ad (i). Let 1 ≤ τ ≤ t. First, assume (7) (i.e. that Y and I are deterministic). Then, by the Strong

Law of Large Numbers ([15] Theorem 4.23),
∑

1≤i≤N Qiτ
N → P[Q1

τ = 1] and Nτ−1

N → P[S1
τ−1 = 1]

almost sure, hence in probability, so, by Lemma 3 (see Appendix),

Qτ =
p limN

∑
1≤i≤N Qiτ
N

p limN
Nτ−1

N

=
P[Q1

τ = 1]

P[S1
τ−1 = 1]

=
P[Q1

τ = 1|S1
τ−1 = 1]P[S1

τ−1 = 1] + P[Q1
τ = 1|S1

τ−1 = 0]P[S1
τ−1 = 0]

P[S1
τ−1 = 1]

= P[Q1
τ = 1|S1

τ−1 = 1] = qτ (Yτ , . . . , Y1, θ) (25)

by Proposition 1 (i) (we have used the fact that Q1
τ = 0 on [S1

τ−1 = 0] implying P[Q1
τ = 1|S1

τ−1 =

13



0] = 0) and, by analogous arguments,

Gτ =
p limN L

N
τ

p limN QNτ
=

E[L1
τ ]

P[Q1
τ = 1]

=

=
E[L1

τ |S1
τ−1 = 1]P[S1

τ−1 = 1] + E[L1
τ |S1

τ−1 = 0]P[S1
τ−1 = 0]

P[Q1
τ = 1|S1

τ−1 = 1]P[S1
τ−1 = 1]

=
E[L1

τ |S1
τ−1 = 1]

P[Q1
τ = 1|S1

τ−1 = 1]
=
λτ (Iτ , Yτ , . . . , Y1, θ)

qτ (Yτ , . . . , Y1, θ)
(26)

by Proposition 1 (i) and Proposition 2 (i) (we have used fact that E[L1
τ |S1

τ−1 = 0] = 0 which is true
because S1

τ−1 = 0⇒ Q1
τ−1 = 0⇒ L1

τ = 0).

Now, stop assuming (7) (i.e. let Y, I be stochastic again). Then, however, (25) and (26), and
consequently (20), hold by Lemma 2 (notice that (Ξτ )τ≥1⊥⊥(Yτ , Iτ )τ≥1 and that there are no other
random elements than

(Ξτ , Yτ , Iτ )τ≥1

in our setting). The differentiability follows from (iii) Proposition 1 (iii) and Proposition 2 (iii).
The one-to-one property follows from the fact that the image of Φt is a subset of (0, 1)2×t and from
the proof of (ii), during which it was shown that a unique Φ−1t (ν) exists for any ν ∈ (0, 1)2×t.
Ad (iii). The assertion follows from from Proposition 1 (vi) and Proposition 2 (vi).

Given the mutual independence of the factors, the situation simplifies:

Corollary 2. If U⊥⊥V then

gτ (ιτ , yτ , . . . , y1, θ) = γτ (ιτ , θ), ι̃t(xτ , zτ , . . . , x1; θ) = γ−1τ (xτ , θ), τ ≥ 1

(see Corollary 1 for the definition of γτ ).

Proof. The assertion is a direct consequence of Corollary 1 (i).

Next we show that the one-to-one property holds also between Y ′s and Q′s alone:

Corollary 3. For any t ≥ 1,

(Q1, . . . , Qt) = Φ1
t (Y1, . . . , Yt; θ) (27)

where
Φ1
t (y1, . . . , yt; θ) = (qτ (yτ , . . . , y1; θ))1≤τ≤t (28)

is a bijection between Rt and (0, 1)t, is continuously differentiable in (y1, . . . , yt, θ) and has inversion

Ψ1
1(z1, . . . , zt; θ) = (ỹτ (zτ , . . . , z1; θ))1≤τ≤t. (29)

which is continuously differentiable in (z1, . . . , zτ , θ). Given (10), (11) and (12), Φ1
t and Ψ1

t are
twice continuously differentiable in (y1, . . . , yt, θ), (z1, . . . , zt, θ), respectively.

Proof. Formula (27) and the differentiability of both Φ1 and Ψ1
t follow directly from Theorem 1.

The fact that Ψ1
t is the inversion of Φ1

t may be proved analogously to the proof of Theorem 1.

Before leaving the topic of Φt, let us present several formulas suitable for working with individual
loans.

Theorem 2. For any t ≥ 1, any i ∈ N, and any y1, ι1, . . . , yt, ιt ∈ R,
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(i)

P[Ait ≤ a, P it ≤ e|Sit−1 = 1, Y1 = y1, I1 = ι1, . . . , Yt = yt, It = ιt]

= Ft(log a− yt, log e− ιt; yt−1, . . . , y1, θ),

(see Lemma 1 for the definition of Ft)

(ii) P[Qit = 1|Sit−1 = 1, Y1 = y1, I1 = ι1, . . . , Yt = yt, It = ιt] = qt(yt, . . . , y1, θ),

(iii)

E(Lit|Sit−1 = 1, Y1 = y1, I1 = ι1, . . . , Yt = yt, It = ιt)

=

{
qt(yt, . . . , y1, θ)γt(ιt, θ) if U⊥⊥V
λt(ιt, yt, . . . , y1, θ) otherwise,

(iv)

E(Git|Qit = 1, Sit−1 = 1, Y1 = y1, I1 = ι1, . . . , Yt = yt, It = ιt)

=

{
γt(ιt, θ) if U⊥⊥V
λt(ιt,yt,...,y1,θ)
qt(yt,...,y1,θ)

otherwise.

Proof. Ad (i). By basic probability calculus, applied to the conditional distribution given (Y,I),

P[Ait ≤ a, P it ≤ e|Sit−1 = 1, Y1 = y1, I1 = ι1, . . . , Yt = yt, It = ιt]

=
P[Ait ≤ a, P it ≤ e, Sit−1 = 1|Y1 = y1, I1 = ι1, . . . , Yt = yt, It = ιt]

P[Sit−1 = 1|Y1 = y1, I1 = ι1, . . . , Yt = yt, It = ιt]
. (30)

Given (7), we would have

P[Sit−1 = 1, Y1 = y1, I1 = ι1, . . . , Yt = yt, It = ιt]

= P[Sit−1 = 1] =
∏

1≤τ≤t−1

P[Siτ = 1|Siτ−1 = 1] =
∏

1≤τ≤t−1

(1− qτ )

and

P[Ait ≤ a, P it ≤ e, Sit−1 = 1, Y1 = y1, I1 = ι1, . . . , Yt = yt, It = ιt]

= P[Ait ≤ a, P it ≤ e, Sit−1 = 1]

= P[Ait ≤ a, P it ≤ e|Sit−1 = 1]P[Sit−1 = 1]

Ft(log a− yt, log e− ιt; yt−1, . . . , y1, θ)
∏

1≤τ≤t−1

(1− qτ ).

As, by Lemma 2, the last two formulas hold with (7) released, (i) follows by plugging these formulas
into (30).
Ad (iv). We have

E(LitS
i
t−1|Y1 = y1, . . . ) = E(GitQ

i
tS
i
t−1|Y1 = y1, . . . ) =

E(Git|QitSit−1 = 1, Y1 = y1, . . . )P[QitS
i
t−1 = 1|Y1 = y1, . . . ]

+ E(Git|QitSit−1 = 0, Y1 = y1, . . . )︸ ︷︷ ︸
=0

P[QitS
i
t−1 = 0|Y1 = y1, . . . ]
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giving

E(Git|QitSit−1 = 1, Y1 = y1, . . . ) =
E(LitS

i
t−1|Y1 = y1, . . . )

P[QitS
i
t−1 = 1|Y1 = y1, . . . ]

.

As, by Lemma 2,

E(LitS
i
t−1|Y1 = y1, . . . ) = E(LitS

i
t−1)

= E(Lit|Sit−1 = 1)P[Sit−1 = 1] + E(Lit|Sit−1 = 0)︸ ︷︷ ︸
=0

P[Sit−1 = 0] = λt
∏

1≤τ≤t−1

(1− qτ )

and
P[Qit = 1, Sit−1 = 1|Y1 = y1, . . . ] = qt

∏
1≤τ≤t−1

(1− qτ );

(iv) is proved (see Corollary 1 for the case U⊥⊥V ).
The proofs of (ii) and (iii) are analogous.

Finally let us construct mapping Λ, promised by (6).

Theorem 3. It holds that
L = Λ(Y1, I1, . . . , Ym, Im; θ) (31)

where

Λ(y1, ι1, . . . , ym, ιm; θ) =

m∑
t=1

βt−1λt(ιt, yt, . . . y1, θ)

t−1∏
τ=1

[1− qτ (yτ , . . . , y1, θ)]. (32)

Moreover, Λ is continuously differentiable in all y1, ι1, . . . , ym, ιm, θ. If, in addition, (10), (11) and
(12) hold true then Λ is twice continuously differentiable in all y1, ι1, . . . , ym, ιm, θ (see Proposition
1, Proposition 2 and Corollary 1 for definitions of qt and λt, respectively).

Proof. The proof is similar to that of Theorem 1: If Y and I were deterministic (assumption (7))
then we would get, using Lemma 3, the Law of Large Numbers and Proposition 2 (i), that

L = plimN→∞LN =

m∑
i=1

βt−1plimN→∞
1

N

N∑
i=1

Lit,=
m∑
t=1

βt−1E(L1
t )

=

m∑
t=1

βt−1

E(L1
t |S1

t−1 = 1)P[S1
t−1 = 1] + E(L1

t |S1
t−1 = 0)︸ ︷︷ ︸
=0

P[S1
t−1 = 0]


=

m∑
t=1

βt−1λtP[S1
t−1 = 1]. (33)

As, for any τ ≥ 1,

P[S1
τ = 1] = P[S1

τ = 1|S1
τ−1 = 1]P[S1

τ−1 = 1] + P[S1
τ = 1|S1

τ−1 = 0]︸ ︷︷ ︸
=0

[S1
τ−1 = 0]

= (1− qτ )P[S1
τ−1 = 1]

(by Proposition 1 (i)), it is

P[S1
t−1 = 1] =

t−1∏
τ=1

(1− qτ ),
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which, together with (33) gives (31) for deterministic Y, I. Similarly to the proof of Theorem 1,
the validity of (31) given stochastic Y, I follows by Lemma 2. The differentiability if Λ is clearly
inherited from that of the q’s and theλ’s (see Propositions 1 and 2).

Remark 4. If U⊥⊥V then we may use the fact that

λt(ιt, yt, . . . y1, θ) = qt(yt, . . . y1, θ)γt(ιt, θ), 1 ≤ t ≤ m,

in computation of (32) (see Corollary 1).

5 Numerical Computation of the Transformation

In the present Section, we discuss practical computation of mapping Φ1
t transforming Y ’s to Q’s,

and its inverse. The transformation between I’s and G’s is left aside because its computation is
relatively easy in the case of independent individual factors, requiring no broader discussion, while
its treatment in the general case of dependent factors, despite it could be done similarly as in the
case of Φ1 (see also Remark 5 at the end of the Section), would add undue complexity to the present
text.

Let y1, . . . , yt ∈ R be constants. We start by describing the dynamics of the conditional distri-
bution of the individual wealth factor.

Proposition 3. Denote U1 and U the distributions of σ1 · U1, σ · U2, respectively. Denote

Zt = Zt(y1, . . . , yt) = L(Zt|St−1 = 1, Y1 = y1, . . . , Yt = yt), t ≥ 1.

It holds that
Z1 = U1, (34)

and, for any t > 1,

(i)
Zt = φ · T (Zt−1,−y?t−1) ◦ U , t > 1, (35)

where ◦ denotes convolution, T (•; y) is an operator of truncation8 at y and a · • stands for
scaling, i.e. multiplication of a corresponding random variable by constant a (y?t−1 is defined
in Lemma 1).

(ii) Alternatively
Zt = φ · M(Zt−1, qt(y1, . . . , yt)) ◦ U , t > 1, (36)

where
M(Z, p) = T (Z, χ(Z, p))

and, for any distribution Z,

χ(Z, α) = inf(x;Z(−∞, x] ≥ α)

denotes its α-quantile (qt is defined by in Proposition 1).

8By truncation of a distribution with c.d.f. F at a we understand a distribution with c.d.f. F̂ (x) =

max
(

0,
F (x)−F (a)
1−F (a)

.
)
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Proof. Formula (34) is straightforward.
Ad (i). For any τ, denote Gτ (•) = Fτ (•,∞; y1, . . . yt−1) the c.d.f. of Zτ . First, note that, by (i) of
Lemma 1, Gt may be rewritten as

Gt(z) =

∫
{x≥−y?t−1,s∈R}

W ( z−φxσ ,∞)dFt−1(x, s)

1− Ft−1(−y?t−1,∞)

=

∫
{x≥−y?t−1}

W ( z−φxσ ,∞)dGt−1(x)

1−Gt−1(−y?t−1)

=

∫
{x≥−y?t−1}

W (
z − φx
σ

,∞)d
Gt−1(x)

1−Gt−1(−y?t−1)
=

∫
W (

z − φx
σ

,∞)dG̃t−1(x) (37)

where

G̃t−1(x) = max

(
0,
Gt−1(x)−Gt−1(−y?t−1)

1−Gt−1(−y?t−1)

)
(we have used the facts that adding constants to c.d.f.’s does not change integrals). As (37) is
exactly the formula for convolution of φ · X and σ · U where U is a variable with c.d.f. W (•,∞)
and X is a variable with c.d.f. Ĝt−1, and as G̃t−1 is nothing else but the c.d.f. of Zt−1 truncated
at −y?t−1, (i) is proved.
Ad (ii). The assertion holds thanks to (i) and because χ(Zt, qt(yt, . . . y1)) = −y?t by the definitions
of qt and Zt.

Because formula for Zt is intractable already starting from t=2, we use an approximation -
namely discretization - to evaluate the dynamics of Zt. In particular, we replace U1 and U by
atomic distributions W1,W, respectively, defined by

W1 = Dh,−n,n(U1), W = Dh,−n,n(U) (38)

where h is small enough and n is large enough and where

Dη,n1,n2
(P) =

n2∑
i=n1

δiηP [Ii] , Ii =


(−∞, n1η + η

2 ] i = n1

(iη − η
2 , iη + η

2 ] n1 < i < n2

(n2η − η
2 ,∞) i = n2

is an operator of discretization of a distribution P, with bandwidth η and range (n1, n2) (here, δx
stands for the Dirac measure concentrated in x).

First, let us discuss the computation of Φ1 in the case when Y ’s are known and Q’s are computed;
here, we approximate Zt, t ≥ 1, by distributions At, t ≥ 1, such that

A1 =W1

and, for each t > 1, At is computed by the following steps:

1. A?t ← T (At−1,−Y ?t−1) (truncation at −Y ?t−1)

2. ASt ← S(A?t , φ) where S(•, φ) is an operator of scaling by φ and consequent re-discretization
so that the distance between atoms is h

3. A◦t ← ASt ◦W (convolution with W)
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4. At ← C(A◦t , εt) where C(•, εt) is an operator of two-sided censoring9done so that the censored
mass is no greater than a prescribed εt and simultaneously the range of the resulting distri-
bution is minimal (this step is done in order to save the computational time by accumulating
tails of negligible probability).

Consequently, Qt’s are approximated by

Q̃t = At(−∞,−Y ?t ), t ≥ 1.

The following Proposition estimates the accuracy of this approximation; before formulating it, recall
that the Kolmogorov distance of two distributions F ,G with c.d.f.’s F , G, respectively, is defined
as

%(F ,G) = sup
x
|F (x)−G(x)|.

Proposition 4. For any t ≥ 1,
|Q̃t −Qt| ≤ δt,

where δ1 = %(W1,U1) and, for each t > 1,

δt =
2δt−1

At−1(−Y ?t−1,∞)
+ %(ASt , φ · A?t ) + %(W,U) + εt.

.

Proof. See Appendix C.1.

When, on the other hand, rates Qt are known and Y ’s unknown, then Y ’s may be approximated
by

Ỹt = −χ(Bt, Qt) + log t+ log b, t ≥ 1, (39)

where Bt follows the same dynamics as At with the difference that the truncation (step 1.) is done
at −Ỹ ?t−1 instead of at −Y ?t−1.

Proposition 5. For any t ≥ 1,∣∣∣Ỹt − Yt∣∣∣ ≤ χ(Bt, Qt + ηt)− χ(Bt, Qt − ηt)

where η1 = %(W1,U1) and, for any t > 0,

ηt =
|Qt−1 − Q̂t|+ ηt−1

1−max(Qt−1, Q̂t)
+ %(BSt , φ · B?t ) + %(W,U) + εt, Q̂t = Bt−1(−∞,−Ỹ ?t−1].

Proof. See Appendix C.2.

Finally, let us conclude that our numerical method is convergent:

Theorem 4. If h→ 0, nh→∞ and if εt → 0 for each t then Ỹ → Y and q → Q in distribution.

Proof. The assertion is easy to prove by showing, by induction, that, for each t, δt → 0 almost
sure.

9By two-sided censoring of a distribution with c.d.f. F at a < b we mean a distribution with c.d.f.

F̂ (x) =


0 x < a

F (x) a ≤ x < b

1 x ≥ b
.
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Figure 1: Q1, Q2, Q3, Q4 given that Y ?1 = Y ?2 = Y ?3 = Y ?4 = 1 and normal stationary Zt for various
φ and σ

Remark 5. The general case of dependent U and V might be treated as well, requiring iterative
evaluation of L(Zt, Et|St−1 = 1) instead of sole Zt.

Remark 6. The source code of our C++ program computing Φ and Ψ for normal independent
factors can be found at https://github.com/cyberklezmer/phi under branch v16.

6 Numerical Illustration

In the present Section, we demonstrate the non-linearity and the non-triviality of transformation
Φ1. In addition, we show that the actual errors of our numerical technique is far less than their
bounds given by Proposition 4.

First, assume that Y ’s are such that

Y ?t = 1, t ≥ 1.

Figure 1 shows values of Φ1(Y1, Y2, Y3, Y4) with U1, U2 normal and for various values of φ and

σ. The initial variance is set to σ2
1 = σ2

1−φ2 , which corresponding to stationarity of Z. The values n
and h are set so that the Kolmogorov error of the discretizations of U1 and U2 is less than 0.0001.
From the graphs it is clear that, even in this simple setting, the mapping is far from trivial and it
is neither convex nor concave.

Figures 2 and 3 show the evolution of Zt (the distribution of individual part of a debtor’s
wealth). Here, we consider two different parametric settings:

(a) φ=-0.5, σ=1, σ1=1.15, (b) φ=0.5, σ=1, σ1=1.15,

20



-2.5 -2.0 -1.5 -1.0 -0.5 0.5 1.0
Y *

0.2

0.4

0.6

0.8

Q4

Q3

Q2

Q1

Figure 2: Evolution of the c.d.f.’s of Zt given Y ?1 = Y ?2 = Y ?3 = Y ?4 = 1 and normal stationary Zt
with σ = 1, φ = −0.5.
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Figure 3: Evolution of the c.d.f.’s of Zt given Y ?1 = Y ?2 = Y ?3 = Y ?4 = 1 and normal stationary Zt
with σ = 1, φ = 0.5.
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t m = 8, φ = −0.5 m = 8, φ = 0.5 m = 1 (repeated)

1 0.193 0.193 0.193
2 0.230 0.136 0.193
3 0.206 0.129 0.193
4 0.211 0.127 0.193
5 0.210 0.126 0.193
6 0.210 0.126 0.193
7 0.210 0.126 0.193
8 0.210 0.126 0.193

Table 1: Default rates given Y ?1 = Y ?2 = · · · = 1 and stationary Zt with σ = 1 for multi-period
models with φ = −0.5 and φ = 0.5 in comparison with a corresponding single period model.

respectively (Zt is stationary in both the cases). In Table 1, Qt, t = 1, 2, . . . , 8, are shown for both
(a) and (b) as well as for the case of repeated application of a single period version of the model
(i.e. the one with m = 1, σ1 = 1.15, coinciding with [24] up to scaling).

We can observe that the results from both the multi-period versions stabilize soon, each, however,
at different value, different from the result of the single period model.

A different course of Qt’s in each of the cases - the decrease of the PDs for φ > 0 and their
oscillation for φ < 0 - is also worth of noting, documenting non-triviality of the model. Namely. An
intuitive explanation for this is following: When φ > 0, the worst debts are cut off at each period
so the default rate continuously declines. In the case of φ < 0, on the other hand, some of the
debtors, who were rich at t = 1, become poor at t = 2 and vice versa. These, however, who were
poor initially and could be rich subsequently, are cut off by defaults at t = 1 so they are missing
from the portfolio at t = 2 when, in addition, a new bunch of poor debtors appears, formed by
those who were rich at t = 1. Consequently, the second portfolio is “poorer” than the first one and
its default rate is greater; the further oscillation could be explained similarly.

Interestingly, the case φ > 0 replicates the empirically documented decrease of the default rates
short after the beginning of a mortgage (see e.g. [1]).

Finally, Figure 4 shows that our estimates of the approximation error, given by Proposition 4, are
largely overvalued in comparison with the approximation errors in a concrete cases with φ ∈ [−1, 1]
and Y ?t = [0, 1], t ≤ 4.10 In particular, with increasing t, the difference between the upper bound
and the actual error grows rapidly while the actual error grows moderately in comparison with the
bound.

7 Example - Optimal Scoring

In this Section, we present a simple example application of our model: the optimal selection of the
loan portfolio from a (large) set of loan candidates, the i-th of which disposes with wealth

Ât = exp
{
Ŷt + Ẑt

}
, t ≥ 1,

where Ŷ⊥⊥Ẑ are stochastic processes such that Ŷ is general and

10Our graphs were obtained as follows: For each of value of φ ∈ [−1, 1], 100 evaluations of Φ1 by means of
our numerical technique and its Monte Carlo estimate was made, each with σ = 0.9, with σ1 corresponding to
the stationarity and with different arguments Y corresponding to Y ?t drawn from a uniform distribution (each MC
estimate was computed by 10 times running a simulation of the portfolio with 500.000 debts).
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Figure 4: Estimated vs. actual approximation error: solid line - bound given by Proposition 4,
circles - Monte Carlo estimate of the error.

• Ẑi0 = σ0Û0 where the distribution of Û0 meets the requirements for U1,11

• Ẑt = φ̂Ẑt−1 + σ̂Ût, t ≥ 1, where φ̂ ∈ R, σ̂ > 0 and where Û1, Û2, . . . are i.i.d. with their
distribution fulfilling our requirements for U2.

Assume that the creditor decides to refuse the loan to the candidates with their initial wealth less
than a certain threshold ϑ, i.e., such candidates will be accepted for which

Ŝ0 = 1, Ŝ0 = 1[Ŷ0 + Ẑ0 < log ϑ].

In this case, the individual part of the wealth of the accepted candidates will have distribution

Zθ = T (Ẑ0, log ϑ− Ŷ0)

where Ẑ0 is the distribution of Ẑ0. It is easy to verify that, once we put

σ2
1 = φ̂2var(Zθ) + σ̂2, U1 =

1

σ̂1
(φ̂(Zθ − EZθ) + σ̂Û1), Zθ ∼ Zθ, (40)

Yt = Ŷt +
φ̂σ̂

σ1
EZθ, Ut = Ût, t ≥ 1, (41)

φ = φ̂, σ = σ̂, (42)

then the assumptions of our model are met and Ait = Ât, t ≥ 1 on set [Ŝ0 = 1].

Now, if we assume, that the (discounted) profit B of the creditor stemming from a single debt
given that it will not default until m is deterministic and identical for all the debts, the the maximal
expected overall profit from the portfolio will be

max
ϑ

P (ϑ), P (ϑ) =
(

1− F0(log ϑ− Ŷ0)
) (
B − EΛϑ(Y1, I1, . . . , Ym, Im)

)
(43)

11I.e., it is standardized with its c.d.f. strictly increasing, having continuous uniformly bounded first- and second-
order derivatives and fulfilling an analog of (1).
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where F0 is the c.d.f. of Ẑ0 and where the index ϑ at Λ stresses the fact that Λ(•) is dependent on
ϑ through (40)-(42).

As the truncation of Ẑ0 (at log ϑ−Ŷ0), caused by refusing the debts to inappropriate candidates,
is completely analogous to the truncations of Zt, t ≥ 1, caused by defaults and as all σ1, Y1, . . . Ym
are differentiable in ϑ, mapping Λϑ, and consequently P (ϑ), is easy to be shown to be differentiable
in ϑ. Consequently, its maximum may be found by usual gradient methods. However, in light of the
results for (a) of Section 6, we cannot generally expect EΛϑ to be decreasing in ϑ so the possibility
of local maxima in (43) cannot be easily excluded.

8 Conclusions

In this paper, we formulated a general multi-period factor model of a large portfolio of debts secured
by collaterals. In addition, a simple numerical technique of the model’s computation was proposed
and an example application was presented.

As a whole, our paper provides a ready-to-use technology for modeling multi-period loans port-
folio, suitable both for theorists and the practitioners. In particular, our results may serve e.g. for
an analysis of time series of aggregate losses or for the particular portfolio management.
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In Czech
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A Auxiliary Results

Let us start by the citation of two useful probabilistic results.

Lemma 2. ([11] 6.8.14.) Let R and S be independent random vectors and let f be a measurable
function such that Ef(R,S) exists and Ef(R, s) exists for any s. Then

E(f(R,S)|S = s) = φ(s), φ(s) = E(f(R, s)).

Lemma 3. ([15], Corollary 4.5.) Let R,R1, R2, . . . and S, S1, S2, . . . be random variables such that
Rn → R and Sn → S in probability. Then RnSn → RS in probability. If, in addition, all S, S1,
S2, . . . are non-zero, then also Rn/Sn → R/S in probability.

The following result, on the other hand, is a generalization of the well known theorem, guaran-
teeing the interchangeability of integration and differentiation given that an integrable upper bound
of the integrand’s derivative exists.

Lemma 4.
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(i) Let T be an open subset of R. Let f : Rk×T → R be a measurable function continuous in its first
k parameters. Let f be continuously differentiable in its last parameter outside M = N × T
where N ⊂ Rk is a set of zero measure. Let there exists integrable h such that ∂

∂β f(r, β) ≤ h(r)

for any r ∈ Rk, β ∈ T . Then a continuous ∂
∂β (
∫
f(r, β)dr) exists and equals to

∫
∂
∂β f(r, β)dr.

(ii) Point (i) keeps holding if M = (N ×T )∪{(r, β) ∈ Rk×T : r1=g(β)} where g is differentiable.

Proof. (i) follows from the well known rules for interchanging integrals and derivatives ([18], The-
orem 9.2.) and [18], Theorem 9.1.

As for (ii), we have, from absolute continuity of the Lebesgue measure, that
∫
f(r, β)dr =

H(β, β, β) where H(β1, β2, β) =
∫
{r1≤g(β1)} f(r, β)dr +

∫
{r1≥g(β2)} f(r, β)dr. By the Leibnitz Rule,

we have
∂

∂β1
H = g′(β1)

∫
f(g(β1), r2, . . . , rk, β)dr2, . . . drk,

∂

∂β2
H = −g′(β2)

∫
f(g(β2), r2, . . . , rkβ)dr2, . . . drk,

while, by ([18], Theorem 9.2.), we get

∂

∂β
H =

∫
{r1≤g(β1)}

∂

∂β
f(r, β)dr +

∫ ∞
{r1≥g(β1)}

∂

∂β
f(r, β)dr

Finally, by the Chain Rule for Multivariate Functions,∫
f(r, β)dr =

(
∂

∂β1
+

∂

∂β2
+

∂

∂β

)
H(β, β, β) =

∂

∂β
H =

∫
∂

∂β
f(r, β)dr

because the first two terms of the sum cancel out. The continuity of the derivative follows from
[18], Theorem 9.1.

Finally, we recall two useful results from analysis.

Lemma 5. ( [13], Theorem 80) Let f be continuous and finite in [a−∆, a+ ∆]. Then

f ′(a) = lim
x→a

f ′(x)

provided that the limit exists.

Lemma 6. ( [13], Theorem 192) Let f(x, y) be a function such that ∂
∂xf and ∂

∂yf exists on some

neighborhood of (x0, y0) and ∂
∂x∂yf is continuous in (x0, y0). Then

∂

∂x∂y
f(x0, y0) =

∂

∂x∂y
f(y0, x0).

B Proof of Lemma 1

Ad (i). If t = 1 then (i) follows from the definition of Ξ1. Let t > 1 and assume (i) to hold for t−1.
Using the facts that

[St−1 = 1]⇒ [St−2 = 1]

and that

P(A|BC) =
P(ABC)

P(BC)
=

P(ABC)

P(BC)
· P(C)

P(C)
=

P(AB|C)

P(B|C)
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for any random events A,B,C fulfilling P(BC) > 0, we get

P[Zt ≤ z, Et ≤ e|St−1 = 1] = P[Zt ≤ z, Et ≤ e|St−1 = 1, St−2 = 1]

=
Gt(z, e)

P[St−1 = 1|St−2 = 1]
(44)

where

Gt(z, e) = P[Zt ≤ z, Et ≤ e, St−1 = 1|St−2 = 1]

P[φZt−1 + σUt ≤ z, ψEt−1 + ρVt ≤ e, Zt−1 ≥ −y?t−1|St−2 = 1]. (45)

From the independence of (Ut, Vt) and (Zt−1, Et−1, St−2) we further get, by Lemma 2, that

Gt(z, e) =

∫
1[φr + σu ≤ z, ψs+ ρv ≤ e]1[r ≥ −y?t−1]dW (u, v)dFt−1(r, s)

=

∫ (∫
1[u ≤ z − φr

σ
, v ≤ e− φt

ρ
]dW (u, v)

)
1[r ≥ −y?t−1]dFt−1(r, s) = At.

Finally, as, by our induction hypothesis and (3),

P[St−1 = 1|St−2 = 1] = Ct,

(i) is proved.
Ad (iii)-(iv). We shall proceed by induction to prove (iii)-(iv). Meanwhile, we prove that

Dt density ft(z, e; ξt−1) = ∂
∂z∂eFt(z, e; ξt−1) exist and is bounded by a finite continuous function

ςt(ξt−1),

D1
t density f1t (z; ξt−1) = ∂

∂zFt(z,∞; ξt−1) exist and is bounded by a finite continuous function
ς1t (ξt−1),

EZt E(Z2
t |St−1 = 1) is bounded by a finite continuous function εt(ξt−1),

EEt E(E2
t |St−1 = 1) is bounded by a finite continuous function εt(ξt−1).

Until the end of the proof, we shall abbreviate ∂
∂xg as g(x) for any function g and variable x. During

the proof, we shall frequently use the fact that

0 ≤W (u)
1 (u, v) =

∫ v

w1(u, x)dx ≤
∫
w1(u, x)dx = w1

1(u) (46)

(recall that w1 and w1
1 are the densities of (U1, V1), U1, respectively) as and its analogs involving

W
(v)
1 ,W (u) and W (v).

Coming to the proof itself, let t = 1 first. By differentiating (8), we get

F
(z)
1 =

1

σ1
W

(u)
1

(
z

σ1
,
e

ρ

)
, |F (z)

1 | ≤
α1,1

σ1
(47)

where α1,1 is the bound of the first derivatives of W1. Further,

F
(σ1)
1 = − z

σ2
1

W
(u)
1

(
z

σ1
,
e

ρ

)
, (48)
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and, by (46), ∣∣∣F (σ1)
1

∣∣∣ ≤ 1

σ2
1

|z|w1
1(
z

σ1
) ≤ supx |x|w1

1(x)

σ1

where the r.h.s. is finite by (1). As the cases of e and ρ are analogous, and as derivatives in the
remaining parameters are zero, we have proved (iii) and (iv) for t = 1.

Further, as EZ2
1 = σ2

1 and EE2
1 = ρ EZ1, EE1, respectively, hold true.

As for D1, note that f1 = ∂
∂eF

(z)
1 (z, e) = w1(z/σ1,e/ρ)

σ1ρ
is bounded by

α1,2

σ1ρ
, where α1,2 is the bound

of the second derivatives of W1. Finally, as f11 (•) = F
(z)
1 (•,∞) =

∫
ft(•, y)dy = limz

∫ z
f(•, y)dy =

limz F
(z)(•, z) ≤ α1,1

σ1
by (47), D1

1 is proved, too.

Let t > 1, let Dt−1, D1
t−1 EZt−1 and EEt−1 hold true and let (iii) and (iv) hold for t− 1. First,

let us prove the continuous differentiability (later abbreviated as c.d.) and the local boundedness
(in the sense of (iv), later abbreviated as l.b.) of Gt. To this end, let us rewrite (45) as

Gt(z, e; ξt−1) = D(z, e, φ, ψ, σ, ρ,−y?t−1(yt, ε), ξt−2) (49)

where

D(e, z, φ, ψ, σ, ρ, η, ξ)

= P[φZt−1 + σUt ≤ z, ψEt−1 + ρVt ≤ e, Zt−1 ≥ η|St−2 = 1; ξt−2 = ξ]

=

∫
1[r ≥ η]W (

z − φr
σ

,
e− ψs
ρ

)dFt−1(r, s; ξ)

and prove the c.d. and l.b. of D in all its arguments. Starting with η, we get, by the Leibnitz Rule,

D(η) = −
∫
W (

z − φη
σ

,
e− ψs
ρ

)ft−1(η, s; ξ)ds (50)

with

|D(η)| ≤
∫
ft−1(η, s; ξ)ds = f1t−1(η; ξ)ds ≤ ς1t−1(ξ).

In all the remaining cases, we shall use Lemma 4 to prove the c.d. The required integrable upper
bound will be always denoted by m, symbol γ, if used, will always denote a bound of |D(•)|.

Starting with z, we are getting

D(z) =
1

σ

∫
{r≥η}

W (u)

(
z − φr
σ

,
e− ψs
ρ

)
dFt−1(r, s; ξ)

m = α1, γ =
α1

σ
, (51)

where α1 is the bound of the first derivatives of W .

Coming to φ, we have

D(φ) = − 1

σ

∫
{r≥η}

rW (u)

(
z − φr
σ

,
e− ψs
ρ

)
dFt−1(r, s; ξ) (52)

m = |r|α1, |D(φ)| = 1

σ

∫
|r|dFt−1(r, s; ξ) =

1

σ
E(|Zt−1||St−2 = 1) ≤

√
εt−1

σ

by the Schwarz Inequality.

Further,
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D(σ) = −
∫
{r≥η}

z − φr
σ2

W (u)

(
z − φr
σ

,
e− ψs
ρ

)
dFt−1(r, s; ξ)

γ = m =
supx |x|w1(x)

σ
(53)

(we have used (46)).

Before proceeding to ξi, 1 ≤ i ≤ dim(ξ), observe that we can alternatively write

D = E, E(e, z, φ, ψ, σ, ρ, η, ξ) =

∫
F̃ (z − σu, e− ρv, η, ξ)dW (u, v) (54)

where

F̃ (r, s, φ, ψ, η, ξ) = P[φZt−1 ≤ r, ψEt−1 ≤ s, Zt−1 ≥ η|St−2 = 1; ξt−2 = ξ]

=



P[φZt−1 ∈ (η rφ ], Et−1 ≤ s
ψ , |St−2 = 1]

= Ft−1( rφ ∨ η,
s
ψ ; ξ)− Ft−1(η, sψ ; ξ) φ > 0, ψ > 0

P[Zt−1 ≥ r
φ , ψEt−1 ≤ s, Zt−1 ≥ η|St−2 = 1] =

= P[Zt−1 ≥ r
φ ∨ η,Et−1 ≤

s
ψ |St−2 = 1]

= Ft−1(∞, sψ ; ξ)− Ft−1( rφ ∨ η,
s
ψ ; ξ)) φ < 0, ψ > 0

1[r ≥ 0]
(
Ft−1(∞, sψ ; ξ)− Ft−1(η, sψ ; ξ)

)
φ = 0, ψ > 0

1[s ≥ 0]
(
Ft−1( rφ ∨ η,∞; ξ)− Ft−1(η,∞; ξ)

)
φ > 0, ψ = 0

1[s ≥ 0](1− Ft−1( rφ ∨ η, ,∞; ξ)) φ < 0, ψ = 0

1[r ≥ 0]1[s ≥ 0] (1− Ft−1(η,∞; ξ)) φ = 0, ψ = 0

P[Zt−1 ∈ (η, rφ ], Et−1 ≥ s
ψ |St−2 = 1]

= (Ft−1( rφ ∨ η,∞; ξ)− Ft−1(η,∞; ξ))

−(Ft−1( rφ ∨ η,
s
ψ ; ξ)− Ft−1(η, sψ ; ξ)) φ > 0, ψ < 0

= P[Zt−1 ≥ η ∨ r
φ , Et−1 ≥

s
ψ |St−2 = 1]

= (1− Ft−1(∞, sψ ; ξ))

−(Ft−1(η ∨ r
φ ,∞; ξ)− Ft−1(η ∨ r

φ ,
s
ψ ; ξ))s φ < 0, ψ < 0

1[r ≥ 0]P[Zt−1 ≥ η,Et−1 ≥ s
ψ |St−2 = 1]

= 1[r ≥ 0][(1− Ft−1(∞, sψ ; ξ))

−(Ft−1(η,∞; ξ)− Ft−1(η, sψ ; ξ))] φ = 0, ψ < 0

=

4∑
k=1

ak,sgn(φ),sgn(ψ)(r, s)Ft−1(bk,sgn(φ),sgn(ψ)(r, φ, η), ck,sgn(φ),sgn(ψ)(s, ψ); ξ). (55)

Here, for each k, s1 and s2,
ak,s1,s2(•) ∈ {0, 1,−1},

is constant on each open quadrant, and

bk,s1,s2(r, φ, η) =


r
φ ∨ η for certain k, s1, s2

η for certain k, s1, s2

∞ for the rest of k, s1, s2

ck,s1,s2(s, ψ) =

{
s
ψ for certain k, s1, s2

∞ for the rest of k, s1, s2.

29



By differentiating we get

F̃ (i) =
∑

ak,sgn(φ),sgn(ψ)(r, s)F
(i)
t−1(bk,sgn(φ),sgn(ψ)(r, φ, η), ck,sgn(φ),sgn(ψ)(s, ψ); ξ),∣∣∣F̃ (i)

∣∣∣ = 4α
(i)
t−1, (56)

(recall that α
(i)
t−1 is the bound of F

(i)
t−1 guaranteed by (iv)), and, consequently,

E(i) =
∑∫

ak,sgn(φ),sgn(ψ)(z − σu, e− ρv)

F
(i)
t−1(bk,sgn(φ),sgn(ψ)(z − σu, φ, η), ck,sgn(φ),sgn(ψ)(e− ρv, ψ); ξ)dW (u, v),

γ = m = 4α
(i)
t−1. (57)

As the cases of e, ψ and ρ are symmetric to those of z, φ and σ, we have proved the c.d. and l.b. of
D in all its arguments, which immediately yields the c.d. and l.b. of Gt in z, e as well as in yt−1
(note that G

(yt−1)
t = −y?(yt−1)

t−1 (yt−1)D(η)(y?t−1) = −D(η)(y?t−1)). Further, as

G
(ε)
t (. . . ,−y?(ε), . . . ) = −y?(ε)D(η)(. . . ,−y?(ε), . . . ) =

b(ε)

b
D(η)(. . . ,−y?(ε), . . . ), (58)

the c.d. and l.b. of Gt in ε follows from the strict positivity and c.d. of b.12 The c.d. and l.b. of
Gt in the rest of the parameters follows from the Chain Rule for Multivariate Functions (if i is the

index of φ within ξt−1, for instance, then G
(φ)
t = D

(φ)
t +D

(i)
t ).

Consequently, by the strict positivity and continuity of Ct, we get that

F
(•)
t =

G
(•)
t Ct − C(•)

t Gt
C2
t

proving (iii) and, as Ct is continuous by our induction hypothesis, also (iv).

To prove Dt, differentiate (8) twice to get

ft(z, e; ξt−1) = F (z,e)(z, e; ξt−1)

=
1

Ct

(∫
{r≥−y?t−1}

1

σ
W (u)

(
z − φr
σ

,
e− ψs
ρ

)
dFt−1(r, s; ξt−2)

)

=
1

Ct

∫
{r≥−y?t−1}

1

ρσ
w

(
z − φr
σ

,
e− ψs
ρ

)
dFt−1(r, s; ξt−2)

mz =
1

σ
α1, mz,e =

α2

ρσ
, γz,e =

mz,e

Ct
, (59)

where α2 is the upper bound of the second derivatives of W (recall that w is the density of (U, V )).
Validity of D1

t follows from the fact that ft(•) = Ft(•,∞) similarly to the case of t = 1.

12See Footnote 4.
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To prove EZt, employ (59) to get

E(Z2
t |St−1 = 1) =

∫
z2ft(z, e; ξt−1)dzde

≤ 1

Ct

∫
z2
∫

1

ρσ
w

(
z − φr
σ

,
e− ψs
ρ

)
dFt−1(r, s; ξt−1)dzde

=
E
(

(φZt−1 + σUt)
2
∣∣∣St−2 = 1

)
Ct

=
φ2E(Z2

t−1|St−2 = 1) + 2φσE(Ut)E(Zt−1|St−2 = 1) + σ2EU2
t

Ct

=
φ2εt−1 + σ2

Ct
.

The proof of EEt is analogous.
Ad (ii). If t = 1 then (ii) follows from our assumptions concerning W1. If t > 1 then, according

to (51), D
(z)
t is strictly positive (which is because integrand is positive and the c.d.f. is strictly

increasing). Consequently, by (49), G
(z)
t is strictly positive, which proves the monotonicity of Ft in

z because Ct is constant in z. The case of e is symmetric.
Ad. (v) and (vi). Similarly as above, we shall abbreviate ∂

∂x∂yf as f (x,y) for any function f and
variables x, y. Before starting the proof, let us note that

∣∣∣W (u,u)
1 (u, v)

∣∣∣ =

∣∣∣∣(W1(u, v)(u)
)(u)∣∣∣∣ =

∣∣∣∣∣
(∫ v

w1(u.y)dy

)(u)
∣∣∣∣∣

=

∣∣∣∣∣
(∫ v

w1
1(u)w2|1(y|u)dy

)(u)
∣∣∣∣∣ ≤ ∣∣∣w1,(u)

1 (u)
∣∣∣ ∫ w

2|1
1 (y|u)dy =

∣∣∣w1,(u)
1 (u)

∣∣∣ (60)

and that it follows from (10) that∣∣∣xw1,(u)
1 (x)

∣∣∣ and
∣∣∣w1,(u)

1 (x)
∣∣∣ are bounded integrable, (61)

which is because, for any continuous function f and any 0 ≤ m < n,∫
|xmf(x)|dx ≤

∫
{x/∈(0,1)}

|xnf(x)|dx+

∫ 1

−1
|f(x)|dx ≤

∫
|xnf(x)|dx+ 2 max

|x|≤1
f(x). (62)

Moreover, (60) and (61) hold with W instead of W1 and/or for u instead of v due to the symmetry
of our assumptions.

During the proof, we shall use the fact, which we prove later, that, for any t ≥ 1 and any i
corresponding to some component of ξi−1,

ZBIt there exist continuous functions mi,z
t (z, ξt−1), ri,zt (z, ξt−1) and ni,zt (z, e, ξt−1) bounded by

finite continuous functions mi,z
t (ξt−1), ri,zt (ξt−1) and ni,zt (ξt−1), respectively, such that

(1 + |z|)—F
(i,z)
t (z, e; ξt−1)| ≤ mi,z

t (z, ξt−1) + ni,zt (z, e, ξt−1),

(1 + |z|)—F
(i,z)
t (z,∞; ξt−1)| ≤ ri,zt (z; ξt−1).

and that ∫
mi,z
t (x, ξt−1)dx ≤M i,z

t (ξt−1),

∫
ni,zt (x, y, ξt−1)dxdy ≤ N i,z

t (ξt−1)
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and ∫
ri,zt (x, ξt−1)dx ≤ Ri,zt (ξt−1)

for some finite continuous M i,z
t , N i,z

t and Ri,zt ,

and

EBIt there exist continuous functions mi,e
t (e, ξt−1), ri,et (e, ξt−1) and ni,et (z, e, ξt−1) bounded by

finite continuous functions mi,e
t (ξt−1), ri,et (ξt−1) and ni,et (ξt−1), respectively, such that

(1 + |e|)—F
(i,e)
t (z, e; ξt−1)| ≤ mi,e

t (e, ξt−1) + ni,et (z, e, ξt−1),

(1 + |e|)—F
(i,e)
t (e,∞; ξt−1)| ≤ ri,et (e; ξt−1).

and that ∫
mi,e
t (x, ξt−1)dx ≤M i,e

t (ξt−1),

∫
ni,et (x, y, ξt−1)dxdy ≤ N i,e

t (ξt−1)

and ∫
ri,et (x, ξt−1)dx ≤ Ri,et (ξt−1)

for some finite continuous M i,e
t , N i,e

t and Ri,et .

The proof will be carried out by induction. To this end, let t = 1. As F1 is constant in all the
variables except for σ1, ρ, e, z, it suffices to prove the bounded continuous differentiability only for
pairs containing σ1, ρ, e, z.

By differentiating (48), we get:

(σ1, σ1)

F
(σ1,σ1)
1 =

2z

σ3
1

W
(u)
1

(
z

σ1
,
e

ρ

)
+
z2

σ4
1

W (u,u)

(
z

σ1
,
e

ρ

)
|F (σ1,σ2)

1 | ≤
∣∣∣∣2zσ3

1

w1

(
z

σ1

)∣∣∣∣+
z2

σ4
1

∣∣∣∣w1,(u)

(
z

σ1
,
e

ρ

)∣∣∣∣
≤ 2 supx |x|w1

1(x) + supx x
2|w1,(u)

1 (x)|
σ2
1

,

where the r.h.s. is finite by (1) and (10),

(σ1, ρ)

F
(σ1,ρ)
1 =

ze

σ2
1ρ

2
w1

(
z

σ1
,
e

ρ

)
∣∣∣F (σ1,ρ)

1

∣∣∣ =
|ze|
σ2
1ρ

2
w1

(
z

σ1
,
e

ρ

)
≤

supu,v |uv|w1(u, v)

σ1ρ

where the r.h.s. is finite by (10),

(σ1, z)

F
(σ1,z)
1 = − 1

σ2
1

W
(u)
1

(
z

σ1
,
e

ρ

)
− z

σ3
1

W (u,u)

(
z

σ1
,
e

ρ

)
(63)∣∣∣F (σ1,z)

1

∣∣∣ ≤ 1

σ2
1

[
w1

1

(
z

σ1

)
+

∣∣∣∣ zσ1w1,(u)

(
z

σ1

)∣∣∣∣] ≤ α1,2 + supx |xw1,(u)(x)|
σ2
1

where α1,1 is the bound of the first derivatives of W1 (the second term in the numerator is
finite by (61)),
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(σ1, e)

F
(σ1,e)
1 (z, e) = − z

σ2
1ρ
w1

(
z

σ1
,
e

ρ

)
, ∣∣∣F (σ1,e)

1

∣∣∣ ≤ supx,y |x|w1 (x, y)

σ1ρ
(64)

where the finiteness of the r.h.s. follows from the boundedness of |uv|w1(u, v).

By differentiating (47) we get

(z, z)

F
(z,z)
1 (z, e) =

1

σ2
1

W
(u,u)
1

(
z

σ1
,
e

ρ

)
,

∣∣∣F (z,z)
1

∣∣∣ ≤ a1,2
σ2
1

where α1,2 is the bound of the second derivatives of W1

(z, e)

F
(z,e)
1 (z, e) =

1

σ1ρ
w1

(
z

σ1
,
e

ρ

)
,

∣∣∣F (z,z)
1

∣∣∣ ≤ a1,2
σ1ρ

.

As the proofs for the rest of the combinations are symmetric, or the symmetry of second derivatives
may be used (Lemma 6), (v) and (vi) are proved for t = 1.

Let t > 1 and let (v) and (vi) hold for t − 1. Similarly to the proof of (iii), we start with the
bounded continuous differentiability of Dt or, alternatively, Et, for all the pairs of their variables
and/or parameters; we shall keep our convention that m denotes an integrable upper bound and
γ stands for the bound of the derivative. Until the end of the proof, i and j will denote indices
corresponding to components of ξt−2.

By differentiation of (51), we get

(z, z)

D(z,z) =
1

σ2

∫
{r≥η}

W (u,u)(
z − φr
σ

,
e− ψs
ρ

)dFt−1(r, s; ξ), m = α2, γ =
α2

σ2

where α2 is the bound of the second derivatives of W ,

(z, e)

D(z,e) =
1

σρ

∫
{r≥η}

w(
z − φr
σ

,
e− ψs
ρ

)dFt−1(r, s; ξ), m = α2, γ =
α2

σρ
.

From (52), we gradually get

(φ, z)

D(φ,z) = − 1

σ2

∫
{r≥η}

rW (u,u)

(
z − φr
σ

,
e− ψs
ρ

)
dFt−1(r, s; ξ)

m = |r|, γ =
α2
√
εt−1

σ2
,

(φ, φ)

D(φ,φ) =
1

σ2

∫
{r≥η}

r2W (u,u)

(
z − φr
σ

,
e− ψs
ρ

)
dFt−1(r, s; ξ)

m = r2α2 γ =
α2εt−1
σ2

,
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(φ, ψ)

D(φ,ψ) =
1

σρ

∫
{r≥η}

rsw

(
z − φr
σ

,
e− ψs
ρ

)
dFt−1(r, s; ξ),

m = |r||s|α2, γ =
α2
√
εt−1εt−1

σρ

by the Schwarz Inequality,

(φ, ρ)

D(φ,ρ) =
1

σρ

∫
{r≥η}

(
e− ψs
ρ

)rw

(
z − φr
σ

,
e− ψs
ρ

)
dFt−1(r, s; ξ)

m = |r|ω1|2 sup
v
|v—w2(v), γ =

√
εt−1ω

1|2 supv |v—w2(v)

σρ
.

Next several cases is obtained by differentiating (53):

(σ, z)

D(σ,z) = − 1

σ2

∫
{r≥η}

[
z − φr
σ

W (u,u)

(
z − φr
σ

,
e− ψs
ρ

)
+W (u)

(
z − φr
σ

,
e− ψs
ρ

)]
dFt−1(r, s; ξ)

m = sup
x
|x||w1,u(x)|+ α1, γ =

m

σ3

where α1 is the bound of the first derivatives of W ,

(σ, σ)

D(σ,σ) =

∫
{r≥η}

[
1

σ2
(
z − φr
σ

)2W (u,u)

(
z − φr
σ

,
e− ψs
ρ

)
+2

z − φr
σ3

W (u)

(
z − φr
σ

,
e− ψs
ρ

)]
dFt−1(r, s; ξ)

m = γ =
supu u

2
∣∣w1,(u)(u)

∣∣
σ2

+ 2
supu |u|w1(u)

σ2
,

(σ, ρ)

D(σ,ρ) =
1

σρ

∫
{r≥η}

(
z − φr
σ

)(
e− ψs
ρ

)w

(
z − φr
σ

,
e− ψs
ρ

)
dFt−1(r, s; ξ)

m = sup
u,v
|uv|w(u, v), γ =

m

σρ
,

(σ, φ)

D(σ,φ) =
1

σ2

∫
{r≥η}

(
z − φr
σ

)rW (u,u)

(
z − φr
σ

,
e− ψs
ρ

)
dFt−1(r, s; ξ)

m = |r| sup
u
|uw1,(u)(u)|, γ =

√
εt−1 supu |uw1,(u)(u)|

σ2
.
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Next two cases are got by differentiating analogs of (52), (53), respectively:

(ψ, z)

D(ψ,z) = − 1

σρ

∫
{r≥η}

sw

(
z − φr
σ

,
e− ψs
ρ

)
dFt−1(r, s; ξ)

m = |s|α2, γ =

√
εt−1α2

σρ
,

(ρ, z)

D(ρ,z) = −
∫
{r≥η}

(e− ψs)
σρ2

w

(
z − φr
σ

,
e− ψs
ρ

)
dFt−1(r, s; ξ)

m = γ =
supu,v |v|w(u, v)

ρ2
.

Next several cases are obtained by differentiating (50):

(η, z)

D(η,z) = − 1

σ

∫
W (u)(

z − φη
σ

,
e− ψs
ρ

)ft−1(η, s; ξ)ds,

m = α1ft−1(η, s; ξ), γ =
α1f

1
t−1(η; ξ)

σ
,

(η, e)

D(η,e) = −1

ρ

∫
W (v)(

z − φη
σ

,
e− ψs
ρ

)ft−1(η, s; ξ)ds

m = α1ft−1(η, s; ξ), γ =
α1f

1
t−1(η; ξ)

ρ
,

(η, φ)

D(η,φ) =
η

σ

∫
W (u)

(
z − φη
σ

,
e− ψs
ρ

)
ft−1(η, s; ξ)ds,

m = α1ft−1(η, s; ξ), γ =
ηα1f

1
t−1(η; ξ)

σ
,

(η, σ)

D(η,σ) =
z − φη
σ2

∫
W (u)

(
z − φη
σ

,
e− ψs
ρ

)
ft−1(η, s; ξ)ds,

m = α1ft−1(η, s; ξ), γ =
f1t−1(η; ξ) supu |u|w1(u)

σ
,

(we have used (46)),
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(η, ρ)

D(η,ρ) =

∫
e− ψs
ρ2

W (v)(
z − φη
σ

,
e− ψs
ρ

)ft−1(η, s; ξ)ds

m =
supv |v|w2(v)

ρ
ft−1(η, s; ξ), γ =

supv |v|w2(v)

ρ
f1(η; ξ),

(we have used an analog of (46)),

(η, ψ)

D(η,ψ) =
1

ρ

∫
sW (v)

(
z − φη
σ

,
e− ψs
ρ

)
ft−1(η, s; ξ)ds, m = |s|α1ft−1(η, s; ξ);

we show that m is integrable and
∣∣D(η,ψ)

∣∣ bounded: If t > 2 then∫
α1|s|ft−1(η, s; ξ)ds = α1

∫
|s|
∫
w(η − x, s− y)dFt−2(x, y)ds

≤ α1ω
1|2
∫
|s|
∫
w2(s− y)dFt−2(x, y)ds = α1ω

1|2
∫
|s|f2t−1(s)ds ≤ α1ω

1|2√εt−1. (65)

so
∣∣D(η,ψ)

∣∣ ≤ α1ω
1|2√εt−1

ρ . If t = 2, on the other hand, then∫
α1|s|ft−1(η, s; ξ)ds = α1

∫
|s|w1|2

1 (η|s)w2
1(s)ds = α1ω

1|2E|V1| ≤ α1ω
1|2 (66)

so
∣∣D(η,ψ)

∣∣ ≤ α1

ρ ω
1|2
1 .

The next case we get by differentiating (57):

(i, j)

E(i,j) =
∑∫

ak,sgn(φ),sgn(ψ)(z − σu, e− ρv)F
(i,j)
t−1 (bk(z − σu, φ, η), ck(e− ρvψ))dW (u, v)

γ = m = 4α
(i,j)
t−1 . (67)

The next several cases are more complicated:

(i, z) Let φ 6= 0 first. In this case,

F̃ (i,r) =
1

φ
×



{
1[r ≥ ηφ]F (i,z)( rφ ,

s
ψ , ξ) φ > 0

−1[r ≤ ηφ]F (i,z)( rφ ,
s
ψ , ξ) φ < 0

ψ > 0{
1[s ≥ 0]1[r ≥ ηφ]F (i,z)( rφ ,∞, ξ) φ > 0

−1[s ≥ 0]1[r ≤ ηφ]F (i,z)( rφ ,∞, ξ) φ < 0
ψ = 01[r ≥ ηφ]

(
F

(i,z)
t−1 ( rφ ,∞; ξ) + F

(i,z)
t−1 ( rφ ,

s
ψ ; ξ)

)
φ > 0

−1[r ≤ ηφ]
(
F

(i,z)
t−1 ( rφ ,∞; ξ) + F

(i,z)
t−1 ( rφ ,

s
ψ ; ξ)

)
φ < 0

ψ < 0

=
1

|φ|
1[
r

φ
≥ η]

2∑
k=1

αk,sgn(ψ)(s)F
(i,z)
t−1 (

r

φ
, dk(s, ψ); ξ) (68)
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on set {(r, φ) : r/φ 6= η} for some αk,s2(s) ∈ {−1, 0, 1} and dk ∈ R? equal to either s
ψ or to

∞. Therefore and because ˜|F
(i,r)
| ≤ 2α

(i,z)
t−1

|φ| , we get, by Lemma 4 (ii),

E(i,z) =

∫
F̃ (i,r)(z − σu, e− ρv)dW (u, v), m =

2α
(i,z)
t−1
|φ|

.

Therefore, by (68) and by ZBIt−1,

|E(i,z)| ≤ 1

|φ|

∫ 2∑
k=1

|F (i,z)
t−1 (

z − σu
φ

, dk(s, ψ); ξ)|dW (u, v)

=
1

σ

∫ 2∑
k=1

|F (i,z)
t−1 (x, dk(s, ψ))|w(

z − φx
σ

, v)dxdv

≤ α1

σ

2∑
k=1

∫
mk(x, v)dxdv (69)

where

mk(x, v) =

{
ri,zt−1(x, ξ)w2|1(v| z−φxσ ) if dk =∞
mi,z
t−1(x, ξ)w2|1(v| z−φxσ ) + ni,zt−1(x, e−ρvψ , ξ)ω2|1 otherwise,

As ∫
mk(x, v)dxdv ≤ γk (70)

γk =

{
Ri,zt−1(ξ) if dk =∞
M i,z
t−1(ξ) + ω1|2 |ψ|

ρ N
i,z
t−1(ξ) otherwise,

(71)

k = 1, 2, the boundedness of |E(i,z)| given φ 6= 0 is proved (we made substitution
∫
ni,zt−1(x, e−ρvψ , ξ)dxdv =

|ψ|
ρ

∫
ni,zt−1(x, y, ξ)dxdy to prove (70)).

If, on the other hand, φ = 0, then, for any k and s2,

ak,sgn(φ),s2(r, s) = 1[r ≥ 0]ãk,s2(s), bk,sgn(φ),s2(•, φ, η) = b̃k,s2(η),

for some ãk,s2 ∈ {−1, 0, 1} and b̃k,s2 which equals either η or ∞ so

E(i) =

∫
1[z − σu ≥ 0]g(v)w(u, v)dudv

where

g(v) =

4∑
k=1

ãk,s2(e− ρv)F
(i)
t−1(b̃k,s2(η), ck,sgn(φ),sgn(ψ)(e− ρv, ψ); ξ).

Consequently, by the Leibnitz Rule,

E(i,z) =

(∫ z
σ
∫
g(v)w(u, v)dudv

)(z)

=
1

σ

∫
g(v)w

( z
σ
, v
)
dv;

continuity of which is guaranteed by continuity of the integrand and by its boundedness by

ω1|24α
(i)
t−1w

2(v).
As

E(i,z)| ≤ γ0 γ0 =
ω1|2 supx |g(x)|

σ

∫
w2(v)dv =

ω1|24α
(i)
t−1

σ

given φ = 0, we get that |E(i,z)| ≤ max(α1

σ (γ1 + γ2), γ0) given any φ.
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(i, φ) Let φ 6= 0 first. It this case, similarly to (68), we get that

F̃ (i,φ)(r, s; ξ) = − r

|φ|φ
1[
r

φ
≥ η]

2∑
k=1

αk,sgn(ψ)(s)F
(i,z)
t−1 (

r

φ
, dk(s, ψ); ξ)

outside set {r = ηφ} so, by Lemma 4 (ii),

E(i,φ) = − 1

|φ|

2∑
k=1

∫
z − σu
φ

1[
z − σu
φ

≥ η]αk,sgn(ψ)(e−ρv)F
(i,z)
t−1 (

z − σu
φ

, dk(e−ρv); ξ)dW (u, v)

m = max(mi,z
t−1(ξ) + ni,zt−1(ξ), ri,zt−1(ξ))

To prove the boundedness, note that, by substitution

E(i,φ) =
1

σ

∫ ∑
k

x1[x ≥ η]αk,sgn(ψ)(e− ρv)F
(i,z)
t−1 (x, dk(e− ρv); ξ)w(

z − φx
σ

, v)dxdv (72)

implying

|E(i,φ)| ≤ 1

σ

∑
k

∫
|xF (i,z)

t−1 (x, dk(e− ρv); ξ)w(
z − φx
σ

, v)|dxdv ≤ α1

σ
(γ1 + γ2)

(see (71) for the definition of γk).
Let φ = 0. As E(i) is continuous in φ by (iii), we have, according to Lemma 5, that

∂

∂ξi∂φ
E = lim

φ→0+
E

(i,φ)
k

given that the limit exist, which is however true in our case because, by a limit transition in
(72),

lim
φ→0

E(i,φ)(φ) = − 1

σ

∑∫
x1[x ≥ η]F

(i,z)
t−1 (x, dk(e − ρv, ψ); ξ)w(

z

σ
, v)dxdv

exists (the required integrable upper bound being α1

σ

∑2
k=1mk(x, v) ), so E(i,φ) exists, is

continuous and bounded by α1

σ (γ1 + γ2) for φ = 0.

(i, σ) The proof is similar to that of (i, z): If φ 6= 0 then

E(i,σ) =
1

|φ|
∑
k

∫
u1[

z − σu
φ

≥ η]αk,sgn(ψ)(e− ρv)F
(i,z)
t−1 (

z − σu
φ

, dk(e− ρv, ψ); ξ)dW (u, v),

m = |u|max(mi,z
t−1(ξ) + ni,zt−1(ξ), ri,zt−1(ξ)).

As. by substitution,

E(i,σ) =
1

σ

∫ ∑
k

z − φx
σ

1[x ≥ η]αk,sgn(ψ)(e− ρv)F
(i,z)
t−1 (x, dk(e− ρv, ψ); ξ)w(

z − φx
σ

, v)dxdv

(73)
we have

|E(i,σ)| ≤
∫
|z − φx

σ
|w1(

z − φx
σ

)
∑
k

mk(x, v)dxdv ≤
(

sup
u
|u|w1(u)

)∑
k

γk,
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which proves the boundedness. If φ = 0, then

E(i,σ) = (

∫ z
σ

g(v)w(u, v)dudv)(σ) = − z

σ2

∫
g(v)w

( z
σ
, v
)
dv,

|E(i,σ)| ≤ 1

σ

∣∣∣ z
σ

∣∣∣w1(
z

σ
)

∫
g(v)w2|1

(
v| z
σ

)
dv ≤

4α
(i)
t−1 supu |u|w1(u)

σ
,

which, combined with the results for φ 6= 0, proves both the continuous differentiability and
the boundedness.

(η, η),(η, i) First, note that, substituting r = z − σu and s = e− ρv in (54),

E =

4∑
k=1

Ek

Ek =
1

σρ

∫
ak(r, s)Ft−1(bk(r, φ, η), ck(s, ψ))w

(
z − r
σ

,
e− s
ρ

)
drds. (74)

Assume φ ≥ 0 first. If bk(r) = η ∨ r
φ (which implies that φ 6= 0 see (55)), then, by Lemma 4

(ii),

E
(η)
k =

1

σρ

∫
ak(r, s)

∂

∂η
Ft−1(η ∨ r

φ
, ck(s, ψ))w

(
z − r
σ

,
e− s
ρ

)
drds

=
1

σρ

∫ φη ∫
ak(r, s)F

(z)
t−1(η, ck(s, ψ))w(

z − x
σ

,
e− y
ρ

)dsdr

m = α
(z)
t−1w

(
z − r
σ

,
e− s
ρ

)
, γ = α

(z)
t−1;

If bk = η then

E
(η)
k =

1

σρ

∫
ak(r, s)F

(z)
t−1(η, ck(s, ψ))w(

z − r
σ

,
e− s
ρ

)drds

m = α
(z)
t−1w

(
z − r
σ

,
e− s
ρ

)
, γ = α

(z)
t−1.

Finally, if bk is constant then E
(η)
k = 0. Thus, we may summarize

E
(η)
k =

1

σρ

∫
qk

∫
ak(r, s)F

(z)
t−1(η, ck(s, ψ))w(

z − r
σ

,
e− s
ρ

)drds, γ = α
(z)
t−1 (75)

where qk = qk(η, φ) is either φη,−∞ or ∞, from which we get

E
(η,η)
k =

1

σρ

∫
qk

∫
ak(r, s)F

(z,z)
t−1 (η, ck(s, ψ))w(

z − r
σ

,
e− s
ρ

)drds

−
q
(η)
k

σρ

∫
ak(qk, s)F

(z)
t−1(η, ck(s, ψ))w(

z − qk
σ

,
e− s
ρ

)ds

where the upper bound, required in the first integral, is α
(z,z)
t−1 w( z−xσ , e−yρ ). As q(η) ∈ {0, φ},

we have

|E(η,η)
k | ≤ 1 +

|φ|α(z)
t−1ω

1|2

σ
.
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Further, by differentiation of (75),

E
(η,i)
k =

1

σρ

∫
q

∫
ak(r, s)F

(z,i)
t−1 (η, ck(s, ψ))w(

z − r
σ

,
e− s
ρ

)drds, m = γ = α
(z,i)
t−1 .

The proofs for φ ≤ 0 are symmetric.

As the cases (e, e), (i, e), (ψ, e), (φ, e), (σ, e), (ρ, e), (i, ψ), (i, ρ), (ψ,ψ), (ρ, ρ), (ψ, σ), (ψ, ρ) are
symmetric to (z, z), (i, z), (φ, z), (ψ, z), (ρ, z), (σ, z), (i, φ), (i, σ), (φ, φ), (σ, σ), (φ, ρ), (φ, σ),
respectively, and as D(x,y) = D(y,x) for any parameters x, y thanks to Lemma 6, we have proved
continuous second differentiability and boundedness of D in all its parameters except for ε, implying
the same properties for Gt by the Chain Rule for Multivariate Functions (see the similar discussion
in the proof of (ii)-(iii). As for ε, note that, from (58),

G
(ε,ε)
t = −

(
b(ε)

b

)2

D(η,η)(. . . ,−y?(ε), . . . ) +
b(ε,ε)b− (b(ε))2

b2
D(η)(. . . ,−y?(ε), . . . )

and

G
(ε,x)
t =

b(ε)

b
D(η,x)(. . . ,−y?(ε), . . . )

when x 6= ε where the second continuous differentiability of b follows by Lemma 5. Finally, as

F
(x,y)
t =

(
G

(x)
t Ct − C(x)

t Gt
C2
t

)(y)

=
[G

(x,y)
t Ct +G

(x)
t C

(y)
t − C(x,y)

t Gt − C(x)
t G

(y)
t ]C2

t − 2C
(y)
t [G

(x)
t Ct − C(x)

t Gt]

C4
t

(76)

we are getting (v) and (vi) thanks to (iii) and (iv) and the strict positivity and the second continuous
differentiability of Ct.

Now, we can proceed with ZBIt. Unusually, we start with the case t > 1, assuming ZBIt−1.

Similarly as in the proof of (iii), we start with D
(•,z)
t or, alternatively, E

(•,z)
t . Again we will go

through all the variables and parameters:

(φ, z)

(1 + |z|)|D(φ,z)| ≤ 1

σ2

∫
|r|w1,(u)

(
z − φr
σ

)
dFt−1(r, s; ξ) ≤ mφ(z),

mφ(z) =
1

σ

∫
|r|
(

1

σ
(1 + |φr|) +

∣∣∣∣z − φrσ

∣∣∣∣) ∣∣∣∣w1,(u)

(
z − φr
σ

)∣∣∣∣ dFt−1(r, s; ξ)

≤
√
εt−1 + |φ|εt−1

σ2
sup
u

∣∣∣w1,(u)(u)
∣∣∣+

√
εt−1

σ
sup
u

∣∣∣uw1,(u)(u)
∣∣∣ ,

∫
mφ(z)dz =

∫
|r|
(

1

σ
(1 + |φr|) + |x|

) ∣∣∣w1,(u) (x)
∣∣∣ dFt−1(r, s; ξ)dx

≤
√
εt−1 + |φ|εt−1

σ

∫ ∣∣∣w1,(u)(x)
∣∣∣ dx+

√
εt−1

∫ ∣∣∣xw1,(u)(x)
∣∣∣ dx.

(σ, z)
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(1 + |z|)|D(σ,z)| ≤ mσ(z),

mσ(z) =
1

σ

∫ (
1

σ
+

∣∣∣∣φrσ
∣∣∣∣+

∣∣∣∣z − φrσ

∣∣∣∣)(∣∣∣∣z − φrσ
w1,(u)

(
z − φr
σ

)∣∣∣∣+ w1

(
z − φr
σ

))
dFt−1(r, s; ξ)

≤
1 + |φ|√εt−1

σ2

(
sup
u
|uw1,(u)(u)|+ sup

u
w1(u)

)
+

1

σ

(
sup
u
|u2w1,(u)(u)|+ sup

u
|u|w1(u)

)
,

∫
mσ(z)dz =

∫ (
1

σ
+

∣∣∣∣φrσ
∣∣∣∣+ |x|

) ∣∣∣|x|w1,(u) (x) + w1(x)
∣∣∣ dxdFt−1(r, s; ξ)

≤
1 + |φ|√εt−1

σ

(∫ ∣∣∣xw1,(u)(x)
∣∣∣ dx+ 1

)
+

(∫ ∣∣∣x2w1,(u)(x)
∣∣∣ dx+ E|U2|

)
.

(ρ, z)

(1 + |z|)|D(ρ,z)| ≤ nρ(z, e),

nρ(z, e) =
1

σρ

∫ ∣∣∣∣e− ψsρ

∣∣∣∣ (1 + |φr|+ σ

∣∣∣∣z − φrσ

∣∣∣∣)w(z − φrσ
,
e− ψs
ρ

)
dFt−1(r, s; ξ)

≤
(1 + |φ|√εt−1)ω1|2

σρ
sup
v
|v|w2(v) +

1

ρ
sup
u,v
|uv|w(u, v),

∫
nρ(e, z)dzde =

∫
|y| (1 + |φr|+ σ |x|)w (x, y) dFt−1(r, s; ξ)dxdy

≤ (1 + |φ|√εt−1)E|V2|ω1|2 + σ

∫
|xy|w(x, y)dxdy.

Further,

(1 + |z|)|D(ρ,z)(z,∞)| = limsupe→∞n
ρ(e, z)

≤ 1

σρ

∫
limsupe→∞

(∣∣∣∣e− ψsρ

∣∣∣∣ (1 + |φr|+ σ

∣∣∣∣z − φrσ

∣∣∣∣)w(z − φrσ
,
e− ψs
ρ

))
dFt−1(r, s; ξ)

≤ 1

σ

∫
(1 + |φr|+ |z − φr|)ω1|2

(
lim
e→∞

∣∣∣∣e− ψsρ

∣∣∣∣w2

(
e− ψs
ρ

))
dFt−1(r, s; ξ) = 0.

(ψ, z)

(1 + |z|)|D(ψ,z)| ≤ mψ(z),

mψ(z) =
ω2|1

σρ

∫ (
1 + |φr|+ σ

∣∣∣∣z − φrσ

∣∣∣∣) |s|w1

(
z − φr
σ

)
dFt−1(r, s; ξ)

≤ α1ω
2|1

ρσ
(
√
εt−1 + |φ|√εt−1

√
εt−1) +

√
εt−1ω

2|1

ρ
sup
u
|u|w1(u),

∫
mψ(z)dz =

ω2|1

ρ

∫
(1 + |φr|+ σ |x|) |s|w1 (x) dFt−1(r, s; ξ)dx

≤
ω2|1(

√
εt−1 + |φ|√εt−1

√
εt−1)

ρ
+
σω2|1√εt−1

ρ
E|U2|.
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(η, z)

(1 + |z|)|D(η,z)| ≤ mη(z)

mη(z) =
1

σ

(
1 + |φη|+ σ

∣∣∣∣z − φησ

∣∣∣∣)w1

(
z − φη
σ

)
f1t−1(η; ξ)

≤
[

1

σ
(1 + |φη|)α1 + sup

u
|u|w1(u)

]
f1t−1(η; ξ),

∫
mη(z)dz ≤

[
(1 + |φη|)

∫
w1(x)dx+ σ

∫
|x|w1(x)dx

]
f1t−1(η; ξ)

[(1 + |φη|) + σE|U2|] f1t−1(η; ξ).

(i, z) Let φ 6= 0 first. By substitution, we get, similarly as in (69),

(1 + |z|)|E(i,z)| = 1

σ

∫
(1 + |z|)|F (i,z)

t−1 (x, dk(s, ψ))|w
(
z − φx
σ

, v

)
dxdv. (77)

Further, as

1 + |z| ≤ 1 + |φx|+ |z − φx| ≤ (1 + |φ|)(1 + |x|) + |z − φx|
≤ [(1 + |φ|) + |z − φx|](1 + |x|)

we may estimate

(1 + |z|)|E(i,z)|

≤
2∑
k=1

∫
1

σ
((1 + |φ|) + |z − φx|) (1 + |x|)|F (i,z)

t−1 (x, dk(s, ψ))|w
(
z − φx
σ

, v

)
dxdv

≤
2∑
k=1

[mi
k(z) + nik(z, e)] (78)

where, for dk(•) = •
ψ ,

mi
k(z) =

∫
1

σ
((1 + |φ|) + |z − φx|)w1(

z − φx
σ

)w2|1(v|z − φx
σ

)mi,z
t−1(x)dxdv

≤
(

1 + |φ|
σ

α1 + sup
u
|u|w1(u)

)
M i,z
t−1, (79)

nik(z, e) =

∫
1

σ
((1 + |φ|) + |z − φx|)w1(

z − φx
σ

)ω2|1ni,zt−1(x,
e− σv
ψ

)dxdv

=
|ψ|
ρ

∫
1

σ
((1 + |φ|) + |z − φx|)w1(

z − φx
σ

)ω2|1ni,zt−1(x, y)dxdy

≤ |ψ|
ρ

(
1 + |φ|
σ

α1 + sup
u
|u|w1(u)

)
N i,z
t−1
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with∫
mi
k(z)dz =

∫
1

σ
((1 + |φ|) + |z − φx|)w1(

z − φx
σ

)mi,z
t−1(x)w2|1(v|z − φx

σ
)dvdxdz

=

∫
1

σ
((1 + |φ|) + |z − φx|)w1(

z − φx
σ

)mi,z
t−1(x)dzdx

=

∫
((1 + |φ|) + σ|u|)w1(u)mi,z

t−1(x)dudx

≤ (1 + |φ|+ σE|U2|)mi,z
t−1

∫
nik(z, e)dz =

∫
1

σ
((1 + |φ|) + |z − φx|)w1(

z − φx
σ

)ni,zt−1(x, y)ω2|1dxdydz

≤ (1 + |φ|+ σE|U2|)ω2|1ni,zt−1.

If dk = ∞, on the other hand, then we may put nzk ≡ 0 and define mi
k by (79) with ri,zt−1

instead of mi,z
t−1, bounding it using Ri,zt−1 instead of M i,z

t−1.
Similarly we get that

(1 + |z|)|E(i,z)(z,∞)| ≤ 2ri(z),

ri(z) =

∫
1

σ
(1 + |φ|+ |z − φx|) (1 + |x|)|F (i,z)

t−1 (x,∞)|w
(
z − φx
σ

, v

)
dxdv

≤ 2

(
1 + |φ|
σ

α1 + sup
u
|u|w1(u)

)
Ri,zt−1 (80)

∫
ri(z)dz ≤ [(1 + |φ|) + σE|U2|]ri,zt−1.

If φ = 0, on the other hand, then relations (78) and (80) follow by a limit transition, which
may be done thanks to the continuity of the integrand from (77) in φ and its dominatedness
by integrable bound(

(1 + φ0)α1 + σ sup
u
|u|w1(u)

)
(1 + |x|)|F (i,z)

t−1 (x, dk(s, ψ))

whenever |φ| ≤ φ0 where φ0 is small.

Now, similarly as in the proof of (iii)-(iv), we may use the Chain Rule to get that (1+|z|)G(i,z)
t (z, e) ≤

m̃i(z)+ ñi(z, e) where m̃i and ñi have properties analogous to mi,z
t and ni,zt from ZBIt; for instance,

if i corresponds to φ , then m̃i(z) = mφ(z) +mi
1(z) +mi

2(z), ñi(z, e) = ni1(z, e) +ni2(z, e) (similarly

with G
(i,z)
t (z,∞) and ri).

Finally, from (76),

(1 + |z|)|F (i,z)
t (z, e)| = (1 + |z|)

∣∣∣∣∣G(i,z)
t (z, e)Ct −G(z)

t (z, e)C
(i)
t

C2
t

∣∣∣∣∣
=

1

Ct
(1 + |z|)(|G(i,z)

t (z, e)|+ |C(i)
t F

(z)
t (z, e)|)

≤ 1

Ct
(m̃i(z) + ñi(z, e) + |C(i)

t |(1 + |z|)f1t (z))
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(the last inequality may be got similarly as (46)), so we may put

mi,z
t (z) =

m̃i(z)

Ct
+ |C(i)

t |(1 + |z|)f1t (z), ni,zt (z, e) =
1

Ct
ñi(z, e)

(note that
∫

(1 + |z|)f1t (z)dz ≤ 1 +
√
εt).

Now, let us proceed to ZBI1, This is, however, easy because the Fφ,z1 ≡ Fψ,z1 ≡ Fσ,z1 ≡ F ε,z1 ≡ 0
and the proofs for Fσ1,z

1 and F ρ,z1 are the same that those for Fσ,zt and F ρ,zt with φ = ψ = 0, with
σ1 instead of σ and W1 instead of W .

The proof of EBIt is symmetric except for the case of (η, e), which reads as

(1 + |e|)|D(η,e)| ≤ mη(e),

mη(e) =

∫ (
1

ρ
(1 + |ψs|) +

∣∣∣∣e− ψsρ

∣∣∣∣)w2(
e− ψs
ρ

)ft−1(η, s; ξ)ds

≤ f1t−1(η; ξ)

(
1

ρ
+ sup

v
|v|w2(v)

)
+
|ψ|α1

ρ

∫
|s|ft−1(η, s; ξ)ds,

∫
mη(e)de ≤ f1t−1(η; ξ)(1 + E|V2|) + |ψ|

∫
|s|ft−1(η, s; ξ)ds,

where the finiteness and boundedness of
∫
|s|ft−1(η, s; ξ)ds is proved by (65) and (66).

C Proofs of Propositions from Section 5

We start with several auxiliary results.

Lemma 7. Let F and G be distributions with c.d.f.’s F , G, respectively and let a, b ∈ R such that
F (a) < 1,G(b) < 1. Let %(F ,G) ≤ δ for some δ > 0. Then
(i)

%(T (F , a), T (G, b)) ≤ δ + |F (a)−G(b)|
1−max(F (a), G(b))

;

(ii) if, in addition, a = b, then

%(T (F , a), T (G, a)) ≤ δ + |F (a)−G(a)|
1−min(F (a), G(a))

.

Proof. Denote F̃ and G̃ the c.d.f.’s of T (F , a), T (G, b), respectively. For x ≤ a, x ≤ b, clearly

|F̃ (x)− G̃(x)| = 0. (81)
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Ad (ii). If x ≥ a, x ≥ b, then

|F̃ (x)− G̃(x)| =
∣∣∣∣F (x)− F (a)

1− F (a)
− G(x)−G(b)

1−G(b)

∣∣∣∣
=

∣∣∣∣(1− G(x)−G(b)

1−G(b)

)
−
(

1− F (x)− F (a)

1− F (a)

)∣∣∣∣ =

∣∣∣∣1−G(x)

1−G(b)
− 1− F (x)

1− F (a)

∣∣∣∣
≤
∣∣∣∣1−G(x)

1−G(b)
− 1−G(x)

1− F (a)

∣∣∣∣+

∣∣∣∣1−G(x)

1− F (a)
− 1− F (x)

1− F (a)

∣∣∣∣
= (1−G(x))

∣∣∣∣ 1

1−G(b)
− 1

1− F (a)

∣∣∣∣+
|F (x)−G(x)|

1− F (a)

≤ (1−G(b))

∣∣∣∣ 1

1−G(b)
− 1

1− F (a)

∣∣∣∣+
δ

1− F (a)

=

∣∣∣∣1− 1−G(b)

1− F (a)

∣∣∣∣+
δ

1− F (a)
=
|F (a)−G(b)|

1− F (a)
+

δ

1− F (a)
=

δ + γ

1− F (a)
, (82)

where γ = |F (a)−G(b)|, which, together with symmetric formula

|F̃ (x)− G̃(x)| ≤ δ + γ

1−G(b)
(83)

and (81), proves (ii).
Ad (i). If a < x < b then G̃(x) = 0, F (x) ≥ F (a) and G(x) ≤ G(b) soi

|F̃ (x)− G̃(x)| = F (x)− F (a)

1− F (a)
=

(F (x)−G(x)) + (G(x)− F (a))

1− F (a)

≤ (F (x)−G(x)) + (G(b)− F (a))

1− F (a)
≤|F (x)−G(x)|+ |G(b)− F (a)|

1− F (a)
≤ δ + γ

1− F (a)
;

which, together with (82) and (83) proves (i) for a < b. The proof of the case a > b is symmetrical.

Lemma 8. Let F and G be as in Lemma 7 with %(F ,G) ≤ δ and let N and P be distributions such
that %(N ,P) ≤ γ. Then,

%(F ◦ N ,G ◦ P) ≤ δ + γ

Proof. By the Triangular inequality,

%(F ◦ N ,G ◦ P) ≤ %(F ◦ N ,G ◦ N ) + %(G ◦ N ,G ◦ P).

Further, denoting N the c.d.f. of N , we get

%(F ◦ N ,G ◦ N ) = sup
x
|
∫
F (x− y)dN(y)−

∫
G(x− y)dN(y)|

= sup
x
|
∫

[F (x− y)−G(x− y)]dN(y)|

≤ sup
x

∫
|F (x− y)−G(x− y)|dN(y) ≤

∫
%(F ,G)dN(y) = %(F ,G).

Applying the same procedure to %(G ◦ N ,G ◦ P), the Lemma is proved.

Lemma 9. For any c.d.f. G and any π ∈ (0, 1), G(γ(π)) ≥ π and G(γ(π)−) ≤ π where γ the
quantile function of G.

45



Proof. The assertion may be proved directly from the definition of quantile

Lemma 10. Let p ∈ (0.1) and let F and G be as in Lemma 7. Let F be continuous strictly
increasing and let

%(F ,G) ≤ δ. (84)

Then
|χ(F , p)− χ(G, p)| ≤ u− u, (85)

where
u = χ(G, p− δ), u = χ(G, p+ δ).

Proof. From the monotonicity of the quantile,

u ≤ χ(G, p) ≤ u;

thus, to prove (85), it suffices to show that

u ≤ χ(F , p) ≤ u. (86)

We do it by contradiction: First, assume that u < χ(F , p). Then, however, by the strict mono-
tonicity of F and its continuity,

F (u) < F (χ(F , p)) = p,

and, by Lemma 9,
G(u) ≥ p+ δ,

which, together, gives

G(u)− F (u) ≥ p+ δ − F (u) > (p+ δ)− p = δ.

which is a contradiction.

Now, assume χ(F , p) < u. Then, however, by the continuity and monotonicity of F , F (u−) =
F (u) > F (χ(F , p)) = p, and, by Lemma 9, G(u−) ≤ p − δ, which gives a contradiction F (u−) −
G(u−) > δ.

Summed up, (86) is proved implying (85).

C.1 Proof of Proposition 4

Let
%(At−1,Zt−1) ≤ δt−1. (87)

Denote T
Z?t = T (Zt−1,−Y ?t−1), ZSt = φ · Z?t , Z◦t = ZSt ◦W

By the Triangular Inequality and Lemma 8, and Triangular Inequality again

%(At,Z◦t ) ≤ %(At,A◦t ) + %(A◦t ,Z◦t ) ≤ %(At,A◦t ) + %(ASt ,ZSt ) + %(W,U)

≤ %(At,A◦t ) + %(ASt , φ · A?t ) + %(φ·A?t ,ZSt ) + %(W,U).

Further, by Lemma 7 (i),

%(φ·A?t ,ZSt ) = %(φ·A?t , φ · Z?t ) = %(A?t ,Z?t ) ≤ 2δt−1
1−At−1(−∞,−Y ?t−1]

As, in addition, %(At,A◦t ) ≤ εt the Proposition is proved.
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C.2 Proof of Proposition 5

The proof is analogous to that of Proposition 4 with the difference that Lemma 7 (ii) is used to
estimate

%(B?t ,Z?t ) ≤

∣∣∣Zt−1(−∞,−Y ?t ]− Bt−1(−∞,−Ỹ ?t ]
∣∣∣+ ηt−1

1−max(Z?t−1(−∞,−Y ?t ]t−1,Bt−1(−∞,−Ỹ ?t ])
.
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