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Abstract Depending on whether a mathematical program with equilibrium constraints6

(MPEC) is considered in its original or its enhanced (via KKT conditions) form, the as-7

sumed qualification conditions as well as the derived necessary optimality conditions may8

differ significantly. In this paper, we study this issue when imposing one of the weakest pos-9

sible qualification conditions, namely the calmness of the perturbation mapping associated10

with the respective generalized equations in both forms of the MPEC. It is well known that11

the calmness property allows one to derive the so-called M-stationarity conditions. The re-12

strictiveness of assumptions and the strength of conclusions in the two forms of the MPEC is13

also strongly related to the qualification conditions on the “lower level”. For instance, even14

under the Linear Independence Constraint Qualification (LICQ) for a lower level feasible15

set described by C 1 functions, the calmness properties of the original and the enhanced per-16

turbation mapping are drastically different. When passing to C 1,1 data, this difference still17

remains true under the weaker Mangasarian-Fromovitz Constraint Qualification, whereas18

under LICQ both the calmness assumption and the derived optimality conditions are fully19

equivalent for the original and the enhanced form of the MPEC. After clarifying these re-20

lations, we provide a compilation of practically relevant consequences of our analysis in21

the derivation of necessary optimality conditions. The obtained results are finally applied to22

MPECs with structured equilibria.23
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1 Introduction27

Starting with [22], efficient necessary optimality conditions for various types of mathemat-28

ical programs with equilibrium constraints (MPECs) have been developed on the basis of29

the generalized differential calculus of Mordukhovich, e.g. [13,15,16,21]. Following [19],30

we speak about M-stationarity conditions. Let us consider an MPEC of the form31

minimize
x,y

ϕ(x,y)

subject to 0 ∈ F(x,y)+ N̂Γ (y),

x ∈ ω,

(1)

where x ∈ Rn is the control variable, y ∈ Rm is the state variable, ϕ : Rn×Rm → R is the32

objective, ω ⊂Rn is a closed set of admissible controls, F :Rn×Rm→Rm is a continuously33

differentiable mapping, and the constraint set Γ ⊂ Rm is given by inequalities34

Γ = {y ∈ Rm | qi(y)≤ 0, i = 1, . . . ,s} (2)

with a continuously differentiable mapping q = (q1, . . . ,qs)
> : Rm → Rs. Further, N̂ refers35

to the regular (Fréchet) normal cone (see Definition 1).36

Let (x̄, ȳ) be a (local) solution of (1). When Γ satisfies the Mangasarian-Fromovitz Con-37

straint Qualification (MFCQ) at ȳ (see Definition 4), one has the representation38

N̂Γ (y) = NΓ (y) = (∇q(y))>NRs
−(q(y))

on a neighborhood of ȳ so that the following equivalence holds true for the generalized39

equation in (1):40

0 ∈ F(x,y)+NΓ (y)⇔∃λ : 0 ∈ H(x,y,λ )+NRm×Rs
+
(y,λ ), (3)

provided y is close to ȳ and H(x,y,λ ) := (F(x,y)+ (∇q(y))>λ ,−q(y)). This relation sug-41

gests also to consider the enhanced MPEC42

minimize
x,y,λ

ϕ(x,y)

subject to 0 ∈ H(x,y,λ )+NRm×Rs
+
(y,λ ),

x ∈ ω

(4)

in variables (x,y,λ ). The generalized equation in (4) has a substantially simpler constraint43

set than the generalized equation in (1). As the price for it, one has to do with an additional44

variable λ . Let us introduce the multifunction Λ : Rn×Rm ⇒ Rs by45

Λ(x,y) :=
{

λ ∈ Rs
∣∣∣0 = F(x,y)+(∇q(y))>λ , q(y) ∈ NRs

+
(λ )
}

(5)

so that Λ(x,y) is the set of Lagrange multipliers associated with a pair (x,y), feasible with46

respect to the generalized equation from (1). It is easy to see that under MFCQ we have47
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that Λ(x̄, ȳ) 6= /0 and (x̄, ȳ) is a local solution to problem (1) if and only if (x̄, ȳ,λ ) is a local48

solution to (4) for all λ ∈ Λ(x̄, ȳ). Likewise, it is known that for a local solution (x̄, ȳ, λ̄ )49

of (4) the pair (x̄, ȳ) need not be a local solution of (1), see [2] in the context of bilevel50

programming. It follows that numerical methods computing M-stationary points of (4) may51

terminate at points which are not M-stationary with respect to the original (1). A complete52

analysis of this issue requires, however, to compare also the qualification conditions imposed53

in the course of derivation of the M-stationarity conditions for (1) and (4), respectively. As54

in [15,22] we will make use of the so-called calmness qualification conditions [10] which55

ensure a certain Lipschitzian behavior of the canonically perturbed constraint maps in (1)56

and (4), cf. Definition 3 and formula (7). It turns out that, very often, the calmness quali-57

fication condition related to (1) is satisfied, whereas the qualification condition of (4) may58

be not fulfilled for some or even for any multipliers λ . The main aim of this paper is thus a59

thorough analysis of both these qualification conditions and their mutual relationship. Not60

surprisingly, in the achieved results an important role is played by the constraint qualifica-61

tions (CQs) which Γ fulfills at ȳ. The choice between M-stationarity conditions of (1) and62

(4) depends, however, also on some other circumstances. First, it is the question of workable63

criteria for the considered calmness qualification conditions which are typically somewhat64

simpler in the case of (4). Further, one has to take into account also the possibility to express65

M-stationarity conditions of (1) in terms of problem data because otherwise the results do66

not have a practical value.67

In the paper, all these aspects will be considered. To state our aims rigorously, one needs68

some basic notions from variational analysis. They are introduced at the beginning of Sec-69

tion 2.1. Section 2.2 is then devoted to a proper problem setting. We define here the pertur-70

bation mappings M and M̃ associated with problems (1) and (4). In Section 2.3 we present71

several auxiliary results needed in the sequel. Since calmness of M and M̃ allows us to derive72

necessary optimality conditions, Section 3 deals with the relations between calmness of M73

and M̃ under various CQs imposed on Γ . Another important issue is to find workable criteria74

(in terms of problem data) ensuring the calmness of M and M̃. This will be considered in75

Section 4. One finds there in Theorem 8 also a compilation of the main results of the paper.76

In Section 5 we illustrate the application of our results to a structured family of MPECs or77

bilevel problems.78

Our notation is standard. For f : R→R by f ′ we mean its derivative. For a vector x∈Rn
79

and a set C ⊂ Rn, by ‖x‖ we mean the (Euclidean) norm of x and by d(x,C) the distance of80

x from C. By o(h) we understand any function such that limh↘0
o(h)
‖h‖ = 0. Finally, by #S we81

mean the cardinality of a set S.82

2 Problem setting and preliminaries83

Throughout the whole paper we consider equilibria governed by the generalized equation
from (1), where Γ is given in (2). With minor modifications, however, the whole theory
applies also to the case when Γ is given by inequalities and equalities. For the sake of brevity
we assume (without any loss of generality) that, at the considered point ȳ, all inequality
constraints are active, i.e,

qi(ȳ) = 0, i = 1, . . . ,s.
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2.1 Background from variational analysis84

Definition 1 For a closed set A ⊂ Rn and x̄ ∈ A we define the Fréchet and limiting (Mor-
dukhovich) normal cone to A at x̄ by

N̂A(x̄) = {x∗ | 〈x∗,x− x̄〉 ≤ o(‖x− x̄‖) for all x ∈ A}
NA(x̄) = Limsup

x→x̄
N̂A(x) :=

{
x∗
∣∣ ∃(xk,x∗k) : x∗k ∈ N̂A(xk), xk→ x̄, x∗k → x∗

}
.

If A happens to be convex, both normal cones coincide and are equal to the normal cone
in the sense of convex analysis

N̂A(x̄) = NA(x̄) = {x∗| 〈x∗,x− x̄〉 ≤ 0 for all x ∈ A}.

It follows from [18, Exercise 10.26(d)] that under the MFCQ at ȳ we have N̂Γ (y) = NΓ (y)85

for all y from a neighborhood of ȳ and therefore one can replace the regular normal cone in86

(1) by the limiting one, having a better calculus.87

Definition 2 For a multifunction M :Rn ⇒Rm and for any ȳ∈M(x̄) we define the (limiting)
coderivative D∗M(x̄, ȳ) : Rm ⇒ Rn at this point as

D∗M(x̄, ȳ)(y∗) =
{

x∗
∣∣ (x∗,−y∗) ∈ NgphM(x̄, ȳ)

}
,

where gphM stands for the graph of M.88

Definition 3 We say that a multifunction M : Rn ⇒ Rm has the Aubin property around
(x̄, ȳ) ∈ gphM if there exist a nonnegative modulus L and neighborhoods U of x̄ and V
of ȳ such that for all x,x′ ∈U and all y ∈M(x)∩V we have

d(y,M(x′))≤ L‖x− x′‖.

Similarly, we say that M is calm at (x̄, ȳ)∈ gphM if there exist a nonnegative modulus L and89

neighborhoods U of x̄ and V of ȳ such that for all x ∈U and y ∈M(x)∩V we have90

d(y,M(x̄))≤ L‖x− x̄‖. (6)

Note that the calmness may be significantly weaker than the Aubin property. For exam-91

ple any polyhedral mapping (mapping whose graph is a finite union of convex polyhedra)92

satisfies the calmness property at any point of its graph but may fail to have the Aubin93

property at the same time.94

In our analysis we make use of some basic CQs from nonlinear programming. For the
reader’s convenience, we recall them in the next definition, where I(y) denotes the set of
active constraints, i.e.,

I(y) := {i ∈ {1, . . . ,S}| qi(y) = 0}.

Definition 4 Consider a set Γ defined by inequalities (2) and some point ȳ ∈ Γ . We say
that Γ satisfies LICQ (linear independence constraint qualification) at ȳ if the gradients
corresponding to all active constraints are linearly independent, hence

∑
i∈I(ȳ)

µi∇qi(ȳ) = 0 =⇒ µi = 0 for all i ∈ I(ȳ).
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Similarly, we say that Γ satisfies MFCQ (Mangasarian-Fromovitz constraint qualification)
at ȳ if the gradients corresponding to all active constraints are positively linearly indepen-
dent, hence

∑
i∈I(ȳ)

µi∇qi(ȳ) = 0, µi ≥ 0 =⇒ µi = 0 for all i ∈ I(ȳ).

We have used here the dual formulation of MFCQ. Finally, Γ satisfies CRCQ (constant rank95

constraint qualification) at ȳ if there is a neighborhood U of ȳ such that for all subsets I of96

active indices I(ȳ) we have that rank{∇qi(y)| i ∈ I} is a constant value for all y ∈U .97

Note that both, MFCQ and CRCQ are strictly weaker conditions than LICQ (even when98

imposed jointly) and that neither of the two implies the other.99

2.2 Problem setting100

The notions defined above enable us to state the investigated problem rigorously. The per-101

turbation mappings associated with MPECs (1) and (4) attain the form102

M(z) := {(x,y) | x ∈ ω, z ∈ F(x,y)+NΓ (y)} ,

M̃(z1,z2) :=
{
(x,y,λ )

∣∣∣ x ∈ ω, (z1,z2) ∈ H(x,y,λ )+NRm×Rs
+
(y,λ )

}
=
{
(x,y,λ )

∣∣∣ x ∈ ω, z1 = F(x,y)+(∇q(y))>λ , z2 ∈ −q(y)+NRs
+
(λ )
}
,

(7)

respectively. The M-stationarity conditions for (1) can be formulated as follows.103

Theorem 1 ([22], Theorem 3.2) Let (x̄, ȳ) be a local solution to (1). If M is calm at (0, x̄, ȳ),104

then there exists an MPEC multiplier v ∈ Rm such that105

0 ∈ ∇xϕ(x̄, ȳ)+ [∇xF(x̄, ȳ)]> v+Nω(x̄),

0 ∈ ∇yϕ(x̄, ȳ)+ [∇yF(x̄, ȳ)]> v+D∗NΓ (ȳ,−F(x̄, ȳ))(v).
(8)

Since MPEC (4) has exactly the same structure as MPEC (1), the respective M-stationarity106

condition can be derived in the same way upon putting107

x := x, y := (y,λ ), F := H, Γ := Rm×Rs
+.

Instead of keeping a co-derivative expression D∗NRm×Rs
+

similar to D∗NΓ in (8), one can108

make this fully explicit now by relying on well-known formulae (e.g., [14]). We obtain the109

following twin theorem to Theorem 1:110

Theorem 2 Let (x̄, ȳ, λ̄ ) be a local solution to (4) and assume that q ∈ C 2. If M̃ is calm at111 (
0,0, x̄, ȳ, λ̄

)
, then there exist some multipliers v ∈ Rm and w ∈ Rs such that112

0 = ∇xϕ(x̄, ȳ)+ [∇xF(x̄, ȳ)]> v+Nω(x̄),

0 = ∇yϕ(x̄, ȳ)+ [∇yF(x̄, ȳ)]> v+
s

∑
i=1

λ̄i∇
2qi(ȳ)v− [∇q(ȳ)]>w,

0 = ∇qi(ȳ)v ∀i : λ̄i > 0,

0 = wi ∀i : qi(ȳ)< 0,

0≥ wi,0≤ ∇qi(ȳ)v or 0 = wi or 0 = ∇qi(ȳ)v ∀i : λ̄i = qi(ȳ) = 0.

(9)
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Theorem 2 can be interpreted as a variant of Theorem 1 in a different disguise addressing113

the same topic of MPEC (1) with differing assumptions and differing stationarity conditions.114

By taking into account the relationships between local solutions to (1) and (4) mentioned115

above, the combination of both theorems immediately leads to the following result.116

Corollary 1 Let (x̄, ȳ) be a local solution to (1) and assume that MFCQ is satisfied at ȳ.117

Then there exist multipliers v and w such that (9) holds true for those λ̄ ∈Λ(x̄, ȳ) for which118

M̃ is calm at
(
0,0, x̄, ȳ, λ̄

)
.119

We observe first that Theorem 1 requires the computation of a coderivative while Theorem 2120

provides fully explicit stationarity conditions. Precise formulae for this coderivative in terms121

of the problem data are available provided that Γ is polyhedral ([9, Theorem 3.2]), under122

LICQ at ȳ ([7, Theorem 3.1]) or under a relaxation of MFCQ combined with the so-called123

2-regularity ([5, Theorem 3]). An upper estimate has been derived in [7, Theorem 3.3] and124

further worked out in the Section 3.2 (Corollary 3). Moreover, Corollary 1 enables us to125

circumvent the difficulties associated with the coderivative in (8) and to benefit from the126

explicit stationary conditions (9). This gain in convenience is bought by the need to check a127

calmness condition for M̃ which may be more restrictive than the calmness condition for M128

imposed in Theorem 1.129

2.3 Auxiliary results130

At several places of the paper we will make use of the following statement from [12] which131

ensures the calmness of the intersection of two independently perturbed multifunctions.132

Theorem 3 ([12], Theorem 3.6) Consider the following multifunctions S1 : Rn1 ⇒Rm and133

S2 : Rn2 ⇒ Rm and a point ū ∈ S1(0)∩ S2(0). Then Σ(z1,z2) := S1(z1)∩ S2(z2) is calm at134

(0,0, ū) provided the following conditions are satisfied:135

1. S1 is calm at (0, ū);136

2. S2 is calm at (0, ū);137

3. S−1
1 has the Aubin property at (ū,0);138

4. S1∩S2(0) is calm at (0, ū).139

In the next two lemmas we present a convenient way of verifying the assumptions of The-140

orem 3 and then we apply it to a special structure arising later in the manuscript. Note that141

the following lemma is a compilation of well-known results:142

Lemma 1 Let f : Rn→ Rm be a differentiable function. Then f−1 is calm at ( f (x̄), x̄) if at143

least one of the following conditions holds:144

1. f is piecewise linear;145

2. ∇ f (x̄) has full row rank;146

3. ∇ f (x̄) has full column rank.147

Proof The first case is the classical result of Robinson [17, Proposition 1]. The second one148

implies the Aubin property of f−1 at ( f (x̄), x̄) and the third one the isolated calmness prop-149

erty of f−1 at ( f (x̄), x̄) by [3, Corollary 3I.11]. Since both these properties imply calmness,150

the proof is complete. ut151
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Lemma 2 Consider a multifunction φ : Rn×Rm ⇒ Rp×Rt with the separable structure

φ(u,v) = φ1(u)×φ2(v),

and assume that (w̄, z̄) ∈ φ1(ū)×φ2(v̄), where φ1 is calm at (ū, w̄) and φ2 is calm at (v̄, z̄).152

Then φ is calm at ((ū, v̄),(w̄, z̄)).153

Proof Let us equip the Cartesian product Rp×Rt with the sum norm. Then one has for all154

w ∈ φ1(u) and z ∈ φ1(v) that155

d((w,z),φ(ū, v̄)) = d(w,φ1(ū))+d(z,φ2(v̄))≤ L1‖u− ū‖+L2‖v− v̄‖ (10)

whenever (u,v) and (w,z) are sufficiently close to (ū, v̄) and (w̄, z̄), respectively. In (10),156

L1 and L2 signify the calmness moduli of φ1 and φ2 at (ū, w̄) and (v̄, z̄), respectively. We157

immediately conclude that φ is calm at the respective point. ut158

Lemma 3 Consider u = (u1,u2) ∈ Rn1 ×Rn2 = Rn, continuously differentiable mappings159

H1 :Rn→Rm, H2 :Rn→Rn2 , closed sets ∆ ⊂Rn, Ω ⊂Rn2 and the following multifunctions160

S1(z1) := {u|H1(u)− z1 = 0},
S2(z2) := {u ∈ ∆ |H2(u)− z2 ∈ NΩ (u2)}.

(11)

Consider further a point ū∈ S1(0)∩S2(0) with the following properties: S1 is calm at (0, ū),161

S2 is calm at (0, ū) and the following qualification condition holds:162

(∇H1(ū))>a ∈
(

0 ∇u1 H2(ū)>

I ∇u2 H2(ū)>

)
NgphNΩ

(ū2,H2(ū))+N∆ (ū) =⇒ a = 0. (12)

Then Σ(z1,z2) := S1(z1)∩S2(z2) is calm at (0,0, ū).163

Proof Imitating the proof of [20, Proposition 5.2], it can be shown that Σ is calm at (0,0, ū)
if and only if S1∩ S̃2 is calm at (0,0,0, ū) with

S̃2(z2,z3) :=
{

u ∈ ∆

∣∣∣∣( u2− z3
H2(u)− z2

)
∈ gphNΩ

}
.

We will now apply Theorem 3 to S1 and S̃2. Due to [20, Proposition 5.2] the calmness of S̃2 at164

(0,0, ū) is equivalent to the calmness of S2 at (0, ū), which is satisfied by our assumptions.165

The multifunction S−1
1 = H1 is single-valued and locally Lipschitz continuous, and thus166

satisfies the Aubin property everywhere. Calmness of S1 at (0, ū) is satisfied due to the167

assumptions.168

To show that G(z) := S1(z)∩ S̃2(0,0) is calm at (0, ū), we claim that (12) implies even
the Aubin property of G around (0, ū), which by virtue of the Mordukhovich criterion [18,
Theorem 9.40] is equivalent to the implication(

a
0

)
∈ NgphG(0, ū) =⇒ a = 0.

By [18, Theorem 6.14] this is implied by169

(∇H1(ū))>a ∈ NS̃2(0,0)(ū) =⇒ a = 0. (13)

Since S̃2 is calm at (0,0, ū), we may use [6, Theorem 4.1] to deduce170

NS̃2(0,0)(ū)⊂
(

0 I
∇u1 H2(ū) ∇u2 H2(ū)

)>
NgphNΩ

(ū2,H2(ū))+N∆ (ū). (14)

However, due to (14), it is clear that (12) implies (13) and hence G has the Aubin property171

around (0, ū), which means that Σ is indeed calm at (0,0, ū). ut172
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3 Relations of calmness properties of M and M̃173

This section is devoted to a study of the general relationship between the calmness properties174

of M and M̃ defined in (7). Since we do not make use of any result from second-order175

variational analysis in this section, we require functions qi to be of class C 1.176

3.1 Calmness under MFCQ and C 1 inequalities177

Before proving our first result concerning the relation between the calmness properties of M178

and M̃, we state the following two propositions. For the first one, we omit its standard proof.179

Proposition 1 Fix any (x̄, ȳ) ∈M(0) and assume that MFCQ holds at ȳ ∈ Γ (described by180

C 1 inequalities). Then there exist a constant L and a neighborhood U of (0,0, x̄, ȳ) such181

that ‖λ‖ ≤ L for all (z1,z2,x,y) ∈U and (x,y,λ ) ∈ M̃(z1,z2).182

Proposition 2 Let MFCQ hold at ȳ ∈ Γ (described by C 1 inequalities). Then the calmness183

of M̃ at (0,0, x̄, ȳ, λ̄ ) for all λ̄ ∈Λ(x̄, ȳ) implies the calmness of M at (0, x̄, ȳ).184

Proof Assume by contradiction that M is not calm at (0, x̄, ȳ), which means that there exist185

sequences xk→ x̄, yk→ ȳ and pk→ 0 with xk ∈ ω such that186

pk ∈ F(xk,yk)+NΓ (yk), (15)

d((xk,yk),M(0))> k‖pk‖. (16)

Since for k sufficiently large MFCQ holds for Γ at yk, it follows from (15) the existence of187

λk with188

pk = F(xk,yk)+(∇q(yk))
T

λk, q(yk) ∈ NRs
+
(λk). (17)

In particular, (xk,yk,λk)∈ M̃(pk,0). From Proposition 1 we obtain that the sequence {λk} is189

bounded and thus we may assume, by taking a subsequence if necessary, that {λk} converges190

to some λ̄ . Then, passing to the limit in (17) and taking into account the closedness of the191

graph of the normal cone mapping, we derive that192

0 = F(x̄, ȳ)+(∇q(ȳ))T
λ̄ , q(ȳ) ∈ NRs

+
(λ̄ ).

In other words, λ̄ ∈Λ(x̄, ȳ) (see (5)). Since M(0) is the canonical projection of M̃(0,0) onto193

the space of the first two variables, one obtains from (16) and (xk,yk,λk) ∈ M̃(pk,0) that194

d((xk,yk,λk),M̃(0,0))≥ d((xk,yk),M(0))> k‖pk‖

and hence M̃ is not calm at (0,0, x̄, ȳ, λ̄ ) for some λ̄ ∈Λ(x̄, ȳ) which provides a contradiction.195

ut196

The reverse implication of Proposition 2 cannot be expected to hold true even when strength-197

ening MFCQ to LICQ as shown in the following example:198

Example 1 Consider the function q : R→ R defined as

q(y) =
{

y+ y3/2 if y≥ 0
y−|y|3/2 if y < 0.
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Further define F(x,y) = −1, ω = R and fix the reference point (x̄, ȳ, λ̄ ) = (0,0,1). Since
q′(0) = 1, LICQ is satisfied around ȳ. Moreover, it is clear that Γ = (−∞,0] and that q′ is
continuous at 0 but it is not Lipschitz continuous there. For all p close to 0 it holds true that

M(p) = {(x,y) | p+1 ∈ NΓ (y)}= R×{0}

and thus M is calm at (0, x̄, ȳ). Since λ̄ = 1, we may find a neighborhood U(x̄, ȳ, λ̄ ) of the
reference point such that

M̃(z1,z2)∩U(x̄, ȳ, λ̄ ) = {(x,y,λ )|z1 +1 = q′(y)λ , q(y) =−z2}

and thus, due to Lemma 2, the calmness of M̃ at (0,0, x̄, ȳ, λ̄ ) is equivalent to the calmness
of M̂ at (0,0, ȳ, λ̄ ) with

M̂(z1,z2) := {(y,λ )|z1 +1 = q′(y)λ , q(y) =−z2}.

Since q is continuously differentiable and q′(0) 6= 0, the inverse function theorem implies
that there exists a continuously differentiable function h such that on some neighborhood of
0, relation −q(y) = z2 is equivalent to h(z2) = y. Further we have h′(z2) =− 1

q′(h(z2))
, which

directly implies

M̂(z1,z2) = {(y,λ )|λ =−h′(z2)(z1 +1), y = h(z2).}.

This means that M̂ is single-valued and to show that M̂ is not calm at (0,0, ȳ, λ̄ ) it is sufficient
to show that p 7→ h′(p) is not calm at 0. Since h′ is continuous, we do not have to consider
a neighborhood in the range from the definition of calmness. It is easy to see that

|h′(p)−h′(0)|
|p−0|

=
1

|q′(h(p))q′(h(0))|
|q′(h(0))−q′(h(p))|

|p−0|
≥ |q

′(h(0))−q′(h(p))|
2|h(p)−h(0)|

p→0→ ∞

because q′ is not Lipschitz at 0. In the inequality we have used the estimate

1
|q′(h(p))q′(h(0))|

|h(p)−h(0)|
|p−0|

≥ 1
2
,

for all p sufficiently close to zero as q′(0) = 1 and h′(0) =− 1
q′(0) =−1 and both q and h are199

continuously differentiable at 0. But the previous inequality implies directly from (6) that200

h′ is not calm at 0. Thus, we have managed to find an example, in which LICQ holds, M is201

calm at (0, x̄, ȳ) but M̃ is not calm at (0,0, x̄, ȳ, λ̄ ). 4202

Note that in this example q was of class C 1 only. This raises the question of whether the203

reverse direction of Proposition 2 could be established under smoother data. The answer is204

still negative if one assumes just MFCQ as in Proposition 2. This is shown in the following205

example.206

Example 2 Consider the following data for (1) and (2)207

q(y1,y2) :=
(

y2
1− y2
−y2

)
, F(x,y1,y2) :=

(
x
1

)
, (x̄, ȳ1, ȳ2) := (0,0,0)

and ω = R. Note that MFCQ is satisfied for Γ at ȳ but LICQ is not. Some elementary208

calculus shows that, locally around (0,0), we have209

M(p1, p2) =

{
(x,y1,y2)

∣∣∣∣∣y1 =
p1− x

2(1− p2)
, y2 =

(p1− x)2

4(1− p2)
2

}
.
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Since we can write M(p1, p2) = {(x,y1,y2)| G(p1, p2,x,y1,y2) = 0} for a certain smooth210

mapping G with ∇x,y1,y2 G(0,0,0,0,0) having full row rank, we obtain that M has the Aubin211

property at (0,0,0,0,0) due to [13, Corollary 4.42] and, hence, is calm there.212

It can be easily computed that Λ(x̄, ȳ) = {λ ≥ 0|λ1 +λ2 = 1}. For k ∈ N we define

(zk1,zk2,zk3,zk4,xk,yk1,yk2,λk1,λk2) := (0,0,−k−2,0,0,k−1,0,0,1)

and observe that213

(xk,yk1,yk2,λk1,λk2) ∈ M̃(zk1,zk2,zk3,zk4).

Now, let (x̃, ỹ1, ỹ2, λ̃1, λ̃2)∈ M̃(0,0,0,0) be arbitrarily given, where (λ̃1, λ̃2) is close to (0,1).214

By construction of the example, one has that x̃ = ỹ1 = ỹ2 = 0. Consequently, one arrives at215

d((xk,yk1,yk2,λk1,λk2),M̃(0,0,0,0)) = ‖(0,−k−1,0,0,1)− (0,0,0,0,1)‖
= k−1 = k‖(zk1,zk2,zk3,zk4)‖,

which implies that M̃ is not calm at (0,0,0,0, x̄, ȳ1, ȳ2, λ̄1, λ̄2) with λ̄ = (0,1). 4216

It is even possible to strengthen the previous counterexample in the following sense: In217

the Appendix, we construct a set Γ described by C 2 inequalities satisfying MFCQ at given218

ȳ and a function F such that M is calm at (0, x̄, ȳ) while M̃ is not calm at (0,0, x̄, ȳ,λ ) for219

any λ ∈Λ(x̄, ȳ).220

Examples 1 and 2 have shown that a reversion of Proposition 2 is not possible under221

C 1 data even under LICQ and for smooth data under MFCQ. This raises the question about222

achieving the desired reversion by combining smooth data with LICQ. This time the answer223

is affirmative as will be shown in Section 3.3 (actually, C 1,1 data will be sufficient). Before224

addressing this issue, we insert a calmness result for the perturbed complementarity con-225

straints which on the one hand is a basic prerequisite for all following sections but on the226

other hand also of some independent interest (for instance with respect to a calculus rule for227

coderivatives, see Corollary 3 below).228

3.2 Calmness of perturbed complementarity constraints229

In this section we investigate the calmness of the multifunction T : Rs ⇒ Rm×Rs defined230

by231

T (p) :=
{
(y,λ ) |q(y)− p ∈ NRs

+
(λ )
}
. (18)

which represents a perturbation of the complementarity constraints. First, we provide an232

equivalent characterization of the calmness of T in terms of the calmness systems of per-233

turbed inequality/equality subsystems of the given constraint q(y) ≤ 0 defining the set Γ .234

The latter is much more explicit and easier to check than calmness of T itself. To this aim,235

we introduce for each arbitrary index set I ⊂ {1, . . . ,s} the multifunctions TI , T̂I : Rs ⇒ Rm
236

by237

TI(p) := {y|qi(y) = pi (i ∈ I) , qi(y)≤ 0 (i /∈ I)} ,
T̂I(p) := {y|qi(y) = pi (i ∈ I) , qi(y)≤ pi (i /∈ I)} .

(19)

Lemma 4 Let ȳ ∈ q−1 (0) be arbitrary. Then we have the following statements:238

1. T̂I is calm at (0, ȳ) for every I⊂{1, . . . ,s} =⇒ TI is calm at (0, ȳ) for every I⊂{1, . . . ,s}239

=⇒ T is calm at all
(
0, ȳ, λ̄

)
∈ gphT .240
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2. T is calm at some
(
0, ȳ, λ̄

)
∈ gphT =⇒ T̂I is calm at (0, ȳ) for I := {i| λ̄i > 0} =⇒ TI241

is calm at (0, ȳ) for I := {i| λ̄i > 0}.242

Proof The first implication of 1. and the second implication of 2. are immediate conse-243

quences of the fact that calmness of the richer perturbed mapping T̂I implies that of TI . The244

second implication of 1. has been shown in [7, Proposition 3.1]. It remains to show the first245

implication of 2. To do so, assume that T is calm at (0, ȳ, λ̄ ) and that T̂I fails to be calm246

at (0, ȳ) for the I from the lemma statement. Then there exists a sequence (pk,yk)→ (0, ȳ)247

such that for all k248

qi(yk) = (pk)i (i ∈ I), qi(yk)≤ (pk)i (i /∈ I) (20)

and249

d(yk, T̂I(0))> k‖pk‖. (21)

Necessarily we have pk 6= 0 because otherwise both sides of the inequality are zeros.250

We claim now that, for k large enough,251

d((yk, λ̄ ),T (0)) = d((yk, λ̄ ),T (0)∩{(y,λ )|λi > 0 (i ∈ I)}). (22)

Indeed, if this relation did not hold, then there would exist some (ỹk, λ̃k) ∈ T (0) such that252

‖(yk, λ̄ )− (ỹk, λ̃k)‖= d((yk, λ̄ ),T (0))< d((yk, λ̄ ),T (0)∩{(y,λ )|λi > 0 (i ∈ I)}),

which implies that (λ̃k) j = 0 for some j ∈ I. On the other hand, λ̄ j > 0 by assumption.253

Consequently, due to (yk, λ̄ )→ (ȳ, λ̄ ) ∈ T (0), we end up at the contradiction254

0 < λ̄ j = |λ̄ j− (λ̃k) j| ≤ ‖(yk, λ̄ )− (ỹk, λ̃k)‖= d((yk, λ̄ ),T (0))→ d((ȳ, λ̄ ),T (0)) = 0.

Consequently, there exists a minimizing sequence to the distance function on (22), thus255

some (ỹk, λ̃k) ∈ T (0) such that (λ̃k)i > 0 for all i ∈ I and256

d((yk, λ̄ ),T (0))≥ ‖(yk, λ̄ )− (ỹk, λ̃k)‖−‖pk‖. (23)

Since q(ỹk) ∈ NRs
+
(λ̃k), it follows that qi(ỹk) = 0 for all i ∈ I and qi(ỹk) ≤ 0 for all i /∈ I.257

In other words, ỹk ∈ T̂I(0). Now, (21) implies that ‖yk− ỹk‖ > k‖pk‖. Combining this with258

(23) yields that259

d((yk, λ̄ ),T (0))> k‖pk‖−‖pk‖.

Now, (20) along with λ̄i = 0 for i /∈ I implies that (yk, λ̄ ) ∈ T (pk). Altogether, we have260

shown that261

(yk, λ̄ ) ∈ T (pk), (pk,yk, λ̄ )→ (0, ȳ, λ̄ ), d((yk, λ̄ ),T (0))> (k−1)‖pk‖,

which violates the calmness of T at (0, ȳ, λ̄ ). This finishes the proof. ut262

The lemma above may be used in order to check the calmness of T by means of that263

of certain inequality/equality subsystems. It turns out, however, that this check is not even264

necessary, whenever our set Γ satisfies CRCQ.265

Corollary 2 Let ȳ ∈ q−1 (0) be arbitrary. If Γ satisfies CRCQ at ȳ, then T is calm at all266

(0, ȳ, λ̄ ) ∈ gphT .267
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Proof Fix an arbitrary index set I ⊂ {1, . . . ,s} and consider the system268

qi(y) = 0 (i ∈ I), qi(y)≤ 0 (i /∈ I). (24)

By our assumption ȳ ∈ q−1 (0), all constraints are active at ȳ both in the inequality system269

(2) describing the set Γ and in the mixed system (24). Consequently, the assumed CRCQ270

for (2) at ȳ implies CRCQ for (24) at ȳ. Referring to [11, Proposition 2.5], we conclude that271

the multifunction TI is calm at (0, ȳ). Since I ⊂ {1, . . . ,s} was arbitrary, Lemma 4 yields the272

calmness of T at all (0, ȳ, λ̄ ) ∈ gphT . ut273

Although deriving calmness of T via CRCQ is very convenient, it may happen that CRCQ274

is violated, yet calmness can still be checked on the basis of Lemma 4. This is the case in275

the following example:276

Example 3 Let ȳ := (0,0) and277

g1(y1,y2) :=−y1; g2(y1,y2) :=−y2; g3(y1,y2) :=
{

−y2 (y1 ≥ 0)
y2

1− y2 (y1 ≤ 0)
.

Then, the gi are continuously differentiable and Γ satisfies MFCQ but violates CRCQ at ȳ.278

On the other hand, elementary computations, which we omit here, show that all multifunc-279

tions TI introduced in (19) are calm at (0, ȳ) for all I ⊂ {1,2,3}. Hence, the multifunction T280

in (18) is calm at all (0, ȳ, λ̄ ) ∈ gphT thanks to Lemma 4. 4281

Finally, we mention that in [7,14] the authors computed an upper estimate of the coderiva-282

tive D∗NΓ (ȳ,−F(x̄, ȳ)) under MFCQ at ȳ and under the assumption that T is calm at (0, ȳ,λ )283

for all λ ∈ Λ(x̄, ȳ). By combining [7, Theorem 3.3] and Corollary 2, one arrives directly at284

the next statement.285

Corollary 3 Assume that q ∈ C 2 and both MFCQ as well as CRCQ are fulfilled at ȳ. Then
one has with for all v∗ ∈ Rm the estimate

D∗NΓ (ȳ,−F(x̄, ȳ))(v∗)⊂
⋃

λ∈Λ(x̄,ȳ)

{(
s

∑
i=1

λi∇
2qi(ȳ)

)
v∗+(∇q(ȳ))>D∗NRs

− (q(ȳ),λ )(∇q(ȳ)v∗)

}
.

3.3 LICQ and C 1,1 inequalities or MFCQ and linear inequalities286

We now address again the issue discussed at the end of Section 3.1 on the reversion of287

Proposition 2 when strengthening MFCQ and the smoothness of q. For the main theorem,288

we will define two auxiliary multifunctions which will be of use when partitioning M̃289

S1(z1) := {(x,y,λ ) ∈ Rn×Rm×Rs|F(x,y)+(∇q(y))>λ − z1 = 0}

S2(z2) :=
{
(x,y,λ ) ∈ ω×Rm×Rs

∣∣∣∣( λ

q(y)− z2

)
∈ gphNRs

+

}
.

(25)

Theorem 4 Let q be of class C 1,1. Fix an arbitrary (x̄, ȳ) ∈M(0) and assume that LICQ is290

satisfied at ȳ ∈ Γ . Then the calmness of M at (0, x̄, ȳ) is equivalent to the calmness of M̃ at291

(0,0, x̄, ȳ, λ̄ ) for the unique (by LICQ) λ̄ ∈Λ(x̄, ȳ).292
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Proof Recall first that, without loss of generality, we may assume q(ȳ) = 0. One theorem293

implication follows directly from Proposition 2. Hence, it suffices to show that the calm-294

ness of M at (0, x̄, ȳ) implies the calmness of M̃ at (0,0, x̄, ȳ, λ̄ ) at the unique (by LICQ)295

λ̄ ∈ Λ(x̄, ȳ). We will show that there are constants κ ≥ 0 and ε1 > 0 such that for all296

(z1,z2,x′,y′,λ ′) ∈ gphM̃∩Bε1(0,0, x̄, ȳ, λ̄ ) we have297

d((x′,y′,λ ′),M̃(0,0))≤ κ‖(z1,z2)‖. (26)

We observe first that S2 defined in 25 is calm at
(
0, x̄, ȳ, λ̄

)
. Indeed, as LICQ implies CRCQ,298

Corollary 2 ensures the calmness of the multifunction T defined in (18) at (0, ȳ, λ̄ ). Now,299

the calmness of S2 is evident from Lemma 2.300

Without loss of generality, we will work with the maximum norm throughout this proof.301

First we collect all information that is at our disposal in the following relations, where ε,L >302

0 are certain positive constants which may be assumed to have common values in all of them:303

304

‖F (x1,y1)−F (x2,y2)‖ ≤ L‖(x1,y1)− (x2,y2)‖ ∀(x1,y1) ,(x2,y2) ∈ Bε((x̄, ȳ)), (27a)

‖F(x,y)‖ ≤ L ∀(x,y) ∈ Bε((x̄, ȳ)), (27b)

‖q(y1)−q(y2)‖ ≤ L‖y1− y2‖ ∀y1,y2 ∈ Bε(ȳ), (27c)

‖∇q(y1)−∇q(y2)‖ ≤ L‖y1− y2‖ ∀y1,y2 ∈ Bε(ȳ), (27d)

‖∇q(y)‖ ≤ L ∀y ∈ Bε(ȳ), (27e)

d((x,y),M(0)) ≤ L‖z‖ ∀(z,x,y) ∈ Bε(0, x̄, ȳ) : (x,y) ∈M(z), (27f)

d((x,y,λ ),S2(0)) ≤ L‖z‖ ∀(z,x,y,λ ) ∈ Bε(0, x̄, ȳ, λ̄ ) : (x,y,λ ) ∈ S2(z), (27g)

‖λ‖ ≤ L ∀λ ∀(z1,z2,x,y) ∈ Bε(0,0, x̄, ȳ) : (x,y,λ ) ∈ M̃(z1,z2).(27h)

Here, (27a)-(27e) follow from the differentiability assumptions we have made, (27f) corre-305

sponds to the assumed calmness of M at (0, x̄, ȳ). Inequality (27g) means the calmness of S2306

at
(
0, x̄, ȳ, λ̄

)
observed above. Finally, formula (27h) is a consequence of Proposition 1.307

In order to verify the asserted calmness of M̃ at (0,0, x̄, ȳ, λ̄ ), define308

ε1 := min
{

ε

2
,

ε

2L
,

ε

1+2L2 +L3 ,
ε

1+2L+2L3 +L4

}
(28)

and consider an arbitrary triple (x′,y′,λ ′)∈ M̃(z1,z2) with (z1,z2,x′,y′,λ ′)∈Bε1

(
0,0, x̄, ȳ, λ̄

)
.309

Since M̃(z1,z2) = S1(z1)∩S2(z2) and S2(0) is a closed set, we may use (27g) to obtain the310

existence of some (x̃, ỹ, λ̃ ) ∈ S2(0) such that311

max
{
‖x′− x̃‖,‖y′− ỹ‖,‖λ ′− λ̃‖

}
≤ L‖z2‖. (29)

By definition of S2, relation (x̃, ỹ, λ̃ ) ∈ S2(0) implies that q(ỹ) ∈ NRs
+
(λ̃ ), which further312

means that (x̃, ỹ, λ̃ ) ∈ M̃(a,0) and (x̃, ỹ) ∈M(a) with313

a := F(x̃, ỹ)+ [∇q(ỹ)]> λ̃ . (30)

Moreover, since (x′,y′,λ ′) ∈ S1(z1), we obtain314

‖a‖= ‖F(x̃, ỹ)+ [∇q(ỹ)]> λ̃ + z1−F(x′,y′)− [∇q(y′)]>λ
′]‖

≤ ‖z1‖+‖F(x̃, ỹ)−F(x′,y′)‖+‖ [∇q(ỹ)]> λ̃ −
[
∇q(y′)

]>
λ
′‖

≤ ‖z1‖+
∥∥F(x̃, ỹ)−F(x′,y′)

∥∥+∥∥λ
′∥∥∥∥∇q(ỹ)−∇q(y′)

∥∥+‖λ ′− λ̃‖‖∇q(ỹ)‖ .

(31)
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Next, the relation (x′,y′,λ ′) ∈ Bε1(x̄, ȳ, λ̄ ) and (28, first case) imply that

(x′,y′,λ ′) ∈ Bε/2(x̄, ȳ, λ̄ ).

Combining (29) with (28, second case) and recalling that z2 ∈ Bε1 (0) yields315

(x̃, ỹ, λ̃ ) ∈ BL‖z2‖
(
x′,y′,λ ′

)
⊂ Bε/2

(
x′,y′,λ ′

)
⊂ Bε(x̄, ȳ, λ̄ ). (32)

Now, relations (27a), (27d), (27e), (27h), and (28, third case) together with (29) allow us to316

continue our estimation from (31) and to obtain317

‖a‖ ≤ ‖z1‖+L2 ‖z2‖+L3 ‖z2‖+L2 ‖z2‖ ≤
(
1+2L2 +L3)‖(z1,z2)‖ ≤ ε. (33)

Therefore, we are now allowed to apply (27f) and make use of the fact that (x̃, ỹ)∈M(a)318

implies the existence of some (x∗,y∗) ∈M(0) such that319

max{‖x∗− x̃‖ ,‖y∗− ỹ‖} ≤ L‖a‖ . (34)

Note that (34) along with (33) implies320

max{‖x∗− x̃‖ ,‖y∗− ỹ‖} ≤ L
(
1+2L2 +L3)‖(z1,z2)‖. (35a)

Further due to (35a) with (29) we can deduce321

max{
∥∥x∗− x′

∥∥ ,∥∥y∗− y′
∥∥} ≤ L

(
2+2L2 +L3)‖(z1,z2)‖ (35b)

and finally (35b) together with (28, fourth case) and the initial assumption (z1,z2,x′,y′) ∈322

Bε1 (0,0, x̄, ȳ) leads to323

max{‖x∗− x̄‖ ,‖y∗− ȳ‖} ≤
(
1+2L+2L3 +L4)

ε1 ≤ ε. (35c)

Since LICQ is satisfied at ȳ, then due to assumption q(ȳ) = 0 we have that ∇q(ȳ) is324

surjective and we may assume ε to be small enough to guarantee that the surjectivity pertains325

for all ∇q(y) and for all y ∈ Bε(ȳ). This allows us to define the mapping326

V (y) := [∇q(y)∇q(y)>]−1
∇q(y) ∀y ∈ Bε(ȳ).

With V being continuous on Bε(ȳ), we may assume that ‖V (y)‖ ≤ L′ for some L′ and all y∈327

Bε(ȳ). Moreover, y∗ ∈Bε(ȳ) entails that ∇q(y∗) is surjective and, hence, LICQ is satisfied at328

y∗. For this reason, the relation (x∗,y∗) ∈M(0) implies the existence of a unique multiplier329

λ ∗ such that (x∗,y∗,λ ∗) ∈ M̃(0,0). By definition of V and M̃, we have that330

λ
∗ =−V (y∗)F(x∗,y∗); λ̃ =V (y∗)∇q(y∗)>λ̃ .

Hence,331

‖λ ∗− λ̃‖ ≤ L′‖∇q(y∗)>λ̃ +F (x∗,y∗)‖. (36)

To estimate the right-hand side of (36), we realize first that (32) and (35c) allow us to332

employ the relations (27). We use (30), (33), (27h) coupled with (x̃, ỹ, λ̃ ) ∈ M̃(a,0), (27d),333

(27a) and (35a) to obtain some constant c > 0 such that334

‖∇q(y∗)>λ̃ +F (x∗,y∗)‖= ‖a+(∇q(y∗)−∇q(ỹ))> λ̃ +F (x∗,y∗)−F (x̃, ỹ)‖

≤ ‖a‖+‖λ̃‖‖∇q(y∗)−∇q(ỹ)‖+‖F(x∗,y∗)−F(x̃, ỹ)‖
≤ c‖(z1,z2)‖.

(37)
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Then, estimates (29), (36) and (37) yield335

‖λ ∗−λ
′‖ ≤ ‖λ ∗− λ̃‖+‖λ̃ −λ

′‖ ≤ L′c‖(z1,z2)‖+L‖z2‖.

Adding this to (35b), we arrive at existence of some κ such that336 ∥∥(x′,y′,λ ′)− (x∗,y∗,λ ∗)
∥∥≤ κ ‖(z1,z2)‖ (38)

Since (x∗,y∗,λ ∗) ∈ M̃(0,0), we have shown (26). This finishes the proof. ut337

We next provide a second instance under which the desired equivalence of calmness for338

M and M̃ can be guaranteed.339

Theorem 5 Let Γ be a polyhedral set, i.e., q(y) = Ay−b for some matrix A of order (s,m)340

and some b ∈ Rs. Assume that Γ has nonempty interior, that Aȳ = b and that the rows ai of341

A satisfy342

rank{ai}i∈I = min{m,#I} ∀I ⊆ {1, . . . ,s}. (39)

Then, the calmness of M at (0, x̄, ȳ) is equivalent to the calmness of M̃ at (0,0, x̄, ȳ, λ̄ ) for all343

λ̄ ∈Λ(x̄, ȳ).344

Proof Observe first that our assumption on Γ having nonempty interior is equivalent with Γ345

satisfying MFCQ at all its points. By Proposition 2 it is sufficient to prove that the calmness346

of M at (0, x̄, ȳ) implies the calmness of M̃ at (0,0, x̄, ȳ, λ̄ ) for any λ̄ ∈ Λ(x̄, ȳ). We fix an347

arbitrary such λ̄ ∈ Λ(x̄, ȳ). If s ≤ m, then (39) implies the surjectivity of A so that LICQ is348

satisfied at ȳ. Hence, the assertion follows from Theorem 4. Therefore, we may assume the349

opposite case (s > m), in which (39) implies the injectivity of A. We are going to prove the350

assertion of this theorem by means of Theorem 3 applied to the multifunctions S1,S2 defined351

in (25). We will check next, all hypotheses of that Theorem.352

Introducing the function f (x,y,λ ) :=F(x,y)+A>λ , we observe that f = S−1
1 . Since f is353

single-valued and continuously differentiable, it follows that S−1
1 trivially fulfills the Aubin354

property. Furthermore, the Jacobian355

∇ f (x̄, ȳ, λ̄ ) =
(

∇xF(x̄, ȳ)
∣∣∇yF(x̄, ȳ)

∣∣A>)
is surjective by injectivity of A. Hence, S1 is calm at (0, x̄, ȳ, λ̄ ) as a consequence of 2. in356

Lemma 1. Since CRCQ is satisfied for Γ by linearity of the describing inequalities, S2 is357

calm at (0, x̄, ȳ, λ̄ ) due to Corollary 2 with the same argument already used in the proof of358

Theorem 4 (see below (26)).359

It remains to verify 4. in Theorem 3, i.e., the calmness of S1∩S2(0) at (0, x̄, ȳ, λ̄ ). To do360

so, let ε,L > 0 refer to the definition of the supposed calmness of M at (0, x̄, ȳ). Select an361

arbitrary (z,x,y,λ )∈Bε(0, x̄, ȳ, λ̄ ) such that (x,y,λ )∈ S1(z)∩S2(0). We conclude that λ ≥ 0362

and (x,y)∈M(z). Thus, by calmness of M at (0, x̄, ȳ), there exists some (x∗,y∗)∈M(0) such363

that364

‖(x∗,y∗)− (x,y)‖ ≤ L‖z‖. (40)

Note that (x∗,y∗) ∈ M(0) entails that y∗ ∈ Γ . Since Γ is defined by linear inequalities, it365

follows that366

Λ(x∗,y∗) = {µ| A>µ =−F(x∗,y∗), Ay∗−b ∈ NRs
+
(µ)} 6= /0
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We claim that Λ(x∗,y∗) = P, where367

P := {µ| A>µ =−F(x∗,y∗),µ ≥ 0}.

Clearly, Λ(x∗,y∗) ⊆ P. The reverse inclusion is evident if y∗ = ȳ due to Aȳ = b. If y∗ 6= ȳ,368

then define the set of active rows ai of A at y∗ as369

I := {i| 〈ai,y∗〉= bi}.

If #I ≥ m, then rank{ai|i ∈ I}= m by (39) and the linear equality system 〈ai,y〉= bi(i ∈ I)370

has the unique solution ȳ by our assumption Aȳ = b. Since y∗ also solves this system, we371

necessarily have y∗ = ȳ, which is a contradiction. Thus, #I < m. Select an arbitrary λ ′ ∈372

Λ(x∗,y∗) 6= /0 and µ ∈ P. We will show that necessarily λ ′ = µ finally implying the desired373

equality Λ(x∗,y∗) = P. By definition we have374

A>(λ ′−µ) = 0. (41)

Multiplying this relation by y∗ and using λ ′i = 0, µi ≥ 0 and 〈ai,y∗〉< bi for i /∈ I, we arrive375

at376

0 = (Ay∗)>(λ ′−µ) = ∑
i∈I

(λ ′i −µi)bi +∑
i/∈I

(λ ′i −µi)〈ai,y∗〉

≥∑
i∈I

(λ ′i −µi)bi +∑
i/∈I

(λ ′i −µi)bi = b>(λ ′−µ) = (Aȳ)>(λ ′−µ) = 0,

where the last equality follows from (41). This means that we can replace the inequality by377

an equality and as a part of it we get the relation378

∑
i/∈I

µi〈ai,y∗〉= ∑
i/∈I

µibi

which yields µi = 0 for all i /∈ I. But then (41) reduces to379

∑
i∈I

(λ ′i −µi)ai = 0. (42)

Since #I < m, the {ai|i ∈ I} are linearly independent thanks to (39) and thus (42) yields that380

µi = λ ′i for i ∈ I. Combining this with µi = λ ′i = 0 for i /∈ I we conclude that λ ′ = µ , as was381

to be shown.382

Now, Hoffman’s Lemma guarantees the existence of some constant c (only depending383

on A) such that384

d(µ,Λ(x∗,y∗)) = d(µ,P)≤ c‖A>µ +F(x∗,y∗)‖ ∀µ ≥ 0.

In particular, this applies to our multiplier λ ≥ 0 selected above:385

d(λ ,Λ(x∗,y∗))≤ c‖A>λ +F(x∗,y∗)‖= c‖z−F(x,y)+F(x∗,y∗)‖.

Here, we exploited that (x,y,λ ) ∈ S1(z). Consequently, there exists some λ ∗ ∈ Λ(x∗,y∗)386

such that387

‖λ −λ
∗‖ ≤ c‖z−F(x,y)+F(x∗,y∗)‖ ≤ c‖z‖+ cL′‖(x,y)− (x∗,y∗)‖,

where L′ denotes a local Lipschitz constant of F around (x̄, ȳ). Along with (40), it results in388

‖(x∗,y∗,λ ∗)− (x,y,λ )‖ ≤ L̃‖z‖
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for some constant L̃. Since (x∗,y∗) ∈ M(0) and λ ∗ ∈ Λ(x∗,y∗) amount to (x∗,y∗,λ ∗) ∈389

S1(0)∩S2(0), we have shown that390

d((x,y,λ ),S1(0)∩S2(0))≤ L̃‖z‖,

which is the asserted calmness of S1 ∩ S2(0) at (0, x̄, ȳ, λ̄ ). Thus, we have finally verified391

all assumptions of Theorem 3 and may conclude the desired calmness of the mapping392

M̃(z1,z2) = S1(z1)∩S2(z2) at (0,0, x̄, ȳ, λ̄ ). ut393

Observe that the previous Theorem does not relate to a fully linear generalized equation394

in (1) which would automatically guarantee the desired calmness of M̃ thanks to Robinson’s395

Theorem on upper Lipschitz continuity of polyhedral multifunctions. Rather, we allow that396

the mapping F is nonlinear but, in such a case, the calmness of M needs to be satisfied in397

addition. As an example for a polyhedral set Γ violating LICQ at 0 but satisfying the as-398

sumptions of Theorem 5, one may take the set defined by the inequality y3 ≥max{|y1|, |y2|}399

(resolved as a linear system).400

4 Main results401

In the first part of this section we address the question how the calmness property of M and402

M̃ can be ensured by suitable point-based conditions. Concerning the calmness of M, we403

present here only a standard result in which one enforces in fact even the (substantially more404

restrictive) Aubin property. In [18] and [13], exclusively this type of qualification conditions405

is used. We are aware about the possibility to employ to this purpose some less restrictive406

calmness criteria from, e.g., [4,10].407

Theorem 6 Assume that the implication408

(∇xF(x̄, ȳ))>a ∈ −Nω(x̄)

−(∇yF(x̄, ȳ))>a ∈ D∗NΓ (ȳ,−F(x̄, ȳ))(a)

}
=⇒ a = 0 (43)

is fulfilled. Then M has the Aubin property around (0, x̄, ȳ) and hence it is also calm at this409

point.410

Proof The assertion follows immediately from the Mordukhovich criterion [18, Theorem411

9.40] and the standard first-order calculus. ut412

For the verification of the calmness of M̃, however, we present here a new condition413

based on Lemma 4. To this aim, we define the Lagrangian as414

L (x,y,λ ) := F(x,y)+(∇q(y))>λ . (44)

Theorem 7 Assume that (x̄, ȳ, λ̄ ) ∈ M̃(0,0), that q ∈ C 2 and that the implication415

(∇xF(x̄, ȳ))>a ∈ −Nω(x̄)

(∇yL (x̄, ȳ, λ̄ ))>a+(∇q(ȳ))>c = 0

0 = ∇qi(ȳ)a ∀i : λ̄i > 0

0 = ci ∀i : qi(ȳ)< 0

0≤ ci,0≤ ∇qi(ȳ)a or 0 = ci or 0 = ∇qi(ȳ)a ∀i : λ̄i = qi(ȳ) = 0.


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416

=⇒ a = 0. (45)

holds true. Assume, moreover, that the multifunctions TI : Rs→Rm defined in (19) are calm417

at (0, ȳ) for all I ⊂ {1, . . . ,s} (which holds automatically true under CRCQ by Corollary 2).418

Then M̃ is calm at (0,0, x̄, ȳ, λ̄ ).419

Proof Taking into account that M̃(z1,z2) = S1(z1)∩S2(z2) with S1 and S2 defined in (25), to420

obtain the calmness of M̃ at (0,0, x̄, ȳ, λ̄ ) it suffices to verify the assumptions of Lemma 3 for421

the following data: u1 = (x,y), u2 = λ , H1(u) =L (x,y,λ ), H2(u) = q(y), ∆ = ω×Rm×Rs
422

and Ω = Rs
+. It is not difficult to show that condition (12) takes the form (45) and so it423

remains to show that S1 and S2 are calm at (0, x̄, ȳ, λ̄ ).424

In order to verify that S1 has this property, we will apply Lemma 1 according to which425

it is sufficient to show that ∇L (x̄, ȳ, λ̄ ) has full row rank. Hence consider any a such that426

∇L (x̄, ȳ, λ̄ )>a = 0. But then (a,0) satisfies the relations on the left-hand side of (45) and427

thus a = 0, implying that S1 is indeed calm at (0, x̄, ȳ, λ̄ ). On the other hand, Lemma 4 yields428

the calmness of T defined in (18) at (0, ȳ, λ̄ ) and, hence, S2 is calm at (0, x̄, ȳ, λ̄ ) by Lemma429

2. ut430

Note that if ω is a convex set, then Nω is the standard normal cone in the sense of convex431

analysis. Moreover, if ω =Rn, then Nω(x̄) = {0} and the inclusion reduces to an equality. In432

the MPEC literature, one finds under various names (GMFCQ, NNAMCQ) a qualification433

condition similar to (45) with the difference that a = c = 0 is required instead of only a =434

0. Clearly, under LICQ at ȳ, both these conditions coincide. However, if we impose only435

MFCQ and CRCQ at ȳ, (45) is strictly better (less restrictive) than GMFCQ.436

In the remainder of this section we will state the main result of the paper. It comprises in a437

concise form the information which we have gained in the course of our analysis about the438

relationship between Theorems 1 and 2. It leads to several useful conclusions in deriving439

workable M-stationarity conditions for MPEC (1).440

Theorem 8 Let (x̄, ȳ) be a local solution to (1) and assume that q ∈ C 2 and that MFCQ441

holds at ȳ ∈ Γ .442

1. If CRCQ holds at ȳ, then for those λ ∈Λ(x̄, ȳ) satisfying the qualification condition (45),443

there exist v and w fulfilling the stationarity conditions (9).444

2. If CRCQ holds at ȳ and M is calm at (0, x̄, ȳ), then there exist λ ∈ Λ(x̄, ȳ), v and w445

fulfilling the stationarity conditions (9).446

3. If Γ is a polyhedral set with nonempty interior satisfying (39) and M is calm at (0, x̄, ȳ),447

then for all λ ∈Λ(x̄, ȳ) there exist v and w fulfilling the stationarity conditions (9).448

4. If even LICQ holds at ȳ ∈ Γ , then Theorems 1 and 2 are completely equivalent in their449

assumptions and their results.450

Before proving this Theorem, we include some comments on the statements 1-3. The big451

progress of statement 1 over Theorems 1 and 2 or Corollary 1 is that under MFCQ and452

CRCQ it completely frees us from the necessity of checking any calmness condition or453

computing the complicated coderivative D∗NΓ (ȳ,−F(x̄, ȳ)). It just relies on checking the454

explicit qualification condition (45) and provides explicit stationarity conditions (9). For455

instance, in order to exclude (x̄, ȳ) from being a local solution to (1), it will be sufficient to456

find some λ ∈ Λ(x̄, ȳ) satisfying (45) and violating (9) for all v and w. Unfortunately, it is457

not excluded that the set of λ ∈Λ(x̄, ȳ) satisfying (45) is empty so that statement 1 cannot be458
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applied. But even then, one might be successful in checking the calmness of M and thus in459

applying statement 2. Excluding (x̄, ȳ) from being a local solution to (1) would then amount460

to verifying that (9) is violated for all λ ∈ Λ(x̄, ȳ) and all v and w. Statement 3 provides an461

instance under which we do not have to care about specific λ ∈ Λ(x̄, ȳ). This facilitates the462

task of excluding (x̄, ȳ) from being a local solution to (1) in the sense that we just have to463

find some λ ∈Λ(x̄, ȳ) such that (9) is violated for any v and w.464

Proof (of Theorem 8) First recall that under MFCQ at ȳ, (x̄, ȳ,λ ) is a local solution of MPEC465

(4) for all λ ∈Λ(x̄, ȳ). Concerning statement 1, observe that under CRCQ at ȳ we have that466

M̃ is calm at all points (0,0, x̄, ȳ,λ ) with λ ∈Λ(x̄, ȳ) satisfying (45) by virtue of Theorem 7.467

Statement 1 thus follows from Theorem 2. Statement 2 is a direct consequence of Theo-468

rem 1 and Corollary 3, where one needs just to express the coderivative D∗NRs
−(q(ȳ),λ ) in469

Corollary 3 in terms of q(ȳ) and λ . To prove statement 3, it suffices to combine Theorem470

2 with Theorem 5. Finally, in statement 4, the equivalence of the calmness assumptions in471

Theorems 1 and 2 follows from Theorem 4. On the other hand, the equivalence of the ob-472

tained stationarity conditions in both theorems relies on a well-known formula for making473

explicit the coderivative D∗NΓ in case that Γ is described by smooth inequalities satisfying474

LICQ (see, e.g., [7, Theorem 3.1]). ut475

5 MPECs with structured equilibria476

Some of the tools and/or results from the preceding part of the paper can be utilized in de-477

riving stationarity conditions for MPECs with equilibria governed by generalized equations478

having a special structure. In Section 5.1 we illustrate this fact by such an equilibrium with479

a polyhedral constraint set. In Section 5.2 we then apply these results to a class of bilevel480

programming problems arising in electricity spot market modelling.481

5.1 Structured equilibria with polyhedral constraint sets482

Let us consider a generalized equation of the considered type where483

F(x,y) =
(

F1(x,y)
F2(x,y)

)
, q(y) = Ay−b (46)

with F1 : Rn×Rm→Rm1 , F2 : Rn×Rm→Rm2 , A = (A1,A2) and y = (y1,y2) ∈Rm1×Rm2 .484

Even though there is no structural difference between F1 and F2 yet, we will impose different485

assumptions on them later in the text. Structure (46) with F2(x,y)≡ F2(y) arises typically in486

a hierarchical bilevel multileader game where one looks for a Nash equilibrium on the upper487

level. In this case we obtain a finite number of MPECs in which the equilibria on the lower488

level are governed by generalized equation having the special structure (46), see e.g. [8].489

It is appropriate to define the mappings S1, S2, employed in Section 3, in a different way490

here, namely:491

S1(z1) :=
{
(x,y,λ ) ∈ Rn×Rm×Rs

∣∣∣z1 = F1(x,y)+A>1 λ

}
,

S2(z2,z3) :=
{
(x,y,λ ) ∈ ω×Rm×Rs

∣∣∣z2 = F2(x,y)+A>2 λ , q(y)− z3 ∈ NRs
+
(λ )
}
.

(47)

We will derive two results with differing assumptions and results.492



20 L. Adam, R. Henrion, J. Outrata

Theorem 9 In the setting of (46) fix some (x̄, ȳ) ∈M(0) and λ̄ ∈Λ(x̄, ȳ). Assume that ω =493

Rn, F2(x,y) ≡ F2(y) is affine linear and that ∇xF1(x̄, ȳ) is surjective. Then M̃ is calm at494

(0,0,0, x̄, ȳ,λ ) for all λ ∈Λ(x̄, ȳ). If in addition Γ has nonempty interior, then M is calm at495

(0, x̄, ȳ).496

Proof Clearly M̃(z1,z2,z3) = S1(z1)∩S2(z2,z3). We will apply Lemma 3. By Lemma 1 and497

the assumed surjectivity of ∇xF1(x̄, ȳ) we obtain that S1 is calm at (0, x̄, ȳ, λ̄ ). As S2 has498

polyhedral graph, it is calm at every point of its graph and it remains to verify condition499

(12), which takes the form500

(∇xF1(x̄, ȳ))>a = 0

(∇yF1(x̄, ȳ))>a+(∇yF2(ȳ))>d +A>c = 0

−A1a−A2d ∈ D∗NRs
+
(λ̄ ,Aȳ−b)(−c)

 =⇒ a = 0.

However, we easily conclude that this condition is fulfilled by virtue of the surjectivity of501

∇xF1(x̄, ȳ). The last statement follows directly from Proposition 2 and the equivalence of502

nonempty interior and MFCQ for polyhedral sets. ut503

Under the assumption of Theorem 9 we may thus take advantage of the sharp M-504

stationarity conditions (8) where, thanks to the affine linearity of q, D∗NΓ can be computed505

on the basis of an explicit formula (see [9, Prop. 3.2]). In the next result we relax the as-506

sumptions of this theorem. Note that Theorem 9 immediately follows from Theorem 10.507

Theorem 10 In the setting of (46) fix some (x̄, ȳ) ∈M(0) and λ̄ ∈Λ(x̄, ȳ). Assume first that508

the function G(x,y,λ ) := F1(x,y)+A>1 λ satisfies the assumptions of Lemma 1 and that the509

following system is satisfied510

(∇xF1(x̄, ȳ))>a+(∇xF2(x̄, ȳ))>d ∈ −Nω(x̄)

(∇yF1(x̄, ȳ))>a+(∇yF2(x̄, ȳ))>d +A>c = 0

−A1a−A2d ∈ D∗NRs
+
(λ̄ ,Aȳ−b)(−c)

 =⇒ a = 0. (48)

Moreover, assume that at least one of the three following assumptions is satisfied:511

1. F2 is affine linear;512

2. ω = Rn, condition (39) is satisfied and ∇xF2(x̄, ȳ) has full row rank;513

3. Γ has nonempty interior, condition (39) is satisfied and for all c ∈Ker∇xF2(x̄, ȳ)> \{0}514

we have515

c>∇y2 F2(x̄, ȳ)c > 0. (49)

Then M̃ is calm at (0,0,0, x̄, ȳ, λ̄ ).516

Proof Again we will employ Lemma 3 with the same representation of M̃ in terms of S1517

and S2 as in Theorem 9. Since (12) takes the form of (48), it remains to verify the calmness518

of S2 at (0,0, x̄, ȳ, λ̄ ). It is easy to see that this property holds under assumption 1.519

Concerning assumption 2. and 3., we define

Ŝ2(z1,z2) :=
{
(x,y,v) ∈ ω×Rm×Rs

∣∣∣∣(z1
z2

)
=

(
v

F2(x,y)

)
+NΓ (y)

}



On M-stationarity conditions in MPECs and the associated qualification conditions 21

and show that Ŝ2 possesses the Aubin property around (0,0, x̄, ȳ,−A1λ̄ )= (0,0, x̄, ȳ,F1(x̄, ȳ)).520

By Theorem 6, this is equivalent with the following implication521

(∇xF2(x̄, ȳ))>c ∈ Nω(x̄)(∇yF2(x̄, ȳ))>c
0
c

 ∈ NgphNΓ
(ȳ,−F1(x̄, ȳ),−F2(x̄, ȳ))

 =⇒ c = 0. (50)

This implication is satisfied under assumption 2. If assumption 3. holds true and if c satisfies
the left-hand side of (50), then the polyhedrality of Γ and [9, Proposition 3.2] tells us that

0≥ c>∇yF2(x̄, ȳ)
(

0
c

)
= c>(∇y1 F2(x̄, ȳ),∇y2 F2(x̄, ȳ))

(
0
c

)
= c>∇y2 F2(x̄, ȳ)c.

From (49) follows that c = 0, and thus in both cases 2. and 3. we have the Aubin property522

of Ŝ2 at (0,0, x̄, ȳ,−A1λ̄ ), which implies calmness at the same point.523

Since q is affine linear and (39) holds, we may apply Theorem 5 with M = Ŝ2 and M̃ = S̃
defined by

S̃2(z1,z2,z3) :=
{
(x,y,λ ,v)

∣∣∣∣x ∈ ω,

(
z1
z2

)
=

(
v

F2(x,y)

)
+

(
A>1
A>2

)
λ , q(y)− z3 ∈ NRs

+
(λ )

}
to obtain that S̃ is calm at (0,0,0, x̄, ȳ, λ̄ ,−A>1 λ̄ ). But since

S̃2(z1,z2,z3) =
{
(x,y,λ ,v)

∣∣∣(x,y,λ ) ∈ S2(z2,z3), v = z1−A>1 λ

}
,

the calmness of S̃2 at (0,0, x̄, ȳ, λ̄ ,−A1λ̄ ) implies the calmness of S2 at (0,0, x̄, ȳ, λ̄ ). Thus,524

we have verified all assumptions of Lemma 3 and thus M̃ = S1 ∩ S2 is indeed calm at525

(0,0,0, x̄, ȳ, λ̄ ). ut526

5.2 Application to a class of bilevel programming problems527

As an application of the results from the previous section we introduce a special class of528

bilevel programming problems automatically satisfying the calmness conditions required529

for deriving necessary optimality conditions according to Theorem 1. Consider an MPEC530

minimize
x,y

ϕ(x,y)

subject to y ∈ argminy∗{ f (x,y∗)| y∗ ∈ Γ },
x ∈ ω

(51)

with
f (x,y) := 〈x1,By1〉+ f1(x2,y1)+ f2(y2).

Here, x=(x1,x2), y=(y1,y2), Γ is a polyhedral set described by the linear inequality system531

Γ := {y| Ay≤ b}with nonempty interior and A= (A1,A2), ϕ is a continuously differentiable532

function, f1 is twice continuously differentiable and convex in the second variable, f2 is533

twice continuously differentiable and ω is a closed set. Moreover, we assume that (A>1 ,B
>)534

has full row rank and that at least one of the following conditions is satisfied:535

1. f2 is convex quadratic;536
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2. f2 is strongly convex and condition (39) is satisfied.537

Due to the convexity of the lower level, we may equivalently recast it into

0 ∈
(

F1(x,y)
F2(y)

)
+NΓ (y) :=

(
B>x1 +∇y1 f1(x2,y1)

∇y2 f2(y2)

)
+NΓ (y).

Then we have the following optimality conditions of the MPEC above.538

Theorem 11 Let (x̄, ȳ) be a solution to (51). Apart from the assumptions above, we assume539

that implication540 (
Ba

∇2
x2y1

f1(x̄2, ȳ1)
>a

)
∈ Nω(x̄) =⇒ a = 0, (52)

holds true. Then there exist multipliers u∗ = (u∗1,u
∗
2) and v∗ = (v∗1,v

∗
2) such that

0 ∈
(

∇x1 ϕ(x̄, ȳ)+Bv∗1
∇x2 ϕ(x̄, ȳ)+∇2

x2y1
f1(x̄2, ȳ1)

>v∗1

)
+Nω(x̄),

0 = ∇y1 ϕ(x̄, ȳ)+∇
2
y1y1

f1(x̄2, ȳ1)v∗1 +u∗1,

0 = ∇y2 ϕ(x̄, ȳ)+∇
2
y2y2

f2(ȳ2)v∗1 +u∗2,

u∗ ∈ D∗NΓ (ȳ,−F(x̄, ȳ))(v∗1,v
∗
2).

Proof We want to employ Theorem 10. Since (A>1 ,B
>) has full row rank due to the assump-541

tions, the Jacobian of G(x,y,λ ) := B>x1 +∇y1 f1(x2,y1)+A>1 λ has full row rank and thus542

satisfies the assumptions of Lemma 1. Moreover, (52) implies (48). If f2 is convex quadratic,543

then F2 is affine linear. On the other hand, if f2 is strongly convex, then ∇2
y2y2

F2(ȳ2) is pos-544

itive definite, which implies (49). Thus, we have verified all assumptions of Theorem 10545

and this theorem implies the calmness of M̃ at (0,0,0, x̄, ȳ, λ̄ ) for all λ̄ ∈ Λ(x̄, ȳ). As Γ has546

nonempty interior, we may apply Proposition 2 to obtain that M is calm (0,0, x̄, ȳ). The rest547

then follows from Theorem 1. ut548

For a specific application, we mention the electricity spot market problem which may
be modelled via the Equilibrium Problems with Equilibrium Constraints (EPECs), see [1,
8]. In this model, we have N power producers. Producer i provides the so-called bidding
curve ci(qi), which determines the unit price for which he is willing to sell quantity qi. After
all producers submit their bids, the ISO (independent system operator) decides how much
electricity each producer may create. We assume that the bidding curves are quadratic, i.e.,

ci(gi) = αigi +βig2
i

for some parameters αi,βi ≥ 0. The true production cost for each producer is assumed to be
equal to

Ci(gi) = γigi +δig2
i

for known parameters γi,δi ≥ 0. In the pay-as-clear model, each producer maximizes the
difference between the clearing price and the costs

c′i(gi)gi−Ci(gi) = (αi− γi)gi +(2βi−δi)g2
i .
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The ISO wants to minimize the total cost which has to be payed to producers provided that549

the demand is satisfied. This leads to the following bilevel problem550

maximize
αi,βi

(αi− γi)gi +(2βi−δi)g2
i

subject to (g, t) ∈ argmin(g̃,t̃)
{
∑

N
j=1 α jg̃ j +β jg̃2

j | (g̃, t̃) ∈ Γ

}
,

αi ≥ 0, βi ≥ 0

(53)

for variables (αi,βi) ∈ R2, where the constraint set

Γ := {(g, t)| g+Bt ≥ d, g≥ 0}

ensures that the demand d is satisfied at all nodes. Here, g is the produced amount at all551

nodes, B is the incidence matrix of the network, and thus Bt describes the amount of elec-552

tricity transmitted between nodes. Naturally, the produced amount q has to be nonnegative.553

We arrive at the following result. Note that no constraint qualification is needed and that554

the assumption on ᾱi and β̄i is reasonable because ᾱi = β̄i = 0 means that the producer is555

willing to provide electricity for free.556

Theorem 12 Let (ᾱi, β̄i) be a local solution to (51) and let (g, t) be the corresponding
solution of its lower level. Assume that ᾱi > 0 or that β̄igi 6= 0. Then there exist multipliers
v∗ and w∗ such that

0 ∈ −gi + v∗i +N[0,∞)(ᾱi),

0 ∈ −2g2
i +2giv∗i +N[0,∞)(β̄i),

0 ∈
(

ei ·(γ− ᾱ)+2ei ·(δ −2β̄ )·g+2β ·v∗s
0

)
+D∗NΓ (g, t,−F(ᾱi, β̄i,g, t))(v∗,w∗),

where ei is vector of zeros with one on position i and β ·v denotes the Hadamard (compo-557

nentwise) product of two vectors.558

Proof We apply Theorem 11 to the MPEC with structure (46), where

x1 = ᾱi, x2 = β̄i, y1 = gi, y2 = (g−i, t), B = 1, ω = R2
+,

ϕ(x,y) = (γi−αi)gi +(δi−2βi)g2
i , f1(x2,y1) = βig2

i , f2(y2) = ∑
j 6=i

(α jg j +β jg2
j).

Here g−i denotes vector g without component i and ϕ was multiplied by −1 to switch from
a maximization to a minimization problem. Condition (52) reads(

a
2agi

)
∈ Nω(ᾱi, β̄i) =⇒ a = 0,

which is satisfied due to the imposed assumptions. Theorem 11 then implies the result. ut559
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A A strong counterexample to the reversion of Proposition 2 under MFCQ and C 2
606

data for Γ607

In Example 2 we have shown that under MFCQ and smooth inequalities describing the set Γ , the mapping M608

may be calm, whereas the enhanced mapping M̃ fails to be calm for some multiplier. In the following stronger609

counterexample we construct a set Γ described by C 2 inequalities satisfying MFCQ at given ȳ and a function610

F such that M is calm at (0, x̄, ȳ) while M̃ is not calm at (0,0, x̄, ȳ,λ ) for any λ ∈Λ(x̄, ȳ).611
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Define first ϕ1,ϕ2 : [−1,1]→ R and q1,q2 : [−1,1]×R→ R as

ϕ1(t) :=

{
(−1)k

(
t− 1

k

)3(
t− 1

k+1

)3
for t ∈

[ 1
k+1 ,

1
k

]
, k ∈ N

0 for t ≤ 0,

ϕ2(t) :=

{
(−1)k

(
t− 1

k

)5(
t− 1

k+1

)5
for t ∈

[ 1
k+1 ,

1
k

]
, k ∈ N

0 for t ≤ 0,

q1(y) := ϕ1(y1)− y2,

q2(y) := ϕ2(y1)− y2,

put ω = R and as the reference point take (x̄, ȳ1, ȳ2) = (0,0,0). These functions are depicted in Figure 1.
Note first that MFCQ is indeed satisfied for Γ and that ϕ1 and ϕ2 are twice continuously differentiable.

'1

'2

Fig. 1 Segments of graphs ϕ1 and 2.3·109ϕ2. The constant in front of ϕ2 is used for graphical purposes.

Define further
φ(t) := max{ϕ1(t),ϕ2(t)}.

Because φ ′( 1
k ) = φ ′′( 1

k ) = 0 for all k ∈N, the twice continuous differentiability of φ is obvious apart from 0.
At 0 we compute

lim
t→0

t−1|φ(t)−φ(0)|= lim
t→0

t−1|ϕ1(t)|= 0,

which implies that |φ ′(0)| = 0. Similarly we obtain φ ′′(0) = 0 and that φ is twice continuously differen-
tiable. Finally, we define F(x,y) := (−φ ′(y1), 1). By construction of φ , we obtain that F is continuously
differentiable. Since Γ = epiφ we have that

M(0) =
{
(x,y)

∣∣∣∣(φ ′(y1)
−1

)
∈ NΓ (y)

}
= R×gphφ .

As M(p)⊂M(0) for all p small enough, we obtain that M is calm at (0, x̄, ȳ).612

It is easy to see that Λ(x̄, ȳ) = {λ ≥ 0|λ1 +λ2 = 1}. We will show now that M̃ is not calm at (0,0, x̄, ȳ,λ )
for any λ ∈Λ(x̄, ȳ). Define

Ω1 := {t ∈ [0,1]|ϕ1(t) = ϕ2(t)},
Ω2 := {t ∈ [0,1]|ϕ1(t) 6= ϕ2(t), ϕ

′
1(t) = ϕ

′
2(t)},

Ω3 := [0,1]\ (Ω1 ∪Ω2)

and note that for all t ∈Ω2 ∪Ω3 small enough it holds that |ϕ2(t)|< |ϕ1(t)| and for all t ∈Ω3 small enough613

we have |ϕ ′2(t)|< |ϕ ′1(t)|.614

We will show first that T̂{1} defined in (19) is not calm at (0, ȳ). From the definition we see that

T̂{1}(p) = {y|ϕ1(y1) = y2 + p1,ϕ2(y1)≤ y2 + p2}.
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and thus
T̂{1}(0) = {y|ϕ1(y1) = y2,ϕ2(y1)≤ y2}= {(y1,ϕ1(y1))|ϕ1(y1)≥ 0}.

Now pick any sequence yk1 > 0, yk1 → 0 such that yk1 ∈ Ω2 and ϕ1(yk1) < 0 and define pk1 := 0, yk2 :=
ϕ1(yk1) and pk2 := ϕ2(yk1)− yk2. Then yk ∈ T̂{1}(pk). Moreover, as ϕ1 and ϕ2 have the same signs

0 < ‖pk‖= pk2 = ϕ2(yk1)− yk2 = ϕ2(yk1)−ϕ1(yk1)≤ |ϕ1(yk1)|.

Consider now a point ỹk1 ∈Ω1 at which d(yk1,Ω1) is realized. Since Ω1 ⊂ T̂{1}(0) and ϕ1 is zero on Ω1, we
obtain

|d(yk, T̂{1}(0))|
|pk|

≥ |d(yk1,Ω1)|
|ϕ1(yk1)|

=
|yk1− ỹk1|

|ϕ1(yk1)−ϕ1(ỹk1)|
=

1
ϕ ′1(ξk)

,

where in the last equality we have used the mean value theorem to find some ξk which lies in the line segment
connecting yk1 and ỹk1. Since ϕ1 is twice continuously differentiable with ϕ ′1(0) = 0, we have proved that
T̂{1} is not calm at (0, ȳ). For T̂{2} we proceed with a similar construction. In this case we have

T̂{2}(0) = {y|ϕ1(y1)≤ y2,ϕ2(y1) = y2}= {(y1,ϕ2(y1))|ϕ1(y1)≤ 0}

and for the contradicting sequence we choose some yk1 > 0, yk1→ 0 such that yk1 ∈Ω2 and ϕ1(yk1)> 0 and
define again pk1 := 0, yk2 := ϕ1(yk1) and pk2 := ϕ2(yk1)− yk2 and perform the estimates as in the previous
case. Since for T̂{1,2} we have

T̂{1,2}(0) = {y|ϕ1(y1) = y2,ϕ2(y1) = y2}= {(y1,ϕ1(y1))|ϕ1(y1) = 0},

either of the previous contradicting sequences can be chosen.615

Fix now any λ̄ ∈Λ(x̄, ȳ) and consider the corresponding index set I = {i| λ̄i > 0}. In the previous several616

paragraphs we have shown that T̂I is not calm at (0, ȳ) and found a sequence (p̃k, ỹk) violating the calmness617

property. By virtue of Lemma 4 we obtain that T is not calm at (0, ȳ, λ̄ ). Moreover, from the proof of this618

lemma we see that the sequence (pk,yk,λk), which violates the calmness of T at (0, ȳ, λ̄ ), can be taken in619

such a way that pk = p̃k , yk = ỹk and λk = λ̄ with (ỹk, λ̄ ) ∈ T (p̃k) and620

d((ỹk, λ̄ ),T (0))> (k−1)‖ p̃k‖. (54)

Furthermore, in all the previous cases we have chosen ỹk in such a way that ỹk1 ∈Ω2.621

We will show that M̃ is not calm at (0,0, x̄, ȳ, λ̄ ). Consider sequence622

(0,0, p̃k1, p̃k2, x̄, ỹk1, ỹk2, λ̄1, λ̄2)→ (0,0,0,0, x̄,0,0, λ̄1, λ̄2) (55)

and show first that (x̄, ỹk1, ỹk2, λ̄1, λ̄2) ∈ M̃(0,0, p̃k1, p̃k2), which amounts to showing623 (
0
0

)
=

(
−φ ′(ỹk1)

1

)
+

(
ϕ ′1(ỹk1) ϕ ′2(ỹk1)
−1 −1

)(
λ̄1
λ̄2

)
,

q(ỹk)− p̃k ∈ NR2
+
(λ̄ ).

We know that (ỹk, λ̄ ) ∈ T (p̃k) and hence the inclusion is satisfied. Moreover, as ỹk1 ∈Ω2 by construction of624

this sequence and as λ̄1 + λ̄2 = 1, we indeed obtain625

(x̄, ỹk1, ỹk2, λ̄1, λ̄2) ∈ M̃(0,0, p̃k1, p̃k2). (56)

From the respective definitions of M̃ and T , we infer that M̃(0,0,0,0)⊂ Rn×T (0,0) and consequently
due to (54) we obtain

d((x̄, ỹk1, ỹk2, λ̄1, λ̄2),M̃(0,0,0,0))≥ d((ỹk1, ỹk2, λ̄1, λ̄2),T (0,0))> (k−1)‖ p̃k‖.

This together with (55) and (56) implies that M̃ is indeed not calm at (0,0, x̄, ȳ, λ̄ ). Since λ̄ was chosen626

arbitrarily from Λ(x̄, ȳ), the construction has been completed.627


